/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef nsTArray_h__ #define nsTArray_h__ #include "nsTArrayForwardDeclare.h" #include "mozilla/Alignment.h" #include "mozilla/Assertions.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Move.h" #include "mozilla/TypeTraits.h" #include #include "nsCycleCollectionNoteChild.h" #include "nsAlgorithm.h" #include "nscore.h" #include "nsQuickSort.h" #include "nsDebug.h" #include "nsISupportsImpl.h" #include namespace JS { template class Heap; } /* namespace JS */ class nsRegion; class nsIntRegion; // // nsTArray is a resizable array class, like std::vector. // // Unlike std::vector, which follows C++'s construction/destruction rules, // nsTArray assumes that your "T" can be memmoved()'ed safely. // // The public classes defined in this header are // // nsTArray, // FallibleTArray, // nsAutoTArray, and // AutoFallibleTArray. // // nsTArray and nsAutoTArray are infallible; if one tries to make an allocation // which fails, it crashes the program. In contrast, FallibleTArray and // AutoFallibleTArray are fallible; if you use one of these classes, you must // check the return values of methods such as Append() which may allocate. If // in doubt, choose an infallible type. // // InfallibleTArray and AutoInfallibleTArray are aliases for nsTArray and // nsAutoTArray. // // If you just want to declare the nsTArray types (e.g., if you're in a header // file and don't need the full nsTArray definitions) consider including // nsTArrayForwardDeclare.h instead of nsTArray.h. // // The template parameter (i.e., T in nsTArray) specifies the type of the // elements and has the following requirements: // // T MUST be safely memmove()'able. // T MUST define a copy-constructor. // T MAY define operator< for sorting. // T MAY define operator== for searching. // // (Note that the memmove requirement may be relaxed for certain types - see // nsTArray_CopyChooser below.) // // For methods taking a Comparator instance, the Comparator must be a class // defining the following methods: // // class Comparator { // public: // /** @return True if the elements are equals; false otherwise. */ // bool Equals(const elem_type& a, const Item& b) const; // // /** @return True if (a < b); false otherwise. */ // bool LessThan(const elem_type& a, const Item& b) const; // }; // // The Equals method is used for searching, and the LessThan method is used for // searching and sorting. The |Item| type above can be arbitrary, but must // match the Item type passed to the sort or search function. // // // nsTArrayFallibleResult and nsTArrayInfallibleResult types are proxy types // which are used because you cannot use a templated type which is bound to // void as an argument to a void function. In order to work around that, we // encode either a void or a boolean inside these proxy objects, and pass them // to the aforementioned function instead, and then use the type information to // decide what to do in the function. // // Note that public nsTArray methods should never return a proxy type. Such // types are only meant to be used in the internal nsTArray helper methods. // Public methods returning non-proxy types cannot be called from other // nsTArray members. // struct nsTArrayFallibleResult { // Note: allows implicit conversions from and to bool MOZ_IMPLICIT nsTArrayFallibleResult(bool aResult) : mResult(aResult) {} operator bool() { return mResult; } private: bool mResult; }; struct nsTArrayInfallibleResult { }; // // nsTArray*Allocators must all use the same |free()|, to allow swap()'ing // between fallible and infallible variants. // struct nsTArrayFallibleAllocatorBase { typedef bool ResultType; typedef nsTArrayFallibleResult ResultTypeProxy; static ResultType Result(ResultTypeProxy aResult) { return aResult; } static bool Successful(ResultTypeProxy aResult) { return aResult; } static ResultTypeProxy SuccessResult() { return true; } static ResultTypeProxy FailureResult() { return false; } static ResultType ConvertBoolToResultType(bool aValue) { return aValue; } }; struct nsTArrayInfallibleAllocatorBase { typedef void ResultType; typedef nsTArrayInfallibleResult ResultTypeProxy; static ResultType Result(ResultTypeProxy aResult) {} static bool Successful(ResultTypeProxy) { return true; } static ResultTypeProxy SuccessResult() { return ResultTypeProxy(); } static ResultTypeProxy FailureResult() { NS_RUNTIMEABORT("Infallible nsTArray should never fail"); return ResultTypeProxy(); } static ResultType ConvertBoolToResultType(bool aValue) { if (!aValue) { NS_RUNTIMEABORT("infallible nsTArray should never convert false to ResultType"); } } }; #if defined(MOZALLOC_HAVE_XMALLOC) #include "mozilla/mozalloc_abort.h" struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase { static void* Malloc(size_t aSize) { return moz_malloc(aSize); } static void* Realloc(void* aPtr, size_t aSize) { return moz_realloc(aPtr, aSize); } static void Free(void* aPtr) { moz_free(aPtr); } static void SizeTooBig(size_t) {} }; struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase { static void* Malloc(size_t aSize) { return moz_xmalloc(aSize); } static void* Realloc(void* aPtr, size_t aSize) { return moz_xrealloc(aPtr, aSize); } static void Free(void* aPtr) { moz_free(aPtr); } static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); } }; #else #include struct nsTArrayFallibleAllocator : nsTArrayFallibleAllocatorBase { static void* Malloc(size_t aSize) { return malloc(aSize); } static void* Realloc(void* aPtr, size_t aSize) { return realloc(aPtr, aSize); } static void Free(void* aPtr) { free(aPtr); } static void SizeTooBig(size_t) {} }; struct nsTArrayInfallibleAllocator : nsTArrayInfallibleAllocatorBase { static void* Malloc(size_t aSize) { void* ptr = malloc(aSize); if (MOZ_UNLIKELY(!ptr)) { NS_ABORT_OOM(aSize); } return ptr; } static void* Realloc(void* aPtr, size_t aSize) { void* newptr = realloc(aPtr, aSize); if (MOZ_UNLIKELY(!newptr && aSize)) { NS_ABORT_OOM(aSize); } return newptr; } static void Free(void* aPtr) { free(aPtr); } static void SizeTooBig(size_t aSize) { NS_ABORT_OOM(aSize); } }; #endif // nsTArray_base stores elements into the space allocated beyond // sizeof(*this). This is done to minimize the size of the nsTArray // object when it is empty. struct NS_COM_GLUE nsTArrayHeader { static nsTArrayHeader sEmptyHdr; uint32_t mLength; uint32_t mCapacity : 31; uint32_t mIsAutoArray : 1; }; // This class provides a SafeElementAt method to nsTArray which does // not take a second default value parameter. template struct nsTArray_SafeElementAtHelper { typedef E* elem_type; typedef size_t index_type; // No implementation is provided for these two methods, and that is on // purpose, since we don't support these functions on non-pointer type // instantiations. elem_type& SafeElementAt(index_type aIndex); const elem_type& SafeElementAt(index_type aIndex) const; }; template struct nsTArray_SafeElementAtHelper { typedef E* elem_type; typedef size_t index_type; elem_type SafeElementAt(index_type aIndex) { return static_cast(this)->SafeElementAt(aIndex, nullptr); } const elem_type SafeElementAt(index_type aIndex) const { return static_cast(this)->SafeElementAt(aIndex, nullptr); } }; // E is the base type that the smart pointer is templated over; the // smart pointer can act as E*. template struct nsTArray_SafeElementAtSmartPtrHelper { typedef E* elem_type; typedef size_t index_type; elem_type SafeElementAt(index_type aIndex) { return static_cast(this)->SafeElementAt(aIndex, nullptr); } const elem_type SafeElementAt(index_type aIndex) const { return static_cast(this)->SafeElementAt(aIndex, nullptr); } }; template class nsCOMPtr; template struct nsTArray_SafeElementAtHelper, Derived> : public nsTArray_SafeElementAtSmartPtrHelper { }; template class nsRefPtr; template struct nsTArray_SafeElementAtHelper, Derived> : public nsTArray_SafeElementAtSmartPtrHelper { }; // // This class serves as a base class for nsTArray. It shouldn't be used // directly. It holds common implementation code that does not depend on the // element type of the nsTArray. // template class nsTArray_base { // Allow swapping elements with |nsTArray_base|s created using a // different allocator. This is kosher because all allocators use // the same free(). template friend class nsTArray_base; protected: typedef nsTArrayHeader Header; public: typedef size_t size_type; typedef size_t index_type; // @return The number of elements in the array. size_type Length() const { return mHdr->mLength; } // @return True if the array is empty or false otherwise. bool IsEmpty() const { return Length() == 0; } // @return The number of elements that can fit in the array without forcing // the array to be re-allocated. The length of an array is always less // than or equal to its capacity. size_type Capacity() const { return mHdr->mCapacity; } #ifdef DEBUG void* DebugGetHeader() const { return mHdr; } #endif protected: nsTArray_base(); ~nsTArray_base(); // Resize the storage if necessary to achieve the requested capacity. // @param aCapacity The requested number of array elements. // @param aElemSize The size of an array element. // @return False if insufficient memory is available; true otherwise. typename Alloc::ResultTypeProxy EnsureCapacity(size_type aCapacity, size_type aElemSize); // Resize the storage to the minimum required amount. // @param aElemSize The size of an array element. // @param aElemAlign The alignment in bytes of an array element. void ShrinkCapacity(size_type aElemSize, size_t aElemAlign); // This method may be called to resize a "gap" in the array by shifting // elements around. It updates mLength appropriately. If the resulting // array has zero elements, then the array's memory is free'd. // @param aStart The starting index of the gap. // @param aOldLen The current length of the gap. // @param aNewLen The desired length of the gap. // @param aElemSize The size of an array element. // @param aElemAlign The alignment in bytes of an array element. void ShiftData(index_type aStart, size_type aOldLen, size_type aNewLen, size_type aElemSize, size_t aElemAlign); // This method increments the length member of the array's header. // Note that mHdr may actually be sEmptyHdr in the case where a // zero-length array is inserted into our array. But then aNum should // always be 0. void IncrementLength(size_t aNum) { if (mHdr == EmptyHdr()) { if (MOZ_UNLIKELY(aNum != 0)) { // Writing a non-zero length to the empty header would be extremely bad. MOZ_CRASH(); } } else { mHdr->mLength += aNum; } } // This method inserts blank slots into the array. // @param aIndex the place to insert the new elements. This must be no // greater than the current length of the array. // @param aCount the number of slots to insert // @param aElementSize the size of an array element. // @param aElemAlign the alignment in bytes of an array element. bool InsertSlotsAt(index_type aIndex, size_type aCount, size_type aElementSize, size_t aElemAlign); protected: template typename Alloc::ResultTypeProxy SwapArrayElements(nsTArray_base& aOther, size_type aElemSize, size_t aElemAlign); // This is an RAII class used in SwapArrayElements. class IsAutoArrayRestorer { public: IsAutoArrayRestorer(nsTArray_base& aArray, size_t aElemAlign); ~IsAutoArrayRestorer(); private: nsTArray_base& mArray; size_t mElemAlign; bool mIsAuto; }; // Helper function for SwapArrayElements. Ensures that if the array // is an nsAutoTArray that it doesn't use the built-in buffer. bool EnsureNotUsingAutoArrayBuffer(size_type aElemSize); // Returns true if this nsTArray is an nsAutoTArray with a built-in buffer. bool IsAutoArray() const { return mHdr->mIsAutoArray; } // Returns a Header for the built-in buffer of this nsAutoTArray. Header* GetAutoArrayBuffer(size_t aElemAlign) { MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this"); return GetAutoArrayBufferUnsafe(aElemAlign); } const Header* GetAutoArrayBuffer(size_t aElemAlign) const { MOZ_ASSERT(IsAutoArray(), "Should be an auto array to call this"); return GetAutoArrayBufferUnsafe(aElemAlign); } // Returns a Header for the built-in buffer of this nsAutoTArray, but doesn't // assert that we are an nsAutoTArray. Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) { return const_cast(static_cast*>( this)->GetAutoArrayBufferUnsafe(aElemAlign)); } const Header* GetAutoArrayBufferUnsafe(size_t aElemAlign) const; // Returns true if this is an nsAutoTArray and it currently uses the // built-in buffer to store its elements. bool UsesAutoArrayBuffer() const; // The array's elements (prefixed with a Header). This pointer is never // null. If the array is empty, then this will point to sEmptyHdr. Header* mHdr; Header* Hdr() const { return mHdr; } Header** PtrToHdr() { return &mHdr; } static Header* EmptyHdr() { return &Header::sEmptyHdr; } }; // // This class defines convenience functions for element specific operations. // Specialize this template if necessary. // template class nsTArrayElementTraits { public: // Invoke the default constructor in place. static inline void Construct(E* aE) { // Do NOT call "E()"! That triggers C++ "default initialization" // which zeroes out POD ("plain old data") types such as regular // ints. We don't want that because it can be a performance issue // and people don't expect it; nsTArray should work like a regular // C/C++ array in this respect. new (static_cast(aE)) E; } // Invoke the copy-constructor in place. template static inline void Construct(E* aE, A &&aArg) { typedef typename mozilla::RemoveCV::Type E_NoCV; typedef typename mozilla::RemoveCV::Type A_NoCV; static_assert(!mozilla::IsSame::value, "For safety, we disallow constructing nsTArray elements " "from E* pointers. See bug 960591."); new (static_cast(aE)) E(mozilla::Forward(aArg)); } // Invoke the destructor in place. static inline void Destruct(E* aE) { aE->~E(); } }; // The default comparator used by nsTArray template class nsDefaultComparator { public: bool Equals(const A& aA, const B& aB) const { return aA == aB; } bool LessThan(const A& aA, const B& aB) const { return aA < aB; } }; template class InfallibleTArray; template class FallibleTArray; template struct AssignRangeAlgorithm { template static void implementation(ElemType* aElements, IndexType aStart, SizeType aCount, const Item* aValues) { ElemType* iter = aElements + aStart; ElemType* end = iter + aCount; for (; iter != end; ++iter, ++aValues) { nsTArrayElementTraits::Construct(iter, *aValues); } } }; template<> struct AssignRangeAlgorithm { template static void implementation(ElemType* aElements, IndexType aStart, SizeType aCount, const Item* aValues) { memcpy(aElements + aStart, aValues, aCount * sizeof(ElemType)); } }; // // Normally elements are copied with memcpy and memmove, but for some element // types that is problematic. The nsTArray_CopyChooser template class can be // specialized to ensure that copying calls constructors and destructors // instead, as is done below for JS::Heap elements. // // // A class that defines how to copy elements using memcpy/memmove. // struct nsTArray_CopyWithMemutils { const static bool allowRealloc = true; static void CopyElements(void* aDest, const void* aSrc, size_t aCount, size_t aElemSize) { memcpy(aDest, aSrc, aCount * aElemSize); } static void CopyHeaderAndElements(void* aDest, const void* aSrc, size_t aCount, size_t aElemSize) { memcpy(aDest, aSrc, sizeof(nsTArrayHeader) + aCount * aElemSize); } static void MoveElements(void* aDest, const void* aSrc, size_t aCount, size_t aElemSize) { memmove(aDest, aSrc, aCount * aElemSize); } }; // // A template class that defines how to copy elements calling their constructors // and destructors appropriately. // template struct nsTArray_CopyWithConstructors { typedef nsTArrayElementTraits traits; const static bool allowRealloc = false; static void CopyElements(void* aDest, void* aSrc, size_t aCount, size_t aElemSize) { ElemType* destElem = static_cast(aDest); ElemType* srcElem = static_cast(aSrc); ElemType* destElemEnd = destElem + aCount; #ifdef DEBUG ElemType* srcElemEnd = srcElem + aCount; MOZ_ASSERT(srcElemEnd <= destElem || srcElemEnd > destElemEnd); #endif while (destElem != destElemEnd) { traits::Construct(destElem, *srcElem); traits::Destruct(srcElem); ++destElem; ++srcElem; } } static void CopyHeaderAndElements(void* aDest, void* aSrc, size_t aCount, size_t aElemSize) { nsTArrayHeader* destHeader = static_cast(aDest); nsTArrayHeader* srcHeader = static_cast(aSrc); *destHeader = *srcHeader; CopyElements(static_cast(aDest) + sizeof(nsTArrayHeader), static_cast(aSrc) + sizeof(nsTArrayHeader), aCount, aElemSize); } static void MoveElements(void* aDest, void* aSrc, size_t aCount, size_t aElemSize) { ElemType* destElem = static_cast(aDest); ElemType* srcElem = static_cast(aSrc); ElemType* destElemEnd = destElem + aCount; ElemType* srcElemEnd = srcElem + aCount; if (destElem == srcElem) { return; // In practice, we don't do this. } else if (srcElemEnd > destElem && srcElemEnd < destElemEnd) { while (destElemEnd != destElem) { --destElemEnd; --srcElemEnd; traits::Construct(destElemEnd, *srcElemEnd); traits::Destruct(srcElem); } } else { CopyElements(aDest, aSrc, aCount, aElemSize); } } }; // // The default behaviour is to use memcpy/memmove for everything. // template struct nsTArray_CopyChooser { typedef nsTArray_CopyWithMemutils Type; }; // // Some classes require constructors/destructors to be called, so they are // specialized here. // template struct nsTArray_CopyChooser> { typedef nsTArray_CopyWithConstructors> Type; }; template<> struct nsTArray_CopyChooser { typedef nsTArray_CopyWithConstructors Type; }; template<> struct nsTArray_CopyChooser { typedef nsTArray_CopyWithConstructors Type; }; // // Base class for nsTArray_Impl that is templated on element type and derived // nsTArray_Impl class, to allow extra conversions to be added for specific // types. // template struct nsTArray_TypedBase : public nsTArray_SafeElementAtHelper { }; // // Specialization of nsTArray_TypedBase for arrays containing JS::Heap // elements. // // These conversions are safe because JS::Heap and E share the same // representation, and since the result of the conversions are const references // we won't miss any barriers. // // The static_cast is necessary to obtain the correct address for the derived // class since we are a base class used in multiple inheritance. // template struct nsTArray_TypedBase, Derived> : public nsTArray_SafeElementAtHelper, Derived> { operator const nsTArray&() { static_assert(sizeof(E) == sizeof(JS::Heap), "JS::Heap must be binary compatible with E."); Derived* self = static_cast(this); return *reinterpret_cast *>(self); } operator const FallibleTArray&() { Derived* self = static_cast(this); return *reinterpret_cast *>(self); } }; // // nsTArray_Impl contains most of the guts supporting nsTArray, FallibleTArray, // nsAutoTArray, and AutoFallibleTArray. // // The only situation in which you might need to use nsTArray_Impl in your code // is if you're writing code which mutates a TArray which may or may not be // infallible. // // Code which merely reads from a TArray which may or may not be infallible can // simply cast the TArray to |const nsTArray&|; both fallible and infallible // TArrays can be cast to |const nsTArray&|. // template class nsTArray_Impl : public nsTArray_base::Type> , public nsTArray_TypedBase> { public: typedef typename nsTArray_CopyChooser::Type copy_type; typedef nsTArray_base base_type; typedef typename base_type::size_type size_type; typedef typename base_type::index_type index_type; typedef E elem_type; typedef nsTArray_Impl self_type; typedef nsTArrayElementTraits elem_traits; typedef nsTArray_SafeElementAtHelper safeelementat_helper_type; using safeelementat_helper_type::SafeElementAt; using base_type::EmptyHdr; // A special value that is used to indicate an invalid or unknown index // into the array. static const index_type NoIndex = index_type(-1); using base_type::Length; // // Finalization method // ~nsTArray_Impl() { Clear(); } // // Initialization methods // nsTArray_Impl() {} // Initialize this array and pre-allocate some number of elements. explicit nsTArray_Impl(size_type aCapacity) { SetCapacity(aCapacity); } // The array's copy-constructor performs a 'deep' copy of the given array. // @param aOther The array object to copy. // // It's very important that we declare this method as taking |const // self_type&| as opposed to taking |const nsTArray_Impl| for // an arbitrary OtherAlloc. // // If we don't declare a constructor taking |const self_type&|, C++ generates // a copy-constructor for this class which merely copies the object's // members, which is obviously wrong. // // You can pass an nsTArray_Impl to this method because // nsTArray_Impl can be cast to const nsTArray_Impl&. So the // effect on the API is the same as if we'd declared this method as taking // |const nsTArray_Impl&|. explicit nsTArray_Impl(const self_type& aOther) { AppendElements(aOther); } // Allow converting to a const array with a different kind of allocator, // Since the allocator doesn't matter for const arrays template operator const nsTArray_Impl&() const { return *reinterpret_cast*>(this); } // And we have to do this for our subclasses too operator const nsTArray&() const { return *reinterpret_cast*>(this); } operator const FallibleTArray&() const { return *reinterpret_cast*>(this); } // The array's assignment operator performs a 'deep' copy of the given // array. It is optimized to reuse existing storage if possible. // @param aOther The array object to copy. self_type& operator=(const self_type& aOther) { ReplaceElementsAt(0, Length(), aOther.Elements(), aOther.Length()); return *this; } // Return true if this array has the same length and the same // elements as |aOther|. template bool operator==(const nsTArray_Impl& aOther) const { size_type len = Length(); if (len != aOther.Length()) { return false; } // XXX std::equal would be as fast or faster here for (index_type i = 0; i < len; ++i) { if (!(operator[](i) == aOther[i])) { return false; } } return true; } // Return true if this array does not have the same length and the same // elements as |aOther|. bool operator!=(const self_type& aOther) const { return !operator==(aOther); } template self_type& operator=(const nsTArray_Impl& aOther) { ReplaceElementsAt(0, Length(), aOther.Elements(), aOther.Length()); return *this; } // @return The amount of memory used by this nsTArray_Impl, excluding // sizeof(*this). size_t SizeOfExcludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { if (this->UsesAutoArrayBuffer() || Hdr() == EmptyHdr()) { return 0; } return aMallocSizeOf(this->Hdr()); } // @return The amount of memory used by this nsTArray_Impl, including // sizeof(*this). size_t SizeOfIncludingThis(mozilla::MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf); } // // Accessor methods // // This method provides direct access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. elem_type* Elements() { return reinterpret_cast(Hdr() + 1); } // This method provides direct, readonly access to the array elements. // @return A pointer to the first element of the array. If the array is // empty, then this pointer must not be dereferenced. const elem_type* Elements() const { return reinterpret_cast(Hdr() + 1); } // This method provides direct access to an element of the array. The given // index must be within the array bounds. // @param aIndex The index of an element in the array. // @return A reference to the i'th element of the array. elem_type& ElementAt(index_type aIndex) { MOZ_ASSERT(aIndex < Length(), "invalid array index"); return Elements()[aIndex]; } // This method provides direct, readonly access to an element of the array // The given index must be within the array bounds. // @param aIndex The index of an element in the array. // @return A const reference to the i'th element of the array. const elem_type& ElementAt(index_type aIndex) const { MOZ_ASSERT(aIndex < Length(), "invalid array index"); return Elements()[aIndex]; } // This method provides direct access to an element of the array in a bounds // safe manner. If the requested index is out of bounds the provided default // value is returned. // @param aIndex The index of an element in the array. // @param aDef The value to return if the index is out of bounds. elem_type& SafeElementAt(index_type aIndex, elem_type& aDef) { return aIndex < Length() ? Elements()[aIndex] : aDef; } // This method provides direct access to an element of the array in a bounds // safe manner. If the requested index is out of bounds the provided default // value is returned. // @param aIndex The index of an element in the array. // @param aDef The value to return if the index is out of bounds. const elem_type& SafeElementAt(index_type aIndex, const elem_type& aDef) const { return aIndex < Length() ? Elements()[aIndex] : aDef; } // Shorthand for ElementAt(aIndex) elem_type& operator[](index_type aIndex) { return ElementAt(aIndex); } // Shorthand for ElementAt(aIndex) const elem_type& operator[](index_type aIndex) const { return ElementAt(aIndex); } // Shorthand for ElementAt(length - 1) elem_type& LastElement() { return ElementAt(Length() - 1); } // Shorthand for ElementAt(length - 1) const elem_type& LastElement() const { return ElementAt(Length() - 1); } // Shorthand for SafeElementAt(length - 1, def) elem_type& SafeLastElement(elem_type& aDef) { return SafeElementAt(Length() - 1, aDef); } // Shorthand for SafeElementAt(length - 1, def) const elem_type& SafeLastElement(const elem_type& aDef) const { return SafeElementAt(Length() - 1, aDef); } // // Search methods // // This method searches for the first element in this array that is equal // to the given element. // @param aItem The item to search for. // @param aComp The Comparator used to determine element equality. // @return true if the element was found. template bool Contains(const Item& aItem, const Comparator& aComp) const { return IndexOf(aItem, 0, aComp) != NoIndex; } // This method searches for the first element in this array that is equal // to the given element. This method assumes that 'operator==' is defined // for elem_type. // @param aItem The item to search for. // @return true if the element was found. template bool Contains(const Item& aItem) const { return IndexOf(aItem) != NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. // @param aItem The item to search for. // @param aStart The index to start from. // @param aComp The Comparator used to determine element equality. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& aItem, index_type aStart, const Comparator& aComp) const { const elem_type* iter = Elements() + aStart, *end = Elements() + Length(); for (; iter != end; ++iter) { if (aComp.Equals(*iter, aItem)) { return index_type(iter - Elements()); } } return NoIndex; } // This method searches for the offset of the first element in this // array that is equal to the given element. This method assumes // that 'operator==' is defined for elem_type. // @param aItem The item to search for. // @param aStart The index to start from. // @return The index of the found element or NoIndex if not found. template index_type IndexOf(const Item& aItem, index_type aStart = 0) const { return IndexOf(aItem, aStart, nsDefaultComparator()); } // This method searches for the offset of the last element in this // array that is equal to the given element. // @param aItem The item to search for. // @param aStart The index to start from. If greater than or equal to the // length of the array, then the entire array is searched. // @param aComp The Comparator used to determine element equality. // @return The index of the found element or NoIndex if not found. template index_type LastIndexOf(const Item& aItem, index_type aStart, const Comparator& aComp) const { size_type endOffset = aStart >= Length() ? Length() : aStart + 1; const elem_type* end = Elements() - 1, *iter = end + endOffset; for (; iter != end; --iter) { if (aComp.Equals(*iter, aItem)) { return index_type(iter - Elements()); } } return NoIndex; } // This method searches for the offset of the last element in this // array that is equal to the given element. This method assumes // that 'operator==' is defined for elem_type. // @param aItem The item to search for. // @param aStart The index to start from. If greater than or equal to the // length of the array, then the entire array is searched. // @return The index of the found element or NoIndex if not found. template index_type LastIndexOf(const Item& aItem, index_type aStart = NoIndex) const { return LastIndexOf(aItem, aStart, nsDefaultComparator()); } // This method searches for the offset for the element in this array // that is equal to the given element. The array is assumed to be sorted. // @param aItem The item to search for. // @param aComp The Comparator used. // @return The index of the found element or NoIndex if not found. template index_type BinaryIndexOf(const Item& aItem, const Comparator& aComp) const { index_type low = 0, high = Length(); while (high > low) { index_type mid = (high + low) >> 1; if (aComp.Equals(ElementAt(mid), aItem)) { return mid; } if (aComp.LessThan(ElementAt(mid), aItem)) { low = mid + 1; } else { high = mid; } } return NoIndex; } // This method searches for the offset for the element in this array // that is equal to the given element. The array is assumed to be sorted. // This method assumes that 'operator==' and 'operator<' are defined. // @param aItem The item to search for. // @return The index of the found element or NoIndex if not found. template index_type BinaryIndexOf(const Item& aItem) const { return BinaryIndexOf(aItem, nsDefaultComparator()); } // // Mutation methods // // This method call the destructor on each element of the array, empties it, // but does not shrink the array's capacity. // See also SetLengthAndRetainStorage. // Make sure to call Compact() if needed to avoid keeping a huge array // around. void ClearAndRetainStorage() { if (base_type::mHdr == EmptyHdr()) { return; } DestructRange(0, Length()); base_type::mHdr->mLength = 0; } // This method modifies the length of the array, but unlike SetLength // it doesn't deallocate/reallocate the current internal storage. // The new length MUST be shorter than or equal to the current capacity. // If the new length is larger than the existing length of the array, // then new elements will be constructed using elem_type's default // constructor. If shorter, elements will be destructed and removed. // See also ClearAndRetainStorage. // @param aNewLen The desired length of this array. void SetLengthAndRetainStorage(size_type aNewLen) { MOZ_ASSERT(aNewLen <= base_type::Capacity()); size_type oldLen = Length(); if (aNewLen > oldLen) { InsertElementsAt(oldLen, aNewLen - oldLen); return; } if (aNewLen < oldLen) { DestructRange(aNewLen, oldLen - aNewLen); base_type::mHdr->mLength = aNewLen; } } // This method replaces a range of elements in this array. // @param aStart The starting index of the elements to replace. // @param aCount The number of elements to replace. This may be zero to // insert elements without removing any existing elements. // @param aArray The values to copy into this array. Must be non-null, // and these elements must not already exist in the array // being modified. // @param aArrayLen The number of values to copy into this array. // @return A pointer to the new elements in the array, or null if // the operation failed due to insufficient memory. template elem_type* ReplaceElementsAt(index_type aStart, size_type aCount, const Item* aArray, size_type aArrayLen) { // Adjust memory allocation up-front to catch errors. if (!Alloc::Successful(this->EnsureCapacity(Length() + aArrayLen - aCount, sizeof(elem_type)))) return nullptr; DestructRange(aStart, aCount); this->ShiftData(aStart, aCount, aArrayLen, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); AssignRange(aStart, aArrayLen, aArray); return Elements() + aStart; } // A variation on the ReplaceElementsAt method defined above. template elem_type* ReplaceElementsAt(index_type aStart, size_type aCount, const nsTArray& aArray) { return ReplaceElementsAt(aStart, aCount, aArray.Elements(), aArray.Length()); } // A variation on the ReplaceElementsAt method defined above. template elem_type* ReplaceElementsAt(index_type aStart, size_type aCount, const Item& aItem) { return ReplaceElementsAt(aStart, aCount, &aItem, 1); } // A variation on the ReplaceElementsAt method defined above. template elem_type* ReplaceElementAt(index_type aIndex, const Item& aItem) { return ReplaceElementsAt(aIndex, 1, &aItem, 1); } // A variation on the ReplaceElementsAt method defined above. template elem_type* InsertElementsAt(index_type aIndex, const Item* aArray, size_type aArrayLen) { return ReplaceElementsAt(aIndex, 0, aArray, aArrayLen); } // A variation on the ReplaceElementsAt method defined above. template elem_type* InsertElementsAt(index_type aIndex, const nsTArray_Impl& aArray) { return ReplaceElementsAt(aIndex, 0, aArray.Elements(), aArray.Length()); } // A variation on the ReplaceElementsAt method defined above. template elem_type* InsertElementAt(index_type aIndex, const Item& aItem) { return ReplaceElementsAt(aIndex, 0, &aItem, 1); } // Insert a new element without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly inserted element, or null on OOM. elem_type* InsertElementAt(index_type aIndex) { if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type)))) return nullptr; this->ShiftData(aIndex, 0, 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); elem_type* elem = Elements() + aIndex; elem_traits::Construct(elem); return elem; } // This method searches for the smallest index of an element that is strictly // greater than |aItem|. If |aItem| is inserted at this index, the array will // remain sorted and |aItem| would come after all elements that are equal to // it. If |aItem| is greater than or equal to all elements in the array, the // array length is returned. // // Note that consumers who want to know whether there are existing items equal // to |aItem| in the array can just check that the return value here is > 0 // and indexing into the previous slot gives something equal to |aItem|. // // // @param aItem The item to search for. // @param aComp The Comparator used. // @return The index of greatest element <= to |aItem| // @precondition The array is sorted template index_type IndexOfFirstElementGt(const Item& aItem, const Comparator& aComp) const { // invariant: low <= [idx] <= high index_type low = 0, high = Length(); while (high > low) { index_type mid = (high + low) >> 1; // Comparators are not required to provide a LessThan(Item&, elem_type), // so we can't do aComp.LessThan(aItem, ElementAt(mid)). if (aComp.LessThan(ElementAt(mid), aItem) || aComp.Equals(ElementAt(mid), aItem)) { // aItem >= ElementAt(mid), so our desired index is at least mid+1. low = mid + 1; } else { // aItem < ElementAt(mid). Our desired index is therefore at most mid. high = mid; } } MOZ_ASSERT(high == low); return low; } // A variation on the IndexOfFirstElementGt method defined above. template index_type IndexOfFirstElementGt(const Item& aItem) const { return IndexOfFirstElementGt(aItem, nsDefaultComparator()); } // Inserts |aItem| at such an index to guarantee that if the array // was previously sorted, it will remain sorted after this // insertion. template elem_type* InsertElementSorted(const Item& aItem, const Comparator& aComp) { index_type index = IndexOfFirstElementGt(aItem, aComp); return InsertElementAt(index, aItem); } // A variation on the InsertElementSorted method defined above. template elem_type* InsertElementSorted(const Item& aItem) { return InsertElementSorted(aItem, nsDefaultComparator()); } // This method appends elements to the end of this array. // @param aArray The elements to append to this array. // @param aArrayLen The number of elements to append to this array. // @return A pointer to the new elements in the array, or null if // the operation failed due to insufficient memory. template elem_type* AppendElements(const Item* aArray, size_type aArrayLen) { if (!Alloc::Successful(this->EnsureCapacity(Length() + aArrayLen, sizeof(elem_type)))) return nullptr; index_type len = Length(); AssignRange(len, aArrayLen, aArray); this->IncrementLength(aArrayLen); return Elements() + len; } // A variation on the AppendElements method defined above. template elem_type* AppendElements(const nsTArray_Impl& aArray) { return AppendElements(aArray.Elements(), aArray.Length()); } // A variation on the AppendElements method defined above. template elem_type* AppendElement(const Item& aItem) { return AppendElements(&aItem, 1); } // A variation of AppendElement that takes an r-value reference elem_type* AppendElement(elem_type&& aItem) { if (!Alloc::Successful(this->EnsureCapacity(Length() + 1, sizeof(elem_type)))) return nullptr; index_type len = Length(); elem_type* iter = Elements() + len; nsTArrayElementTraits::Construct(iter, mozilla::Forward(aItem)); this->IncrementLength(1); return iter; } // Append new elements without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly appended elements, or null on OOM. elem_type* AppendElements(size_type aCount) { if (!Alloc::Successful(this->EnsureCapacity(Length() + aCount, sizeof(elem_type)))) return nullptr; elem_type* elems = Elements() + Length(); size_type i; for (i = 0; i < aCount; ++i) { elem_traits::Construct(elems + i); } this->IncrementLength(aCount); return elems; } // Append a new element without copy-constructing. This is useful to avoid // temporaries. // @return A pointer to the newly appended element, or null on OOM. elem_type* AppendElement() { return AppendElements(1); } // Move all elements from another array to the end of this array without // calling copy constructors or destructors. // @return A pointer to the newly appended elements, or null on OOM. template elem_type* MoveElementsFrom(nsTArray_Impl& aArray) { MOZ_ASSERT(&aArray != this, "argument must be different aArray"); index_type len = Length(); index_type otherLen = aArray.Length(); if (!Alloc::Successful(this->EnsureCapacity(len + otherLen, sizeof(elem_type)))) return nullptr; copy_type::CopyElements(Elements() + len, aArray.Elements(), otherLen, sizeof(elem_type)); this->IncrementLength(otherLen); aArray.ShiftData(0, otherLen, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); return Elements() + len; } // This method removes a range of elements from this array. // @param aStart The starting index of the elements to remove. // @param aCount The number of elements to remove. void RemoveElementsAt(index_type aStart, size_type aCount) { MOZ_ASSERT(aCount == 0 || aStart < Length(), "Invalid aStart index"); MOZ_ASSERT(aStart + aCount <= Length(), "Invalid length"); // Check that the previous assert didn't overflow MOZ_ASSERT(aStart <= aStart + aCount, "Start index plus length overflows"); DestructRange(aStart, aCount); this->ShiftData(aStart, aCount, 0, sizeof(elem_type), MOZ_ALIGNOF(elem_type)); } // A variation on the RemoveElementsAt method defined above. void RemoveElementAt(index_type aIndex) { RemoveElementsAt(aIndex, 1); } // A variation on the RemoveElementsAt method defined above. void Clear() { RemoveElementsAt(0, Length()); } // This helper function combines IndexOf with RemoveElementAt to "search // and destroy" the first element that is equal to the given element. // @param aItem The item to search for. // @param aComp The Comparator used to determine element equality. // @return true if the element was found template bool RemoveElement(const Item& aItem, const Comparator& aComp) { index_type i = IndexOf(aItem, 0, aComp); if (i == NoIndex) { return false; } RemoveElementAt(i); return true; } // A variation on the RemoveElement method defined above that assumes // that 'operator==' is defined for elem_type. template bool RemoveElement(const Item& aItem) { return RemoveElement(aItem, nsDefaultComparator()); } // This helper function combines IndexOfFirstElementGt with // RemoveElementAt to "search and destroy" the last element that // is equal to the given element. // @param aItem The item to search for. // @param aComp The Comparator used to determine element equality. // @return true if the element was found template bool RemoveElementSorted(const Item& aItem, const Comparator& aComp) { index_type index = IndexOfFirstElementGt(aItem, aComp); if (index > 0 && aComp.Equals(ElementAt(index - 1), aItem)) { RemoveElementAt(index - 1); return true; } return false; } // A variation on the RemoveElementSorted method defined above. template bool RemoveElementSorted(const Item& aItem) { return RemoveElementSorted(aItem, nsDefaultComparator()); } // This method causes the elements contained in this array and the given // array to be swapped. template typename Alloc::ResultType SwapElements(nsTArray_Impl& aOther) { return Alloc::Result(this->SwapArrayElements(aOther, sizeof(elem_type), MOZ_ALIGNOF(elem_type))); } // // Allocation // // This method may increase the capacity of this array object by the // specified amount. This method may be called in advance of several // AppendElement operations to minimize heap re-allocations. This method // will not reduce the number of elements in this array. // @param aCapacity The desired capacity of this array. // @return True if the operation succeeded; false if we ran out of memory typename Alloc::ResultType SetCapacity(size_type aCapacity) { return Alloc::Result(this->EnsureCapacity(aCapacity, sizeof(elem_type))); } // This method modifies the length of the array. If the new length is // larger than the existing length of the array, then new elements will be // constructed using elem_type's default constructor. Otherwise, this call // removes elements from the array (see also RemoveElementsAt). // @param aNewLen The desired length of this array. // @return True if the operation succeeded; false otherwise. // See also TruncateLength if the new length is guaranteed to be smaller than // the old. typename Alloc::ResultType SetLength(size_type aNewLen) { size_type oldLen = Length(); if (aNewLen > oldLen) { return Alloc::ConvertBoolToResultType( InsertElementsAt(oldLen, aNewLen - oldLen) != nullptr); } TruncateLength(aNewLen); return Alloc::ConvertBoolToResultType(true); } // This method modifies the length of the array, but may only be // called when the new length is shorter than the old. It can // therefore be called when elem_type has no default constructor, // unlike SetLength. It removes elements from the array (see also // RemoveElementsAt). // @param aNewLen The desired length of this array. void TruncateLength(size_type aNewLen) { size_type oldLen = Length(); NS_ABORT_IF_FALSE(aNewLen <= oldLen, "caller should use SetLength instead"); RemoveElementsAt(aNewLen, oldLen - aNewLen); } // This method ensures that the array has length at least the given // length. If the current length is shorter than the given length, // then new elements will be constructed using elem_type's default // constructor. // @param aMinLen The desired minimum length of this array. // @return True if the operation succeeded; false otherwise. typename Alloc::ResultType EnsureLengthAtLeast(size_type aMinLen) { size_type oldLen = Length(); if (aMinLen > oldLen) { return Alloc::ConvertBoolToResultType(!!InsertElementsAt(oldLen, aMinLen - oldLen)); } return Alloc::ConvertBoolToResultType(true); } // This method inserts elements into the array, constructing // them using elem_type's default constructor. // @param aIndex the place to insert the new elements. This must be no // greater than the current length of the array. // @param aCount the number of elements to insert elem_type* InsertElementsAt(index_type aIndex, size_type aCount) { if (!base_type::InsertSlotsAt(aIndex, aCount, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { return nullptr; } // Initialize the extra array elements elem_type* iter = Elements() + aIndex, *end = iter + aCount; for (; iter != end; ++iter) { elem_traits::Construct(iter); } return Elements() + aIndex; } // This method inserts elements into the array, constructing them // elem_type's copy constructor (or whatever one-arg constructor // happens to match the Item type). // @param aIndex the place to insert the new elements. This must be no // greater than the current length of the array. // @param aCount the number of elements to insert. // @param aItem the value to use when constructing the new elements. template elem_type* InsertElementsAt(index_type aIndex, size_type aCount, const Item& aItem) { if (!base_type::InsertSlotsAt(aIndex, aCount, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { return nullptr; } // Initialize the extra array elements elem_type* iter = Elements() + aIndex, *end = iter + aCount; for (; iter != end; ++iter) { elem_traits::Construct(iter, aItem); } return Elements() + aIndex; } // This method may be called to minimize the memory used by this array. void Compact() { ShrinkCapacity(sizeof(elem_type), MOZ_ALIGNOF(elem_type)); } // // Sorting // // This function is meant to be used with the NS_QuickSort function. It // maps the callback API expected by NS_QuickSort to the Comparator API // used by nsTArray_Impl. See nsTArray_Impl::Sort. template static int Compare(const void* aE1, const void* aE2, void* aData) { const Comparator* c = reinterpret_cast(aData); const elem_type* a = static_cast(aE1); const elem_type* b = static_cast(aE2); return c->LessThan(*a, *b) ? -1 : (c->Equals(*a, *b) ? 0 : 1); } // This method sorts the elements of the array. It uses the LessThan // method defined on the given Comparator object to collate elements. // @param aComp The Comparator used to collate elements. template void Sort(const Comparator& aComp) { NS_QuickSort(Elements(), Length(), sizeof(elem_type), Compare, const_cast(&aComp)); } // A variation on the Sort method defined above that assumes that // 'operator<' is defined for elem_type. void Sort() { Sort(nsDefaultComparator()); } // // Binary Heap // // Sorts the array into a binary heap. // @param aComp The Comparator used to create the heap template void MakeHeap(const Comparator& aComp) { if (!Length()) { return; } index_type index = (Length() - 1) / 2; do { SiftDown(index, aComp); } while (index--); } // A variation on the MakeHeap method defined above. void MakeHeap() { MakeHeap(nsDefaultComparator()); } // Adds an element to the heap // @param aItem The item to add // @param aComp The Comparator used to sift-up the item template elem_type* PushHeap(const Item& aItem, const Comparator& aComp) { if (!base_type::InsertSlotsAt(Length(), 1, sizeof(elem_type), MOZ_ALIGNOF(elem_type))) { return nullptr; } // Sift up the new node elem_type* elem = Elements(); index_type index = Length() - 1; index_type parent_index = (index - 1) / 2; while (index && aComp.LessThan(elem[parent_index], aItem)) { elem[index] = elem[parent_index]; index = parent_index; parent_index = (index - 1) / 2; } elem[index] = aItem; return &elem[index]; } // A variation on the PushHeap method defined above. template elem_type* PushHeap(const Item& aItem) { return PushHeap(aItem, nsDefaultComparator()); } // Delete the root of the heap and restore the heap // @param aComp The Comparator used to restore the heap template void PopHeap(const Comparator& aComp) { if (!Length()) { return; } index_type last_index = Length() - 1; elem_type* elem = Elements(); elem[0] = elem[last_index]; TruncateLength(last_index); if (Length()) { SiftDown(0, aComp); } } // A variation on the PopHeap method defined above. void PopHeap() { PopHeap(nsDefaultComparator()); } protected: using base_type::Hdr; using base_type::ShrinkCapacity; // This method invokes elem_type's destructor on a range of elements. // @param aStart The index of the first element to destroy. // @param aCount The number of elements to destroy. void DestructRange(index_type aStart, size_type aCount) { elem_type* iter = Elements() + aStart, *end = iter + aCount; for (; iter != end; ++iter) { elem_traits::Destruct(iter); } } // This method invokes elem_type's copy-constructor on a range of elements. // @param aStart The index of the first element to construct. // @param aCount The number of elements to construct. // @param aValues The array of elements to copy. template void AssignRange(index_type aStart, size_type aCount, const Item* aValues) { AssignRangeAlgorithm::value, mozilla::IsSame::value> ::implementation(Elements(), aStart, aCount, aValues); } // This method sifts an item down to its proper place in a binary heap // @param aIndex The index of the node to start sifting down from // @param aComp The Comparator used to sift down template void SiftDown(index_type aIndex, const Comparator& aComp) { elem_type* elem = Elements(); elem_type item = elem[aIndex]; index_type end = Length() - 1; while ((aIndex * 2) < end) { const index_type left = (aIndex * 2) + 1; const index_type right = (aIndex * 2) + 2; const index_type parent_index = aIndex; if (aComp.LessThan(item, elem[left])) { if (left < end && aComp.LessThan(elem[left], elem[right])) { aIndex = right; } else { aIndex = left; } } else if (left < end && aComp.LessThan(item, elem[right])) { aIndex = right; } else { break; } elem[parent_index] = elem[aIndex]; } elem[aIndex] = item; } }; template inline void ImplCycleCollectionUnlink(nsTArray_Impl& aField) { aField.Clear(); } template inline void ImplCycleCollectionTraverse(nsCycleCollectionTraversalCallback& aCallback, nsTArray_Impl& aField, const char* aName, uint32_t aFlags = 0) { aFlags |= CycleCollectionEdgeNameArrayFlag; size_t length = aField.Length(); for (size_t i = 0; i < length; ++i) { ImplCycleCollectionTraverse(aCallback, aField[i], aName, aFlags); } } // // nsTArray is an infallible vector class. See the comment at the top of this // file for more details. // template class nsTArray : public nsTArray_Impl { public: typedef nsTArray_Impl base_type; typedef nsTArray self_type; typedef typename base_type::size_type size_type; nsTArray() {} explicit nsTArray(size_type aCapacity) : base_type(aCapacity) {} explicit nsTArray(const nsTArray& aOther) : base_type(aOther) {} template explicit nsTArray(const nsTArray_Impl& aOther) : base_type(aOther) { } }; // // FallibleTArray is a fallible vector class. // template class FallibleTArray : public nsTArray_Impl { public: typedef nsTArray_Impl base_type; typedef FallibleTArray self_type; typedef typename base_type::size_type size_type; FallibleTArray() {} explicit FallibleTArray(size_type aCapacity) : base_type(aCapacity) {} explicit FallibleTArray(const FallibleTArray& aOther) : base_type(aOther) {} template explicit FallibleTArray(const nsTArray_Impl& aOther) : base_type(aOther) { } }; // // nsAutoArrayBase is a base class for AutoFallibleTArray and nsAutoTArray. // You shouldn't use this class directly. // template class nsAutoArrayBase : public TArrayBase { static_assert(N != 0, "nsAutoArrayBase should be specialized"); public: typedef nsAutoArrayBase self_type; typedef TArrayBase base_type; typedef typename base_type::Header Header; typedef typename base_type::elem_type elem_type; template self_type& operator=(const nsTArray_Impl& aOther) { base_type::operator=(aOther); return *this; } protected: nsAutoArrayBase() { Init(); } // We need this constructor because nsAutoTArray and friends all have // implicit copy-constructors. If we don't have this method, those // copy-constructors will call nsAutoArrayBase's implicit copy-constructor, // which won't call Init() and set up the auto buffer! nsAutoArrayBase(const self_type& aOther) { Init(); this->AppendElements(aOther); } private: // nsTArray_base casts itself as an nsAutoArrayBase in order to get a pointer // to mAutoBuf. template friend class nsTArray_base; void Init() { static_assert(MOZ_ALIGNOF(elem_type) <= 8, "can't handle alignments greater than 8, " "see nsTArray_base::UsesAutoArrayBuffer()"); // Temporary work around for VS2012 RC compiler crash Header** phdr = base_type::PtrToHdr(); *phdr = reinterpret_cast(&mAutoBuf); (*phdr)->mLength = 0; (*phdr)->mCapacity = N; (*phdr)->mIsAutoArray = 1; MOZ_ASSERT(base_type::GetAutoArrayBuffer(MOZ_ALIGNOF(elem_type)) == reinterpret_cast(&mAutoBuf), "GetAutoArrayBuffer needs to be fixed"); } // Declare mAutoBuf aligned to the maximum of the header's alignment and // elem_type's alignment. We need to use a union rather than // MOZ_ALIGNED_DECL because GCC is picky about what goes into // __attribute__((aligned(foo))). union { char mAutoBuf[sizeof(nsTArrayHeader) + N * sizeof(elem_type)]; // Do the max operation inline to ensure that it is a compile-time constant. mozilla::AlignedElem<(MOZ_ALIGNOF(Header) > MOZ_ALIGNOF(elem_type)) ? MOZ_ALIGNOF(Header) : MOZ_ALIGNOF(elem_type)> mAlign; }; }; // // Specialization of nsAutoArrayBase for the case where N == 0. // nsAutoArrayBase behaves exactly like TArrayBase, but without // this specialization, it stores a useless inline header. // // We do have many nsAutoArrayBase objects in memory: about // 2,000 per tab as of May 2014. These are typically not explicitly // nsAutoArrayBase but rather nsAutoArrayBase // for some value N depending on template parameters, in generic code. // // For that reason, we optimize this case with the below partial specialization, // which ensures that nsAutoArrayBase is just like TArrayBase, // without any inline header overhead. // template class nsAutoArrayBase : public TArrayBase { }; // // nsAutoTArray is an infallible vector class with N elements of inline // storage. If you try to store more than N elements inside an // nsAutoTArray, we'll call malloc() and store them all on the heap. // // Note that you can cast an nsAutoTArray to // |const AutoFallibleTArray&|. // template class nsAutoTArray : public nsAutoArrayBase, N> { typedef nsAutoTArray self_type; typedef nsAutoArrayBase, N> Base; public: nsAutoTArray() {} template explicit nsAutoTArray(const nsTArray_Impl& aOther) { Base::AppendElements(aOther); } operator const AutoFallibleTArray&() const { return *reinterpret_cast*>(this); } }; // // AutoFallibleTArray is a fallible vector class with N elements of // inline storage. // template class AutoFallibleTArray : public nsAutoArrayBase, N> { typedef AutoFallibleTArray self_type; typedef nsAutoArrayBase, N> Base; public: AutoFallibleTArray() {} template explicit AutoFallibleTArray(const nsTArray_Impl& aOther) { Base::AppendElements(aOther); } operator const nsAutoTArray&() const { return *reinterpret_cast*>(this); } }; // Assert that nsAutoTArray doesn't have any extra padding inside. // // It's important that the data stored in this auto array takes up a multiple of // 8 bytes; e.g. nsAutoTArray wouldn't work. Since nsAutoTArray // contains a pointer, its size must be a multiple of alignof(void*). (This is // because any type may be placed into an array, and there's no padding between // elements of an array.) The compiler pads the end of the structure to // enforce this rule. // // If we used nsAutoTArray below, this assertion would fail on a // 64-bit system, where the compiler inserts 4 bytes of padding at the end of // the auto array to make its size a multiple of alignof(void*) == 8 bytes. static_assert(sizeof(nsAutoTArray) == sizeof(void*) + sizeof(nsTArrayHeader) + sizeof(uint32_t) * 2, "nsAutoTArray shouldn't contain any extra padding, " "see the comment"); // Definitions of nsTArray_Impl methods #include "nsTArray-inl.h" #endif // nsTArray_h__