//===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // Trace PCs. // This module implements __sanitizer_cov_trace_pc_guard[_init], // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. // //===----------------------------------------------------------------------===// #include "FuzzerTracePC.h" #include "FuzzerBuiltins.h" #include "FuzzerBuiltinsMsvc.h" #include "FuzzerCorpus.h" #include "FuzzerDefs.h" #include "FuzzerDictionary.h" #include "FuzzerExtFunctions.h" #include "FuzzerIO.h" #include "FuzzerUtil.h" #include "FuzzerValueBitMap.h" #include // Used by -fsanitize-coverage=stack-depth to track stack depth ATTRIBUTES_INTERFACE_TLS_INITIAL_EXEC uintptr_t __sancov_lowest_stack; namespace fuzzer { TracePC TPC; size_t TracePC::GetTotalPCCoverage() { return ObservedPCs.size(); } void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) { if (Start == Stop) return; if (NumModules && Modules[NumModules - 1].Start() == Start) return; assert(NumModules < sizeof(Modules) / sizeof(Modules[0])); auto &M = Modules[NumModules++]; uint8_t *AlignedStart = RoundUpByPage(Start); uint8_t *AlignedStop = RoundDownByPage(Stop); size_t NumFullPages = AlignedStop > AlignedStart ? (AlignedStop - AlignedStart) / PageSize() : 0; bool NeedFirst = Start < AlignedStart || !NumFullPages; bool NeedLast = Stop > AlignedStop && AlignedStop >= AlignedStart; M.NumRegions = NumFullPages + NeedFirst + NeedLast;; assert(M.NumRegions > 0); M.Regions = new Module::Region[M.NumRegions]; assert(M.Regions); size_t R = 0; if (NeedFirst) M.Regions[R++] = {Start, std::min(Stop, AlignedStart), true, false}; for (uint8_t *P = AlignedStart; P < AlignedStop; P += PageSize()) M.Regions[R++] = {P, P + PageSize(), true, true}; if (NeedLast) M.Regions[R++] = {AlignedStop, Stop, true, false}; assert(R == M.NumRegions); assert(M.Size() == (size_t)(Stop - Start)); assert(M.Stop() == Stop); assert(M.Start() == Start); NumInline8bitCounters += M.Size(); } // Mark all full page counter regions as PROT_NONE and set Enabled=false. // The first time the instrumented code hits such a protected/disabled // counter region we should catch a SEGV and call UnprotectLazyCounters, // which will mark the page as PROT_READ|PROT_WRITE and set Enabled=true. // // Whenever other functions iterate over the counters they should ignore // regions with Enabled=false. void TracePC::ProtectLazyCounters() { size_t NumPagesProtected = 0; IterateCounterRegions([&](Module::Region &R) { if (!R.OneFullPage) return; if (Mprotect(R.Start, R.Stop - R.Start, false)) { R.Enabled = false; NumPagesProtected++; } }); if (NumPagesProtected) Printf("INFO: %zd pages of counters where protected;" " libFuzzer's SEGV handler must be installed\n", NumPagesProtected); } bool TracePC::UnprotectLazyCounters(void *CounterPtr) { // Printf("UnprotectLazyCounters: %p\n", CounterPtr); if (!CounterPtr) return false; bool Done = false; uint8_t *Addr = reinterpret_cast(CounterPtr); IterateCounterRegions([&](Module::Region &R) { if (!R.OneFullPage || R.Enabled || Done) return; if (Addr >= R.Start && Addr < R.Stop) if (Mprotect(R.Start, R.Stop - R.Start, true)) { R.Enabled = true; Done = true; } }); return Done; } void TracePC::HandlePCsInit(const uintptr_t *Start, const uintptr_t *Stop) { const PCTableEntry *B = reinterpret_cast(Start); const PCTableEntry *E = reinterpret_cast(Stop); if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return; assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0])); ModulePCTable[NumPCTables++] = {B, E}; NumPCsInPCTables += E - B; } void TracePC::PrintModuleInfo() { if (NumModules) { Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ", NumModules, NumInline8bitCounters); for (size_t i = 0; i < NumModules; i++) Printf("%zd [%p, %p), ", Modules[i].Size(), Modules[i].Start(), Modules[i].Stop()); Printf("\n"); } if (NumPCTables) { Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables, NumPCsInPCTables); for (size_t i = 0; i < NumPCTables; i++) { Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start, ModulePCTable[i].Start, ModulePCTable[i].Stop); } Printf("\n"); if (NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables) { Printf("ERROR: The size of coverage PC tables does not match the\n" "number of instrumented PCs. This might be a compiler bug,\n" "please contact the libFuzzer developers.\n" "Also check https://bugs.llvm.org/show_bug.cgi?id=34636\n" "for possible workarounds (tl;dr: don't use the old GNU ld)\n"); _Exit(1); } } if (size_t NumExtraCounters = ExtraCountersEnd() - ExtraCountersBegin()) Printf("INFO: %zd Extra Counters\n", NumExtraCounters); } ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { const uintptr_t kBits = 12; const uintptr_t kMask = (1 << kBits) - 1; uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); ValueProfileMap.AddValueModPrime(Idx); } /// \return the address of the previous instruction. /// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.h` inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) { #if defined(__arm__) // T32 (Thumb) branch instructions might be 16 or 32 bit long, // so we return (pc-2) in that case in order to be safe. // For A32 mode we return (pc-4) because all instructions are 32 bit long. return (PC - 3) & (~1); #elif defined(__powerpc__) || defined(__powerpc64__) || defined(__aarch64__) // PCs are always 4 byte aligned. return PC - 4; #elif defined(__sparc__) || defined(__mips__) return PC - 8; #else return PC - 1; #endif } /// \return the address of the next instruction. /// Note: the logic is copied from `sanitizer_common/sanitizer_stacktrace.cc` ALWAYS_INLINE uintptr_t TracePC::GetNextInstructionPc(uintptr_t PC) { #if defined(__mips__) return PC + 8; #elif defined(__powerpc__) || defined(__sparc__) || defined(__arm__) || \ defined(__aarch64__) return PC + 4; #else return PC + 1; #endif } void TracePC::UpdateObservedPCs() { Vector CoveredFuncs; auto ObservePC = [&](const PCTableEntry *TE) { if (ObservedPCs.insert(TE).second && DoPrintNewPCs) { PrintPC("\tNEW_PC: %p %F %L", "\tNEW_PC: %p", GetNextInstructionPc(TE->PC)); Printf("\n"); } }; auto Observe = [&](const PCTableEntry *TE) { if (PcIsFuncEntry(TE)) if (++ObservedFuncs[TE->PC] == 1 && NumPrintNewFuncs) CoveredFuncs.push_back(TE->PC); ObservePC(TE); }; if (NumPCsInPCTables) { if (NumInline8bitCounters == NumPCsInPCTables) { for (size_t i = 0; i < NumModules; i++) { auto &M = Modules[i]; assert(M.Size() == (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start)); for (size_t r = 0; r < M.NumRegions; r++) { auto &R = M.Regions[r]; if (!R.Enabled) continue; for (uint8_t *P = R.Start; P < R.Stop; P++) if (*P) Observe(&ModulePCTable[i].Start[M.Idx(P)]); } } } } for (size_t i = 0, N = Min(CoveredFuncs.size(), NumPrintNewFuncs); i < N; i++) { Printf("\tNEW_FUNC[%zd/%zd]: ", i + 1, CoveredFuncs.size()); PrintPC("%p %F %L", "%p", GetNextInstructionPc(CoveredFuncs[i])); Printf("\n"); } } uintptr_t TracePC::PCTableEntryIdx(const PCTableEntry *TE) { size_t TotalTEs = 0; for (size_t i = 0; i < NumPCTables; i++) { auto &M = ModulePCTable[i]; if (TE >= M.Start && TE < M.Stop) return TotalTEs + TE - M.Start; TotalTEs += M.Stop - M.Start; } assert(0); return 0; } const TracePC::PCTableEntry *TracePC::PCTableEntryByIdx(uintptr_t Idx) { for (size_t i = 0; i < NumPCTables; i++) { auto &M = ModulePCTable[i]; size_t Size = M.Stop - M.Start; if (Idx < Size) return &M.Start[Idx]; Idx -= Size; } return nullptr; } static std::string GetModuleName(uintptr_t PC) { char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++? void *OffsetRaw = nullptr; if (!EF->__sanitizer_get_module_and_offset_for_pc( reinterpret_cast(PC), ModulePathRaw, sizeof(ModulePathRaw), &OffsetRaw)) return ""; return ModulePathRaw; } template void TracePC::IterateCoveredFunctions(CallBack CB) { for (size_t i = 0; i < NumPCTables; i++) { auto &M = ModulePCTable[i]; assert(M.Start < M.Stop); auto ModuleName = GetModuleName(M.Start->PC); for (auto NextFE = M.Start; NextFE < M.Stop; ) { auto FE = NextFE; assert(PcIsFuncEntry(FE) && "Not a function entry point"); do { NextFE++; } while (NextFE < M.Stop && !(PcIsFuncEntry(NextFE))); CB(FE, NextFE, ObservedFuncs[FE->PC]); } } } void TracePC::SetFocusFunction(const std::string &FuncName) { // This function should be called once. assert(!FocusFunctionCounterPtr); if (FuncName.empty()) return; for (size_t M = 0; M < NumModules; M++) { auto &PCTE = ModulePCTable[M]; size_t N = PCTE.Stop - PCTE.Start; for (size_t I = 0; I < N; I++) { if (!(PcIsFuncEntry(&PCTE.Start[I]))) continue; // not a function entry. auto Name = DescribePC("%F", GetNextInstructionPc(PCTE.Start[I].PC)); if (Name[0] == 'i' && Name[1] == 'n' && Name[2] == ' ') Name = Name.substr(3, std::string::npos); if (FuncName != Name) continue; Printf("INFO: Focus function is set to '%s'\n", Name.c_str()); FocusFunctionCounterPtr = Modules[M].Start() + I; return; } } } bool TracePC::ObservedFocusFunction() { return FocusFunctionCounterPtr && *FocusFunctionCounterPtr; } void TracePC::PrintCoverage() { if (!EF->__sanitizer_symbolize_pc || !EF->__sanitizer_get_module_and_offset_for_pc) { Printf("INFO: __sanitizer_symbolize_pc or " "__sanitizer_get_module_and_offset_for_pc is not available," " not printing coverage\n"); return; } Printf("COVERAGE:\n"); auto CoveredFunctionCallback = [&](const PCTableEntry *First, const PCTableEntry *Last, uintptr_t Counter) { assert(First < Last); auto VisualizePC = GetNextInstructionPc(First->PC); std::string FileStr = DescribePC("%s", VisualizePC); if (!IsInterestingCoverageFile(FileStr)) return; std::string FunctionStr = DescribePC("%F", VisualizePC); if (FunctionStr.find("in ") == 0) FunctionStr = FunctionStr.substr(3); std::string LineStr = DescribePC("%l", VisualizePC); size_t NumEdges = Last - First; Vector UncoveredPCs; for (auto TE = First; TE < Last; TE++) if (!ObservedPCs.count(TE)) UncoveredPCs.push_back(TE->PC); Printf("%sCOVERED_FUNC: hits: %zd", Counter ? "" : "UN", Counter); Printf(" edges: %zd/%zd", NumEdges - UncoveredPCs.size(), NumEdges); Printf(" %s %s:%s\n", FunctionStr.c_str(), FileStr.c_str(), LineStr.c_str()); if (Counter) for (auto PC : UncoveredPCs) Printf(" UNCOVERED_PC: %s\n", DescribePC("%s:%l", GetNextInstructionPc(PC)).c_str()); }; IterateCoveredFunctions(CoveredFunctionCallback); } // Value profile. // We keep track of various values that affect control flow. // These values are inserted into a bit-set-based hash map. // Every new bit in the map is treated as a new coverage. // // For memcmp/strcmp/etc the interesting value is the length of the common // prefix of the parameters. // For cmp instructions the interesting value is a XOR of the parameters. // The interesting value is mixed up with the PC and is then added to the map. ATTRIBUTE_NO_SANITIZE_ALL void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, size_t n, bool StopAtZero) { if (!n) return; size_t Len = std::min(n, Word::GetMaxSize()); const uint8_t *A1 = reinterpret_cast(s1); const uint8_t *A2 = reinterpret_cast(s2); uint8_t B1[Word::kMaxSize]; uint8_t B2[Word::kMaxSize]; // Copy the data into locals in this non-msan-instrumented function // to avoid msan complaining further. size_t Hash = 0; // Compute some simple hash of both strings. for (size_t i = 0; i < Len; i++) { B1[i] = A1[i]; B2[i] = A2[i]; size_t T = B1[i]; Hash ^= (T << 8) | B2[i]; } size_t I = 0; for (; I < Len; I++) if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0)) break; size_t PC = reinterpret_cast(caller_pc); size_t Idx = (PC & 4095) | (I << 12); ValueProfileMap.AddValue(Idx); TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len)); } template ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE ATTRIBUTE_NO_SANITIZE_ALL void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) { uint64_t ArgXor = Arg1 ^ Arg2; if (sizeof(T) == 4) TORC4.Insert(ArgXor, Arg1, Arg2); else if (sizeof(T) == 8) TORC8.Insert(ArgXor, Arg1, Arg2); uint64_t HammingDistance = Popcountll(ArgXor); // [0,64] uint64_t AbsoluteDistance = (Arg1 == Arg2 ? 0 : Clzll(Arg1 - Arg2) + 1); ValueProfileMap.AddValue(PC * 128 + HammingDistance); ValueProfileMap.AddValue(PC * 128 + 64 + AbsoluteDistance); } static size_t InternalStrnlen(const char *S, size_t MaxLen) { size_t Len = 0; for (; Len < MaxLen && S[Len]; Len++) {} return Len; } // Finds min of (strlen(S1), strlen(S2)). // Needed bacause one of these strings may actually be non-zero terminated. static size_t InternalStrnlen2(const char *S1, const char *S2) { size_t Len = 0; for (; S1[Len] && S2[Len]; Len++) {} return Len; } void TracePC::ClearInlineCounters() { IterateCounterRegions([](const Module::Region &R){ if (R.Enabled) memset(R.Start, 0, R.Stop - R.Start); }); } ATTRIBUTE_NO_SANITIZE_ALL void TracePC::RecordInitialStack() { int stack; __sancov_lowest_stack = InitialStack = reinterpret_cast(&stack); } uintptr_t TracePC::GetMaxStackOffset() const { return InitialStack - __sancov_lowest_stack; // Stack grows down } void WarnAboutDeprecatedInstrumentation(const char *flag) { // Use RawPrint because Printf cannot be used on Windows before OutputFile is // initialized. RawPrint(flag); RawPrint( " is no longer supported by libFuzzer.\n" "Please either migrate to a compiler that supports -fsanitize=fuzzer\n" "or use an older version of libFuzzer\n"); exit(1); } } // namespace fuzzer extern "C" { ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { fuzzer::WarnAboutDeprecatedInstrumentation( "-fsanitize-coverage=trace-pc-guard"); } // Best-effort support for -fsanitize-coverage=trace-pc, which is available // in both Clang and GCC. ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc() { fuzzer::WarnAboutDeprecatedInstrumentation("-fsanitize-coverage=trace-pc"); } ATTRIBUTE_INTERFACE void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { fuzzer::WarnAboutDeprecatedInstrumentation( "-fsanitize-coverage=trace-pc-guard"); } ATTRIBUTE_INTERFACE void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) { fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop); } ATTRIBUTE_INTERFACE void __sanitizer_cov_pcs_init(const uintptr_t *pcs_beg, const uintptr_t *pcs_end) { fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCallerCallee(PC, Callee); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT // Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic // the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however, // should be changed later to make full use of instrumentation. void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { uint64_t N = Cases[0]; uint64_t ValSizeInBits = Cases[1]; uint64_t *Vals = Cases + 2; // Skip the most common and the most boring case: all switch values are small. // We may want to skip this at compile-time, but it will make the // instrumentation less general. if (Vals[N - 1] < 256) return; // Also skip small inputs values, they won't give good signal. if (Val < 256) return; uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); size_t i; uint64_t Smaller = 0; uint64_t Larger = ~(uint64_t)0; // Find two switch values such that Smaller < Val < Larger. // Use 0 and 0xfff..f as the defaults. for (i = 0; i < N; i++) { if (Val < Vals[i]) { Larger = Vals[i]; break; } if (Val > Vals[i]) Smaller = Vals[i]; } // Apply HandleCmp to {Val,Smaller} and {Val, Larger}, // use i as the PC modifier for HandleCmp. if (ValSizeInBits == 16) { fuzzer::TPC.HandleCmp(PC + 2 * i, static_cast(Val), (uint16_t)(Smaller)); fuzzer::TPC.HandleCmp(PC + 2 * i + 1, static_cast(Val), (uint16_t)(Larger)); } else if (ValSizeInBits == 32) { fuzzer::TPC.HandleCmp(PC + 2 * i, static_cast(Val), (uint32_t)(Smaller)); fuzzer::TPC.HandleCmp(PC + 2 * i + 1, static_cast(Val), (uint32_t)(Larger)); } else { fuzzer::TPC.HandleCmp(PC + 2*i, Val, Smaller); fuzzer::TPC.HandleCmp(PC + 2*i + 1, Val, Larger); } } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_div4(uint32_t Val) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_div8(uint64_t Val) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_ALL ATTRIBUTE_TARGET_POPCNT void __sanitizer_cov_trace_gep(uintptr_t Idx) { uintptr_t PC = reinterpret_cast(GET_CALLER_PC()); fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, const void *s2, size_t n, int result) { if (!fuzzer::RunningUserCallback) return; if (result == 0) return; // No reason to mutate. if (n <= 1) return; // Not interesting. fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, const char *s2, size_t n, int result) { if (!fuzzer::RunningUserCallback) return; if (result == 0) return; // No reason to mutate. size_t Len1 = fuzzer::InternalStrnlen(s1, n); size_t Len2 = fuzzer::InternalStrnlen(s2, n); n = std::min(n, Len1); n = std::min(n, Len2); if (n <= 1) return; // Not interesting. fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, const char *s2, int result) { if (!fuzzer::RunningUserCallback) return; if (result == 0) return; // No reason to mutate. size_t N = fuzzer::InternalStrnlen2(s1, s2); if (N <= 1) return; // Not interesting. fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1, const char *s2, size_t n, int result) { if (!fuzzer::RunningUserCallback) return; return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1, const char *s2, int result) { if (!fuzzer::RunningUserCallback) return; return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1, const char *s2, char *result) { if (!fuzzer::RunningUserCallback) return; fuzzer::TPC.MMT.Add(reinterpret_cast(s2), strlen(s2)); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1, const char *s2, char *result) { if (!fuzzer::RunningUserCallback) return; fuzzer::TPC.MMT.Add(reinterpret_cast(s2), strlen(s2)); } ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1, const void *s2, size_t len2, void *result) { if (!fuzzer::RunningUserCallback) return; fuzzer::TPC.MMT.Add(reinterpret_cast(s2), len2); } } // extern "C"