/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- * vim: set ts=8 sts=4 et sw=4 tw=99: * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef js_UbiNode_h #define js_UbiNode_h #include "mozilla/Alignment.h" #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/HashFunctions.h" #include "mozilla/Maybe.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Move.h" #include "mozilla/RangedPtr.h" #include "mozilla/TypeTraits.h" #include "mozilla/Variant.h" #include "jspubtd.h" #include "js/GCAPI.h" #include "js/HashTable.h" #include "js/RootingAPI.h" #include "js/TracingAPI.h" #include "js/TypeDecls.h" #include "js/UniquePtr.h" #include "js/Value.h" #include "js/Vector.h" // [SMDOC] ubi::Node (Heap Analysis framework) // // JS::ubi::Node is a pointer-like type designed for internal use by heap // analysis tools. A ubi::Node can refer to: // // - a JS value, like a string, object, or symbol; // - an internal SpiderMonkey structure, like a shape or a scope chain object // - an instance of some embedding-provided type: in Firefox, an XPCOM // object, or an internal DOM node class instance // // A ubi::Node instance provides metadata about its referent, and can // enumerate its referent's outgoing edges, so you can implement heap analysis // algorithms that walk the graph - finding paths between objects, or // computing heap dominator trees, say - using ubi::Node, while remaining // ignorant of the details of the types you're operating on. // // Of course, when it comes to presenting the results in a developer-facing // tool, you'll need to stop being ignorant of those details, because you have // to discuss the ubi::Nodes' referents with the developer. Here, ubi::Node // can hand you dynamically checked, properly typed pointers to the original // objects via the as method, or generate descriptions of the referent // itself. // // ubi::Node instances are lightweight (two-word) value types. Instances: // - compare equal if and only if they refer to the same object; // - have hash values that respect their equality relation; and // - have serializations that are only equal if the ubi::Nodes are equal. // // A ubi::Node is only valid for as long as its referent is alive; if its // referent goes away, the ubi::Node becomes a dangling pointer. A ubi::Node // that refers to a GC-managed object is not automatically a GC root; if the // GC frees or relocates its referent, the ubi::Node becomes invalid. A // ubi::Node that refers to a reference-counted object does not bump the // reference count. // // ubi::Node values require no supporting data structures, making them // feasible for use in memory-constrained devices --- ideally, the memory // requirements of the algorithm which uses them will be the limiting factor, // not the demands of ubi::Node itself. // // One can construct a ubi::Node value given a pointer to a type that ubi::Node // supports. In the other direction, one can convert a ubi::Node back to a // pointer; these downcasts are checked dynamically. In particular, one can // convert a 'JSContext*' to a ubi::Node, yielding a node with an outgoing edge // for every root registered with the runtime; starting from this, one can walk // the entire heap. (Of course, one could also start traversal at any other kind // of type to which one has a pointer.) // // // Extending ubi::Node To Handle Your Embedding's Types // // To add support for a new ubi::Node referent type R, you must define a // specialization of the ubi::Concrete template, ubi::Concrete, which // inherits from ubi::Base. ubi::Node itself uses the specialization for // compile-time information (i.e. the checked conversions between R * and // ubi::Node), and the inheritance for run-time dispatching. // // // ubi::Node Exposes Implementation Details // // In many cases, a JavaScript developer's view of their data differs // substantially from its actual implementation. For example, while the // ECMAScript specification describes objects as maps from property names to // sets of attributes (like ECMAScript's [[Value]]), in practice many objects // have only a pointer to a shape, shared with other similar objects, and // indexed slots that contain the [[Value]] attributes. As another example, a // string produced by concatenating two other strings may sometimes be // represented by a "rope", a structure that points to the two original // strings. // // We intend to use ubi::Node to write tools that report memory usage, so it's // important that ubi::Node accurately portray how much memory nodes consume. // Thus, for example, when data that apparently belongs to multiple nodes is // in fact shared in a common structure, ubi::Node's graph uses a separate // node for that shared structure, and presents edges to it from the data's // apparent owners. For example, ubi::Node exposes SpiderMonkey objects' // shapes and base shapes, and exposes rope string and substring structure, // because these optimizations become visible when a tool reports how much // memory a structure consumes. // // However, fine granularity is not a goal. When a particular object is the // exclusive owner of a separate block of memory, ubi::Node may present the // object and its block as a single node, and add their sizes together when // reporting the node's size, as there is no meaningful loss of data in this // case. Thus, for example, a ubi::Node referring to a JavaScript object, when // asked for the object's size in bytes, includes the object's slot and // element arrays' sizes in the total. There is no separate ubi::Node value // representing the slot and element arrays, since they are owned exclusively // by the object. // // // Presenting Analysis Results To JavaScript Developers // // If an analysis provides its results in terms of ubi::Node values, a user // interface presenting those results will generally need to clean them up // before they can be understood by JavaScript developers. For example, // JavaScript developers should not need to understand shapes, only JavaScript // objects. Similarly, they should not need to understand the distinction // between DOM nodes and the JavaScript shadow objects that represent them. // // // Rooting Restrictions // // At present there is no way to root ubi::Node instances, so instances can't be // live across any operation that might GC. Analyses using ubi::Node must either // run to completion and convert their results to some other rootable type, or // save their intermediate state in some rooted structure if they must GC before // they complete. (For algorithms like path-finding and dominator tree // computation, we implement the algorithm avoiding any operation that could // cause a GC --- and use AutoCheckCannotGC to verify this.) // // If this restriction prevents us from implementing interesting tools, we may // teach the GC how to root ubi::Nodes, fix up hash tables that use them as // keys, etc. // // // Hostile Graph Structure // // Analyses consuming ubi::Node graphs must be robust when presented with graphs // that are deliberately constructed to exploit their weaknesses. When operating // on live graphs, web content has control over the object graph, and less // direct control over shape and string structure, and analyses should be // prepared to handle extreme cases gracefully. For example, if an analysis were // to use the C++ stack in a depth-first traversal, carefully constructed // content could cause the analysis to overflow the stack. // // When ubi::Nodes refer to nodes deserialized from a heap snapshot, analyses // must be even more careful: since snapshots often come from potentially // compromised e10s content processes, even properties normally guaranteed by // the platform (the proper linking of DOM nodes, for example) might be // corrupted. While it is the deserializer's responsibility to check the basic // structure of the snapshot file, the analyses should be prepared for ubi::Node // graphs constructed from snapshots to be even more bizarre. namespace JS { namespace ubi { class Edge; class EdgeRange; class StackFrame; } // namespace ubi } // namespace JS namespace JS { namespace ubi { using mozilla::Maybe; using mozilla::RangedPtr; using mozilla::Variant; template using Vector = mozilla::Vector; /*** ubi::StackFrame ******************************************************************************/ // Concrete JS::ubi::StackFrame instances backed by a live SavedFrame object // store their strings as JSAtom*, while deserialized stack frames from offline // heap snapshots store their strings as const char16_t*. In order to provide // zero-cost accessors to these strings in a single interface that works with // both cases, we use this variant type. class JS_PUBLIC_API(AtomOrTwoByteChars) : public Variant { using Base = Variant; public: template MOZ_IMPLICIT AtomOrTwoByteChars(T&& rhs) : Base(std::forward(rhs)) { } template AtomOrTwoByteChars& operator=(T&& rhs) { MOZ_ASSERT(this != &rhs, "self-move disallowed"); this->~AtomOrTwoByteChars(); new (this) AtomOrTwoByteChars(std::forward(rhs)); return *this; } // Return the length of the given AtomOrTwoByteChars string. size_t length(); // Copy the given AtomOrTwoByteChars string into the destination buffer, // inflating if necessary. Does NOT null terminate. Returns the number of // characters written to destination. size_t copyToBuffer(RangedPtr destination, size_t length); }; // The base class implemented by each ConcreteStackFrame type. Subclasses // must not add data members to this class. class BaseStackFrame { friend class StackFrame; BaseStackFrame(const StackFrame&) = delete; BaseStackFrame& operator=(const StackFrame&) = delete; protected: void* ptr; explicit BaseStackFrame(void* ptr) : ptr(ptr) { } public: // This is a value type that should not have a virtual destructor. Don't add // destructors in subclasses! // Get a unique identifier for this StackFrame. The identifier is not valid // across garbage collections. virtual uint64_t identifier() const { return uint64_t(uintptr_t(ptr)); } // Get this frame's parent frame. virtual StackFrame parent() const = 0; // Get this frame's line number. virtual uint32_t line() const = 0; // Get this frame's column number. virtual uint32_t column() const = 0; // Get this frame's source name. Never null. virtual AtomOrTwoByteChars source() const = 0; // Return this frame's function name if named, otherwise the inferred // display name. Can be null. virtual AtomOrTwoByteChars functionDisplayName() const = 0; // Returns true if this frame's function is system JavaScript running with // trusted principals, false otherwise. virtual bool isSystem() const = 0; // Return true if this frame's function is a self-hosted JavaScript builtin, // false otherwise. virtual bool isSelfHosted(JSContext* cx) const = 0; // Construct a SavedFrame stack for the stack starting with this frame and // containing all of its parents. The SavedFrame objects will be placed into // cx's current compartment. // // Note that the process of // // SavedFrame // | // V // JS::ubi::StackFrame // | // V // offline heap snapshot // | // V // JS::ubi::StackFrame // | // V // SavedFrame // // is lossy because we cannot serialize and deserialize the SavedFrame's // principals in the offline heap snapshot, so JS::ubi::StackFrame // simplifies the principals check into the boolean isSystem() state. This // is fine because we only expose JS::ubi::Stack to devtools and chrome // code, and not to the web platform. virtual MOZ_MUST_USE bool constructSavedFrameStack(JSContext* cx, MutableHandleObject outSavedFrameStack) const = 0; // Trace the concrete implementation of JS::ubi::StackFrame. virtual void trace(JSTracer* trc) = 0; }; // A traits template with a specialization for each backing type that implements // the ubi::BaseStackFrame interface. Each specialization must be the a subclass // of ubi::BaseStackFrame. template class ConcreteStackFrame; // A JS::ubi::StackFrame represents a frame in a recorded stack. It can be // backed either by a live SavedFrame object or by a structure deserialized from // an offline heap snapshot. // // It is a value type that may be memcpy'd hither and thither without worrying // about constructors or destructors, similar to POD types. // // Its lifetime is the same as the lifetime of the graph that is being analyzed // by the JS::ubi::Node that the JS::ubi::StackFrame came from. That is, if the // graph being analyzed is the live heap graph, the JS::ubi::StackFrame is only // valid within the scope of an AutoCheckCannotGC; if the graph being analyzed // is an offline heap snapshot, the JS::ubi::StackFrame is valid as long as the // offline heap snapshot is alive. class StackFrame { // Storage in which we allocate BaseStackFrame subclasses. mozilla::AlignedStorage2 storage; BaseStackFrame* base() { return storage.addr(); } const BaseStackFrame* base() const { return storage.addr(); } template void construct(T* ptr) { static_assert(mozilla::IsBaseOf>::value, "ConcreteStackFrame must inherit from BaseStackFrame"); static_assert(sizeof(ConcreteStackFrame) == sizeof(*base()), "ubi::ConcreteStackFrame specializations must be the same size as " "ubi::BaseStackFrame"); ConcreteStackFrame::construct(base(), ptr); } struct ConstructFunctor; public: StackFrame() { construct(nullptr); } template MOZ_IMPLICIT StackFrame(T* ptr) { construct(ptr); } template StackFrame& operator=(T* ptr) { construct(ptr); return *this; } // Constructors accepting SpiderMonkey's generic-pointer-ish types. template explicit StackFrame(const JS::Handle& handle) { construct(handle.get()); } template StackFrame& operator=(const JS::Handle& handle) { construct(handle.get()); return *this; } template explicit StackFrame(const JS::Rooted& root) { construct(root.get()); } template StackFrame& operator=(const JS::Rooted& root) { construct(root.get()); return *this; } // Because StackFrame is just a vtable pointer and an instance pointer, we // can memcpy everything around instead of making concrete classes define // virtual constructors. See the comment above Node's copy constructor for // more details; that comment applies here as well. StackFrame(const StackFrame& rhs) { memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); } StackFrame& operator=(const StackFrame& rhs) { memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); return *this; } bool operator==(const StackFrame& rhs) const { return base()->ptr == rhs.base()->ptr; } bool operator!=(const StackFrame& rhs) const { return !(*this == rhs); } explicit operator bool() const { return base()->ptr != nullptr; } // Copy this StackFrame's source name into the given |destination| // buffer. Copy no more than |length| characters. The result is *not* null // terminated. Returns how many characters were written into the buffer. size_t source(RangedPtr destination, size_t length) const; // Copy this StackFrame's function display name into the given |destination| // buffer. Copy no more than |length| characters. The result is *not* null // terminated. Returns how many characters were written into the buffer. size_t functionDisplayName(RangedPtr destination, size_t length) const; // Get the size of the respective strings. 0 is returned for null strings. size_t sourceLength(); size_t functionDisplayNameLength(); // Methods that forward to virtual calls through BaseStackFrame. void trace(JSTracer* trc) { base()->trace(trc); } uint64_t identifier() const { auto id = base()->identifier(); MOZ_ASSERT(JS::Value::isNumberRepresentable(id)); return id; } uint32_t line() const { return base()->line(); } uint32_t column() const { return base()->column(); } AtomOrTwoByteChars source() const { return base()->source(); } AtomOrTwoByteChars functionDisplayName() const { return base()->functionDisplayName(); } StackFrame parent() const { return base()->parent(); } bool isSystem() const { return base()->isSystem(); } bool isSelfHosted(JSContext* cx) const { return base()->isSelfHosted(cx); } MOZ_MUST_USE bool constructSavedFrameStack(JSContext* cx, MutableHandleObject outSavedFrameStack) const { return base()->constructSavedFrameStack(cx, outSavedFrameStack); } struct HashPolicy { using Lookup = JS::ubi::StackFrame; static js::HashNumber hash(const Lookup& lookup) { return mozilla::HashGeneric(lookup.identifier()); } static bool match(const StackFrame& key, const Lookup& lookup) { return key == lookup; } static void rekey(StackFrame& k, const StackFrame& newKey) { k = newKey; } }; }; // The ubi::StackFrame null pointer. Any attempt to operate on a null // ubi::StackFrame crashes. template<> class ConcreteStackFrame : public BaseStackFrame { explicit ConcreteStackFrame(void* ptr) : BaseStackFrame(ptr) { } public: static void construct(void* storage, void*) { new (storage) ConcreteStackFrame(nullptr); } uint64_t identifier() const override { return 0; } void trace(JSTracer* trc) override { } MOZ_MUST_USE bool constructSavedFrameStack(JSContext* cx, MutableHandleObject out) const override { out.set(nullptr); return true; } uint32_t line() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } uint32_t column() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } AtomOrTwoByteChars source() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } AtomOrTwoByteChars functionDisplayName() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } StackFrame parent() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } bool isSystem() const override { MOZ_CRASH("null JS::ubi::StackFrame"); } bool isSelfHosted(JSContext* cx) const override { MOZ_CRASH("null JS::ubi::StackFrame"); } }; MOZ_MUST_USE JS_PUBLIC_API(bool) ConstructSavedFrameStackSlow(JSContext* cx, JS::ubi::StackFrame& frame, MutableHandleObject outSavedFrameStack); /*** ubi::Node ************************************************************************************/ // A concrete node specialization can claim its referent is a member of a // particular "coarse type" which is less specific than the actual // implementation type but generally more palatable for web developers. For // example, JitCode can be considered to have a coarse type of "Script". This is // used by some analyses for putting nodes into different buckets. The default, // if a concrete specialization does not provide its own mapping to a CoarseType // variant, is "Other". // // NB: the values associated with a particular enum variant must not change or // be reused for new variants. Doing so will cause inspecting ubi::Nodes backed // by an offline heap snapshot from an older SpiderMonkey/Firefox version to // break. Consider this enum append only. enum class CoarseType: uint32_t { Other = 0, Object = 1, Script = 2, String = 3, DOMNode = 4, FIRST = Other, LAST = DOMNode }; inline uint32_t CoarseTypeToUint32(CoarseType type) { return static_cast(type); } inline bool Uint32IsValidCoarseType(uint32_t n) { auto first = static_cast(CoarseType::FIRST); auto last = static_cast(CoarseType::LAST); MOZ_ASSERT(first < last); return first <= n && n <= last; } inline CoarseType Uint32ToCoarseType(uint32_t n) { MOZ_ASSERT(Uint32IsValidCoarseType(n)); return static_cast(n); } // The base class implemented by each ubi::Node referent type. Subclasses must // not add data members to this class. class JS_PUBLIC_API(Base) { friend class Node; // For performance's sake, we'd prefer to avoid a virtual destructor; and // an empty constructor seems consistent with the 'lightweight value type' // visible behavior we're trying to achieve. But if the destructor isn't // virtual, and a subclass overrides it, the subclass's destructor will be // ignored. Is there a way to make the compiler catch that error? protected: // Space for the actual pointer. Concrete subclasses should define a // properly typed 'get' member function to access this. void* ptr; explicit Base(void* ptr) : ptr(ptr) { } public: bool operator==(const Base& rhs) const { // Some compilers will indeed place objects of different types at // the same address, so technically, we should include the vtable // in this comparison. But it seems unlikely to cause problems in // practice. return ptr == rhs.ptr; } bool operator!=(const Base& rhs) const { return !(*this == rhs); } // An identifier for this node, guaranteed to be stable and unique for as // long as this ubi::Node's referent is alive and at the same address. // // This is probably suitable for use in serializations, as it is an integral // type. It may also help save memory when constructing HashSets of // ubi::Nodes: since a uint64_t will always be smaller-or-equal-to the size // of a ubi::Node, a HashSet may use less space per element // than a HashSet. // // (Note that 'unique' only means 'up to equality on ubi::Node'; see the // caveats about multiple objects allocated at the same address for // 'ubi::Node::operator=='.) using Id = uint64_t; virtual Id identifier() const { return Id(uintptr_t(ptr)); } // Returns true if this node is pointing to something on the live heap, as // opposed to something from a deserialized core dump. Returns false, // otherwise. virtual bool isLive() const { return true; }; // Return the coarse-grained type-of-thing that this node represents. virtual CoarseType coarseType() const { return CoarseType::Other; } // Return a human-readable name for the referent's type. The result should // be statically allocated. (You can use u"strings" for this.) // // This must always return Concrete::concreteTypeName; we use that // pointer as a tag for this particular referent type. virtual const char16_t* typeName() const = 0; // Return the size of this node, in bytes. Include any structures that this // node owns exclusively that are not exposed as their own ubi::Nodes. // |mallocSizeOf| should be a malloc block sizing function; see // |mfbt/MemoryReporting.h|. // // Because we can use |JS::ubi::Node|s backed by a snapshot that was taken // on a 64-bit platform when we are currently on a 32-bit platform, we // cannot rely on |size_t| for node sizes. Instead, |Size| is uint64_t on // all platforms. using Size = uint64_t; virtual Size size(mozilla::MallocSizeOf mallocSizeof) const { return 1; } // Return an EdgeRange that initially contains all the referent's outgoing // edges. The caller takes ownership of the EdgeRange. // // If wantNames is true, compute names for edges. Doing so can be expensive // in time and memory. virtual js::UniquePtr edges(JSContext* cx, bool wantNames) const = 0; // Return the Zone to which this node's referent belongs, or nullptr if the // referent is not of a type allocated in SpiderMonkey Zones. virtual JS::Zone* zone() const { return nullptr; } // Return the compartment for this node. Some ubi::Node referents are not // associated with Compartments, such as JSStrings (which are associated // with Zones). When the referent is not associated with a compartment, // nullptr is returned. virtual JS::Compartment* compartment() const { return nullptr; } // Return the realm for this node. Some ubi::Node referents are not // associated with Realms, such as JSStrings (which are associated // with Zones) or cross-compartment wrappers (which are associated with // compartments). When the referent is not associated with a realm, // nullptr is returned. virtual JS::Realm* realm() const { return nullptr; } // Return whether this node's referent's allocation stack was captured. virtual bool hasAllocationStack() const { return false; } // Get the stack recorded at the time this node's referent was // allocated. This must only be called when hasAllocationStack() is true. virtual StackFrame allocationStack() const { MOZ_CRASH("Concrete classes that have an allocation stack must override both " "hasAllocationStack and allocationStack."); } // In some cases, Concrete can return a more descriptive // referent type name than simply `T`. This method returns an // identifier as specific as is efficiently available. // The string returned is borrowed from the ubi::Node's referent. // If nothing more specific than typeName() is available, return nullptr. virtual const char16_t* descriptiveTypeName() const { return nullptr; } // Methods for JSObject Referents // // These methods are only semantically valid if the referent is either a // JSObject in the live heap, or represents a previously existing JSObject // from some deserialized heap snapshot. // Return the object's [[Class]]'s name. virtual const char* jsObjectClassName() const { return nullptr; } // If this object was constructed with `new` and we have the data available, // place the contructor function's display name in the out parameter. // Otherwise, place nullptr in the out parameter. Caller maintains ownership // of the out parameter. True is returned on success, false is returned on // OOM. virtual MOZ_MUST_USE bool jsObjectConstructorName(JSContext* cx, UniqueTwoByteChars& outName) const { outName.reset(nullptr); return true; } // Methods for CoarseType::Script referents // Return the script's source's filename if available. If unavailable, // return nullptr. virtual const char* scriptFilename() const { return nullptr; } private: Base(const Base& rhs) = delete; Base& operator=(const Base& rhs) = delete; }; // A traits template with a specialization for each referent type that // ubi::Node supports. The specialization must be the concrete subclass of Base // that represents a pointer to the referent type. It must include these // members: // // // The specific char16_t array returned by Concrete::typeName(). // static const char16_t concreteTypeName[]; // // // Construct an instance of this concrete class in |storage| referring // // to |referent|. Implementations typically use a placement 'new'. // // // // In some cases, |referent| will contain dynamic type information that // // identifies it a some more specific subclass of |Referent|. For // // example, when |Referent| is |JSObject|, then |referent->getClass()| // // could tell us that it's actually a JSFunction. Similarly, if // // |Referent| is |nsISupports|, we would like a ubi::Node that knows its // // final implementation type. // // // // So we delegate the actual construction to this specialization, which // // knows Referent's details. // static void construct(void* storage, Referent* referent); template class Concrete; // A container for a Base instance; all members simply forward to the contained // instance. This container allows us to pass ubi::Node instances by value. class Node { // Storage in which we allocate Base subclasses. mozilla::AlignedStorage2 storage; Base* base() { return storage.addr(); } const Base* base() const { return storage.addr(); } template void construct(T* ptr) { static_assert(sizeof(Concrete) == sizeof(*base()), "ubi::Base specializations must be the same size as ubi::Base"); static_assert(mozilla::IsBaseOf>::value, "ubi::Concrete must inherit from ubi::Base"); Concrete::construct(base(), ptr); } struct ConstructFunctor; public: Node() { construct(nullptr); } template MOZ_IMPLICIT Node(T* ptr) { construct(ptr); } template Node& operator=(T* ptr) { construct(ptr); return *this; } // We can construct and assign from rooted forms of pointers. template MOZ_IMPLICIT Node(const Rooted& root) { construct(root.get()); } template Node& operator=(const Rooted& root) { construct(root.get()); return *this; } // Constructors accepting SpiderMonkey's other generic-pointer-ish types. // Note that we *do* want an implicit constructor here: JS::Value and // JS::ubi::Node are both essentially tagged references to other sorts of // objects, so letting conversions happen automatically is appropriate. MOZ_IMPLICIT Node(JS::HandleValue value); explicit Node(const JS::GCCellPtr& thing); // copy construction and copy assignment just use memcpy, since we know // instances contain nothing but a vtable pointer and a data pointer. // // To be completely correct, concrete classes could provide a virtual // 'construct' member function, which we could invoke on rhs to construct an // instance in our storage. But this is good enough; there's no need to jump // through vtables for copying and assignment that are just going to move // two words around. The compiler knows how to optimize memcpy. Node(const Node& rhs) { memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); } Node& operator=(const Node& rhs) { memcpy(storage.u.mBytes, rhs.storage.u.mBytes, sizeof(storage.u)); return *this; } bool operator==(const Node& rhs) const { return *base() == *rhs.base(); } bool operator!=(const Node& rhs) const { return *base() != *rhs.base(); } explicit operator bool() const { return base()->ptr != nullptr; } bool isLive() const { return base()->isLive(); } // Get the canonical type name for the given type T. template static const char16_t* canonicalTypeName() { return Concrete::concreteTypeName; } template bool is() const { return base()->typeName() == canonicalTypeName(); } template T* as() const { MOZ_ASSERT(isLive()); MOZ_ASSERT(this->is()); return static_cast(base()->ptr); } template T* asOrNull() const { MOZ_ASSERT(isLive()); return this->is() ? static_cast(base()->ptr) : nullptr; } // If this node refers to something that can be represented as a JavaScript // value that is safe to expose to JavaScript code, return that value. // Otherwise return UndefinedValue(). JSStrings, JS::Symbols, and some (but // not all!) JSObjects can be exposed. JS::Value exposeToJS() const; CoarseType coarseType() const { return base()->coarseType(); } const char16_t* typeName() const { return base()->typeName(); } JS::Zone* zone() const { return base()->zone(); } JS::Compartment* compartment() const { return base()->compartment(); } JS::Realm* realm() const { return base()->realm(); } const char* jsObjectClassName() const { return base()->jsObjectClassName(); } const char16_t* descriptiveTypeName() const { return base()->descriptiveTypeName(); } MOZ_MUST_USE bool jsObjectConstructorName(JSContext* cx, UniqueTwoByteChars& outName) const { return base()->jsObjectConstructorName(cx, outName); } const char* scriptFilename() const { return base()->scriptFilename(); } using Size = Base::Size; Size size(mozilla::MallocSizeOf mallocSizeof) const { auto size = base()->size(mallocSizeof); MOZ_ASSERT(size > 0, "C++ does not have zero-sized types! Choose 1 if you just need a " "conservative default."); return size; } js::UniquePtr edges(JSContext* cx, bool wantNames = true) const { return base()->edges(cx, wantNames); } bool hasAllocationStack() const { return base()->hasAllocationStack(); } StackFrame allocationStack() const { return base()->allocationStack(); } using Id = Base::Id; Id identifier() const { auto id = base()->identifier(); MOZ_ASSERT(JS::Value::isNumberRepresentable(id)); return id; } // A hash policy for ubi::Nodes. // This simply uses the stock PointerHasher on the ubi::Node's pointer. // We specialize DefaultHasher below to make this the default. class HashPolicy { typedef js::PointerHasher PtrHash; public: typedef Node Lookup; static js::HashNumber hash(const Lookup& l) { return PtrHash::hash(l.base()->ptr); } static bool match(const Node& k, const Lookup& l) { return k == l; } static void rekey(Node& k, const Node& newKey) { k = newKey; } }; }; using NodeSet = js::HashSet, js::SystemAllocPolicy>; using NodeSetPtr = mozilla::UniquePtr>; /*** Edge and EdgeRange ***************************************************************************/ using EdgeName = UniqueTwoByteChars; // An outgoing edge to a referent node. class Edge { public: Edge() : name(nullptr), referent() { } // Construct an initialized Edge, taking ownership of |name|. Edge(char16_t* name, const Node& referent) : name(name) , referent(referent) { } // Move construction and assignment. Edge(Edge&& rhs) : name(std::move(rhs.name)) , referent(rhs.referent) { } Edge& operator=(Edge&& rhs) { MOZ_ASSERT(&rhs != this); this->~Edge(); new (this) Edge(std::move(rhs)); return *this; } Edge(const Edge&) = delete; Edge& operator=(const Edge&) = delete; // This edge's name. This may be nullptr, if Node::edges was called with // false as the wantNames parameter. // // The storage is owned by this Edge, and will be freed when this Edge is // destructed. You may take ownership of the name by `std::move`ing it // out of the edge; it is just a UniquePtr. // // (In real life we'll want a better representation for names, to avoid // creating tons of strings when the names follow a pattern; and we'll need // to think about lifetimes carefully to ensure traversal stays cheap.) EdgeName name; // This edge's referent. Node referent; }; // EdgeRange is an abstract base class for iterating over a node's outgoing // edges. (This is modeled after js::HashTable::Range.) // // Concrete instances of this class need not be as lightweight as Node itself, // since they're usually only instantiated while iterating over a particular // object's edges. For example, a dumb implementation for JS Cells might use // JS::TraceChildren to to get the outgoing edges, and then store them in an // array internal to the EdgeRange. class EdgeRange { protected: // The current front edge of this range, or nullptr if this range is empty. Edge* front_; EdgeRange() : front_(nullptr) { } public: virtual ~EdgeRange() { } // True if there are no more edges in this range. bool empty() const { return !front_; } // The front edge of this range. This is owned by the EdgeRange, and is // only guaranteed to live until the next call to popFront, or until // the EdgeRange is destructed. const Edge& front() const { return *front_; } Edge& front() { return *front_; } // Remove the front edge from this range. This should only be called if // !empty(). virtual void popFront() = 0; private: EdgeRange(const EdgeRange&) = delete; EdgeRange& operator=(const EdgeRange&) = delete; }; typedef mozilla::Vector EdgeVector; // An EdgeRange concrete class that holds a pre-existing vector of // Edges. A PreComputedEdgeRange does not take ownership of its // EdgeVector; it is up to the PreComputedEdgeRange's consumer to manage // that lifetime. class PreComputedEdgeRange : public EdgeRange { EdgeVector& edges; size_t i; void settle() { front_ = i < edges.length() ? &edges[i] : nullptr; } public: explicit PreComputedEdgeRange(EdgeVector& edges) : edges(edges), i(0) { settle(); } void popFront() override { MOZ_ASSERT(!empty()); i++; settle(); } }; /*** RootList *************************************************************************************/ // RootList is a class that can be pointed to by a |ubi::Node|, creating a // fictional root-of-roots which has edges to every GC root in the JS // runtime. Having a single root |ubi::Node| is useful for algorithms written // with the assumption that there aren't multiple roots (such as computing // dominator trees) and you want a single point of entry. It also ensures that // the roots themselves get visited by |ubi::BreadthFirst| (they would otherwise // only be used as starting points). // // RootList::init itself causes a minor collection, but once the list of roots // has been created, GC must not occur, as the referent ubi::Nodes are not // stable across GC. The init calls emplace on |noGC|'s AutoCheckCannotGC, whose // lifetime must extend at least as long as the RootList itself. // // Example usage: // // { // mozilla::Maybe maybeNoGC; // JS::ubi::RootList rootList(cx, maybeNoGC); // if (!rootList.init()) // return false; // // // The AutoCheckCannotGC is guaranteed to exist if init returned true. // MOZ_ASSERT(maybeNoGC.isSome()); // // JS::ubi::Node root(&rootList); // // ... // } class MOZ_STACK_CLASS JS_PUBLIC_API(RootList) { Maybe& noGC; public: JSContext* cx; EdgeVector edges; bool wantNames; RootList(JSContext* cx, Maybe& noGC, bool wantNames = false); // Find all GC roots. MOZ_MUST_USE bool init(); // Find only GC roots in the provided set of |JS::Compartment|s. Note: it's // important to take a CompartmentSet and not a RealmSet: objects in // same-compartment realms can reference each other directly, without going // through CCWs, so if we used a RealmSet here we would miss edges. MOZ_MUST_USE bool init(CompartmentSet& debuggees); // Find only GC roots in the given Debugger object's set of debuggee // compartments. MOZ_MUST_USE bool init(HandleObject debuggees); // Returns true if the RootList has been initialized successfully, false // otherwise. bool initialized() { return noGC.isSome(); } // Explicitly add the given Node as a root in this RootList. If wantNames is // true, you must pass an edgeName. The RootList does not take ownership of // edgeName. MOZ_MUST_USE bool addRoot(Node node, const char16_t* edgeName = nullptr); }; /*** Concrete classes for ubi::Node referent types ************************************************/ template<> class JS_PUBLIC_API(Concrete) : public Base { protected: explicit Concrete(RootList* ptr) : Base(ptr) { } RootList& get() const { return *static_cast(ptr); } public: static void construct(void* storage, RootList* ptr) { new (storage) Concrete(ptr); } js::UniquePtr edges(JSContext* cx, bool wantNames) const override; const char16_t* typeName() const override { return concreteTypeName; } static const char16_t concreteTypeName[]; }; // A reusable ubi::Concrete specialization base class for types supported by // JS::TraceChildren. template class JS_PUBLIC_API(TracerConcrete) : public Base { JS::Zone* zone() const override; public: js::UniquePtr edges(JSContext* cx, bool wantNames) const override; protected: explicit TracerConcrete(Referent* ptr) : Base(ptr) { } Referent& get() const { return *static_cast(ptr); } }; // For JS::TraceChildren-based types that have 'realm' and 'compartment' // methods. template class JS_PUBLIC_API(TracerConcreteWithRealm) : public TracerConcrete { typedef TracerConcrete TracerBase; JS::Compartment* compartment() const override; JS::Realm* realm() const override; protected: explicit TracerConcreteWithRealm(Referent* ptr) : TracerBase(ptr) { } }; // Define specializations for some commonly-used public JSAPI types. // These can use the generic templates above. template<> class JS_PUBLIC_API(Concrete) : TracerConcrete { protected: explicit Concrete(JS::Symbol* ptr) : TracerConcrete(ptr) { } public: static void construct(void* storage, JS::Symbol* ptr) { new (storage) Concrete(ptr); } Size size(mozilla::MallocSizeOf mallocSizeOf) const override; const char16_t* typeName() const override { return concreteTypeName; } static const char16_t concreteTypeName[]; }; #ifdef ENABLE_BIGINT template<> class JS_PUBLIC_API(Concrete) : TracerConcrete { protected: explicit Concrete(JS::BigInt* ptr) : TracerConcrete(ptr) {} public: static void construct(void* storage, JS::BigInt* ptr) { new (storage) Concrete(ptr); } Size size(mozilla::MallocSizeOf mallocSizeOf) const override; const char16_t* typeName() const override { return concreteTypeName; } static const char16_t concreteTypeName[]; }; #endif template<> class JS_PUBLIC_API(Concrete) : TracerConcreteWithRealm { protected: explicit Concrete(JSScript *ptr) : TracerConcreteWithRealm(ptr) { } public: static void construct(void *storage, JSScript *ptr) { new (storage) Concrete(ptr); } CoarseType coarseType() const final { return CoarseType::Script; } Size size(mozilla::MallocSizeOf mallocSizeOf) const override; const char* scriptFilename() const final; const char16_t* typeName() const override { return concreteTypeName; } static const char16_t concreteTypeName[]; }; // The JSObject specialization. template<> class JS_PUBLIC_API(Concrete) : public TracerConcrete { protected: explicit Concrete(JSObject* ptr) : TracerConcrete(ptr) { } public: static void construct(void* storage, JSObject* ptr); JS::Compartment* compartment() const override; JS::Realm* realm() const override; const char* jsObjectClassName() const override; MOZ_MUST_USE bool jsObjectConstructorName(JSContext* cx, UniqueTwoByteChars& outName) const override; Size size(mozilla::MallocSizeOf mallocSizeOf) const override; bool hasAllocationStack() const override; StackFrame allocationStack() const override; CoarseType coarseType() const final { return CoarseType::Object; } const char16_t* typeName() const override { return concreteTypeName; } static const char16_t concreteTypeName[]; }; // For JSString, we extend the generic template with a 'size' implementation. template<> class JS_PUBLIC_API(Concrete) : TracerConcrete { protected: explicit Concrete(JSString *ptr) : TracerConcrete(ptr) { } public: static void construct(void *storage, JSString *ptr) { new (storage) Concrete(ptr); } Size size(mozilla::MallocSizeOf mallocSizeOf) const override; CoarseType coarseType() const final { return CoarseType::String; } const char16_t* typeName() const override { return concreteTypeName; } static const char16_t concreteTypeName[]; }; // The ubi::Node null pointer. Any attempt to operate on a null ubi::Node asserts. template<> class JS_PUBLIC_API(Concrete) : public Base { const char16_t* typeName() const override; Size size(mozilla::MallocSizeOf mallocSizeOf) const override; js::UniquePtr edges(JSContext* cx, bool wantNames) const override; JS::Zone* zone() const override; JS::Compartment* compartment() const override; JS::Realm* realm() const override; CoarseType coarseType() const final; explicit Concrete(void* ptr) : Base(ptr) { } public: static void construct(void* storage, void* ptr) { new (storage) Concrete(ptr); } }; // The |callback| callback is much like the |Concrete::construct| method: a call to // |callback| should construct an instance of the most appropriate JS::ubi::Base subclass // for |obj| in |storage|. The callback may assume that // |obj->getClass()->isDOMClass()|, and that |storage| refers to the // sizeof(JS::ubi::Base) bytes of space that all ubi::Base implementations should // require. // Set |cx|'s runtime hook for constructing ubi::Nodes for DOM classes to |callback|. void SetConstructUbiNodeForDOMObjectCallback(JSContext* cx, void (*callback)(void*, JSObject*)); } // namespace ubi } // namespace JS namespace mozilla { // Make ubi::Node::HashPolicy the default hash policy for ubi::Node. template<> struct DefaultHasher : JS::ubi::Node::HashPolicy { }; template<> struct DefaultHasher : JS::ubi::StackFrame::HashPolicy { }; } // namespace mozilla #endif // js_UbiNode_h