--- /home/paul/workspace/repositories/opus-tools/src/resample.c 2012-11-21 11:36:59.119430163 +0100 +++ media/libspeex_resampler/src/resample.c 2013-08-09 19:24:39.060236120 +0200 @@ -92,18 +92,28 @@ #define IMAX(a,b) ((a) > (b) ? (a) : (b)) #define IMIN(a,b) ((a) < (b) ? (a) : (b)) #ifndef NULL #define NULL 0 #endif +#include "sse_detect.h" + +/* We compile SSE code on x86 all the time, but we only use it if we find at + * runtime that the CPU supports it. */ #if defined(FLOATING_POINT) && defined(__SSE__) +#if defined(_MSC_VER) +#define inline __inline +#endif # include "resample_sse.h" +#ifdef _MSC_VER +#undef inline +#endif #endif /* Numer of elements to allocate on the stack */ #ifdef VAR_ARRAYS #define FIXED_STACK_ALLOC 8192 #else #define FIXED_STACK_ALLOC 1024 #endif @@ -340,35 +350,39 @@ const spx_uint32_t den_rate = st->den_rate; spx_word32_t sum; while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) { const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; const spx_word16_t *iptr = & in[last_sample]; -#ifndef OVERRIDE_INNER_PRODUCT_SINGLE +#ifdef OVERRIDE_INNER_PRODUCT_SINGLE + if (moz_has_sse()) { + sum = inner_product_single(sinct, iptr, N); + } else { +#endif int j; sum = 0; for(j=0;j= den_rate) { samp_frac_num -= den_rate; @@ -397,29 +411,33 @@ const spx_uint32_t den_rate = st->den_rate; double sum; while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) { const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; const spx_word16_t *iptr = & in[last_sample]; -#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE - int j; - double accum[4] = {0,0,0,0}; - - for(j=0;j= den_rate) { samp_frac_num -= den_rate; @@ -453,35 +471,38 @@ #ifdef FIXED_POINT const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); #else const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; #endif spx_word16_t interp[4]; -#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE - int j; - spx_word32_t accum[4] = {0,0,0,0}; - - for(j=0;jsinc_table[4+(j+1)*st->oversample-offset-2]); - accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); - accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); - accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); +#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE + if (moz_has_sse()) { + cubic_coef(frac, interp); + sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); + } else { +#endif + int j; + spx_word32_t accum[4] = {0,0,0,0}; + + for(j=0;jsinc_table[4+(j+1)*st->oversample-offset-2]); + accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); + accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); + accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); + } + cubic_coef(frac, interp); + sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1)); +#ifdef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE } - - cubic_coef(frac, interp); - sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1)); -#else - cubic_coef(frac, interp); - sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); #endif - + out[out_stride * out_sample++] = SATURATE32(PSHR32(sum, 14), 32767); last_sample += int_advance; samp_frac_num += frac_advance; if (samp_frac_num >= den_rate) { samp_frac_num -= den_rate; last_sample++; } @@ -515,35 +536,38 @@ #ifdef FIXED_POINT const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); #else const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; #endif spx_word16_t interp[4]; -#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE +#ifdef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE + if (moz_has_sse2()) { + cubic_coef(frac, interp); + sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); + } else { +#endif int j; double accum[4] = {0,0,0,0}; for(j=0;jsinc_table[4+(j+1)*st->oversample-offset-2]); accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); } cubic_coef(frac, interp); sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]); -#else - cubic_coef(frac, interp); - sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); +#ifdef OVERRIDE_INNER_PRODUCT_DOUBLE + } #endif - out[out_stride * out_sample++] = PSHR32(sum,15); last_sample += int_advance; samp_frac_num += frac_advance; if (samp_frac_num >= den_rate) { samp_frac_num -= den_rate; last_sample++; }