/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* * Implementation of the DOM Range object. */ #include "nscore.h" #include "nsRange.h" #include "nsString.h" #include "nsReadableUtils.h" #include "nsIContent.h" #include "nsIDocument.h" #include "nsError.h" #include "nsIContentIterator.h" #include "nsINodeList.h" #include "nsGkAtoms.h" #include "nsContentUtils.h" #include "nsTextFrame.h" #include "mozilla/dom/CharacterData.h" #include "mozilla/dom/DocumentFragment.h" #include "mozilla/dom/DocumentType.h" #include "mozilla/dom/RangeBinding.h" #include "mozilla/dom/DOMRect.h" #include "mozilla/dom/DOMStringList.h" #include "mozilla/dom/ShadowRoot.h" #include "mozilla/dom/Selection.h" #include "mozilla/dom/Text.h" #include "mozilla/Telemetry.h" #include "mozilla/Likely.h" #include "nsCSSFrameConstructor.h" #include "nsStyleStruct.h" #include "nsStyleStructInlines.h" #include "nsComputedDOMStyle.h" #include "mozilla/dom/InspectorFontFace.h" using namespace mozilla; using namespace mozilla::dom; JSObject* nsRange::WrapObject(JSContext* aCx, JS::Handle aGivenProto) { return Range_Binding::Wrap(aCx, this, aGivenProto); } DocGroup* nsRange::GetDocGroup() const { return mOwner ? mOwner->GetDocGroup() : nullptr; } /****************************************************** * stack based utilty class for managing monitor ******************************************************/ static void InvalidateAllFrames(nsINode* aNode) { MOZ_ASSERT(aNode, "bad arg"); nsIFrame* frame = nullptr; switch (aNode->NodeType()) { case nsINode::TEXT_NODE: case nsINode::ELEMENT_NODE: { nsIContent* content = static_cast(aNode); frame = content->GetPrimaryFrame(); break; } case nsINode::DOCUMENT_NODE: { nsIDocument* doc = static_cast(aNode); nsIPresShell* shell = doc ? doc->GetShell() : nullptr; frame = shell ? shell->GetRootFrame() : nullptr; break; } } for (nsIFrame* f = frame; f; f = f->GetNextContinuation()) { f->InvalidateFrameSubtree(); } } // Utility routine to detect if a content node is completely contained in a range // If outNodeBefore is returned true, then the node starts before the range does. // If outNodeAfter is returned true, then the node ends after the range does. // Note that both of the above might be true. // If neither are true, the node is contained inside of the range. // XXX - callers responsibility to ensure node in same doc as range! // static nsresult nsRange::CompareNodeToRange(nsINode* aNode, nsRange* aRange, bool *outNodeBefore, bool *outNodeAfter) { NS_ENSURE_STATE(aNode); // create a pair of dom points that expresses location of node: // NODE(start), NODE(end) // Let incoming range be: // {RANGE(start), RANGE(end)} // if (RANGE(start) <= NODE(start)) and (RANGE(end) => NODE(end)) // then the Node is contained (completely) by the Range. if (!aRange || !aRange->IsPositioned()) return NS_ERROR_UNEXPECTED; // gather up the dom point info int32_t nodeStart, nodeEnd; nsINode* parent = aNode->GetParentNode(); if (!parent) { // can't make a parent/offset pair to represent start or // end of the root node, because it has no parent. // so instead represent it by (node,0) and (node,numChildren) parent = aNode; nodeStart = 0; uint32_t childCount = aNode->GetChildCount(); MOZ_ASSERT(childCount <= INT32_MAX, "There shouldn't be over INT32_MAX children"); nodeEnd = static_cast(childCount); } else { nodeStart = parent->ComputeIndexOf(aNode); nodeEnd = nodeStart + 1; MOZ_ASSERT(nodeStart < nodeEnd, "nodeStart shouldn't be INT32_MAX"); } nsINode* rangeStartContainer = aRange->GetStartContainer(); nsINode* rangeEndContainer = aRange->GetEndContainer(); uint32_t rangeStartOffset = aRange->StartOffset(); uint32_t rangeEndOffset = aRange->EndOffset(); // is RANGE(start) <= NODE(start) ? bool disconnected = false; *outNodeBefore = nsContentUtils::ComparePoints(rangeStartContainer, static_cast(rangeStartOffset), parent, nodeStart, &disconnected) > 0; NS_ENSURE_TRUE(!disconnected, NS_ERROR_DOM_WRONG_DOCUMENT_ERR); // is RANGE(end) >= NODE(end) ? *outNodeAfter = nsContentUtils::ComparePoints(rangeEndContainer, static_cast(rangeEndOffset), parent, nodeEnd, &disconnected) < 0; NS_ENSURE_TRUE(!disconnected, NS_ERROR_DOM_WRONG_DOCUMENT_ERR); return NS_OK; } static nsINode* GetNextRangeCommonAncestor(nsINode* aNode) { while (aNode && !aNode->IsCommonAncestorForRangeInSelection()) { if (!aNode->IsDescendantOfCommonAncestorForRangeInSelection()) { return nullptr; } aNode = aNode->GetParentNode(); } return aNode; } /** * A Comparator suitable for mozilla::BinarySearchIf for searching a collection * of nsRange* for an overlap of (mNode, mStartOffset) .. (mNode, mEndOffset). */ struct IsItemInRangeComparator { nsINode* mNode; uint32_t mStartOffset; uint32_t mEndOffset; int operator()(const nsRange* const aRange) const { int32_t cmp = nsContentUtils::ComparePoints( mNode, static_cast(mEndOffset), aRange->GetStartContainer(), static_cast(aRange->StartOffset())); if (cmp == 1) { cmp = nsContentUtils::ComparePoints( mNode, static_cast(mStartOffset), aRange->GetEndContainer(), static_cast(aRange->EndOffset())); if (cmp == -1) { return 0; } return 1; } return -1; } }; /* static */ bool nsRange::IsNodeSelected(nsINode* aNode, uint32_t aStartOffset, uint32_t aEndOffset) { MOZ_ASSERT(aNode, "bad arg"); nsINode* n = GetNextRangeCommonAncestor(aNode); NS_ASSERTION(n || !aNode->IsSelectionDescendant(), "orphan selection descendant"); // Collect the selection objects for potential ranges. nsTHashtable> ancestorSelections; Selection* prevSelection = nullptr; uint32_t maxRangeCount = 0; for (; n; n = GetNextRangeCommonAncestor(n->GetParentNode())) { LinkedList* ranges = n->GetExistingCommonAncestorRanges(); if (!ranges) { continue; } for (nsRange* range : *ranges) { MOZ_ASSERT(range->IsInSelection(), "Why is this range registeed with a node?"); // Looks like that IsInSelection() assert fails sometimes... if (range->IsInSelection()) { Selection* selection = range->mSelection; if (prevSelection != selection) { prevSelection = selection; ancestorSelections.PutEntry(selection); } maxRangeCount = std::max(maxRangeCount, selection->RangeCount()); } } } IsItemInRangeComparator comparator = { aNode, aStartOffset, aEndOffset }; if (!ancestorSelections.IsEmpty()) { for (auto iter = ancestorSelections.ConstIter(); !iter.Done(); iter.Next()) { Selection* selection = iter.Get()->GetKey(); // Binary search the sorted ranges in this selection. // (Selection::GetRangeAt returns its ranges ordered). size_t low = 0; size_t high = selection->RangeCount(); while (high != low) { size_t middle = low + (high - low) / 2; const nsRange* const range = selection->GetRangeAt(middle); int result = comparator(range); if (result == 0) { if (!range->Collapsed()) return true; const nsRange* middlePlus1; const nsRange* middleMinus1; // if node end > start of middle+1, result = 1 if (middle + 1 < high && (middlePlus1 = selection->GetRangeAt(middle + 1)) && nsContentUtils::ComparePoints( aNode, static_cast(aEndOffset), middlePlus1->GetStartContainer(), static_cast(middlePlus1->StartOffset())) > 0) { result = 1; // if node start < end of middle - 1, result = -1 } else if (middle >= 1 && (middleMinus1 = selection->GetRangeAt(middle - 1)) && nsContentUtils::ComparePoints( aNode, static_cast(aStartOffset), middleMinus1->GetEndContainer(), static_cast(middleMinus1->EndOffset())) < 0) { result = -1; } else { break; } } if (result < 0) { high = middle; } else { low = middle + 1; } } } } return false; } /****************************************************** * constructor/destructor ******************************************************/ nsRange::~nsRange() { NS_ASSERTION(!IsInSelection(), "deleting nsRange that is in use"); // we want the side effects (releases and list removals) DoSetRange(RawRangeBoundary(), RawRangeBoundary(), nullptr); } nsRange::nsRange(nsINode* aNode) : mRoot(nullptr) , mRegisteredCommonAncestor(nullptr) , mNextStartRef(nullptr) , mNextEndRef(nullptr) , mIsPositioned(false) , mIsGenerated(false) , mCalledByJS(false) { MOZ_ASSERT(aNode, "range isn't in a document!"); mOwner = aNode->OwnerDoc(); } /* static */ nsresult nsRange::CreateRange(nsINode* aStartContainer, uint32_t aStartOffset, nsINode* aEndParent, uint32_t aEndOffset, nsRange** aRange) { MOZ_ASSERT(aRange); *aRange = nullptr; RefPtr range = new nsRange(aStartContainer); nsresult rv = range->SetStartAndEnd(aStartContainer, aStartOffset, aEndParent, aEndOffset); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } range.forget(aRange); return NS_OK; } /* static */ nsresult nsRange::CreateRange(const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd, nsRange** aRange) { RefPtr range = new nsRange(aStart.Container()); nsresult rv = range->SetStartAndEnd(aStart, aEnd); if (NS_WARN_IF(NS_FAILED(rv))) { return rv; } range.forget(aRange); return NS_OK; } /****************************************************** * nsISupports ******************************************************/ NS_IMPL_MAIN_THREAD_ONLY_CYCLE_COLLECTING_ADDREF(nsRange) NS_IMPL_MAIN_THREAD_ONLY_CYCLE_COLLECTING_RELEASE_WITH_LAST_RELEASE( nsRange, DoSetRange(RawRangeBoundary(), RawRangeBoundary(), nullptr)) // QueryInterface implementation for nsRange NS_INTERFACE_MAP_BEGIN_CYCLE_COLLECTION(nsRange) NS_WRAPPERCACHE_INTERFACE_MAP_ENTRY NS_INTERFACE_MAP_ENTRY(nsIMutationObserver) NS_INTERFACE_MAP_ENTRY(nsISupports) NS_INTERFACE_MAP_END NS_IMPL_CYCLE_COLLECTION_CLASS(nsRange) NS_IMPL_CYCLE_COLLECTION_UNLINK_BEGIN(nsRange) NS_IMPL_CYCLE_COLLECTION_UNLINK_PRESERVED_WRAPPER NS_IMPL_CYCLE_COLLECTION_UNLINK(mOwner); // We _could_ just rely on Reset() to UnregisterCommonAncestor(), // but it wouldn't know we're calling it from Unlink and so would do // more work than it really needs to. if (tmp->mRegisteredCommonAncestor) { tmp->UnregisterCommonAncestor(tmp->mRegisteredCommonAncestor, true); } tmp->Reset(); // This needs to be unlinked after Reset() is called, as it controls // the result of IsInSelection() which is used by tmp->Reset(). MOZ_DIAGNOSTIC_ASSERT(!tmp->isInList(), "Shouldn't be registered now that we're unlinking"); NS_IMPL_CYCLE_COLLECTION_UNLINK(mSelection); NS_IMPL_CYCLE_COLLECTION_UNLINK_END NS_IMPL_CYCLE_COLLECTION_TRAVERSE_BEGIN(nsRange) NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mOwner) NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mStart) NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mEnd) NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mRoot) NS_IMPL_CYCLE_COLLECTION_TRAVERSE(mSelection) NS_IMPL_CYCLE_COLLECTION_TRAVERSE_END NS_IMPL_CYCLE_COLLECTION_TRACE_BEGIN(nsRange) NS_IMPL_CYCLE_COLLECTION_TRACE_PRESERVED_WRAPPER NS_IMPL_CYCLE_COLLECTION_TRACE_END static void MarkDescendants(nsINode* aNode) { // Set NodeIsDescendantOfCommonAncestorForRangeInSelection on aNode's // descendants unless aNode is already marked as a range common ancestor // or a descendant of one, in which case all of our descendants have the // bit set already. if (!aNode->IsSelectionDescendant()) { // don't set the Descendant bit on |aNode| itself nsINode* node = aNode->GetNextNode(aNode); while (node) { node->SetDescendantOfCommonAncestorForRangeInSelection(); if (!node->IsCommonAncestorForRangeInSelection()) { node = node->GetNextNode(aNode); } else { // optimize: skip this sub-tree since it's marked already. node = node->GetNextNonChildNode(aNode); } } } } static void UnmarkDescendants(nsINode* aNode) { // Unset NodeIsDescendantOfCommonAncestorForRangeInSelection on aNode's // descendants unless aNode is a descendant of another range common ancestor. // Also, exclude descendants of range common ancestors (but not the common // ancestor itself). if (!aNode->IsDescendantOfCommonAncestorForRangeInSelection()) { // we know |aNode| doesn't have any bit set nsINode* node = aNode->GetNextNode(aNode); while (node) { node->ClearDescendantOfCommonAncestorForRangeInSelection(); if (!node->IsCommonAncestorForRangeInSelection()) { node = node->GetNextNode(aNode); } else { // We found an ancestor of an overlapping range, skip its descendants. node = node->GetNextNonChildNode(aNode); } } } } void nsRange::RegisterCommonAncestor(nsINode* aNode) { MOZ_ASSERT(aNode, "bad arg"); MOZ_DIAGNOSTIC_ASSERT(IsInSelection(), "registering range not in selection"); mRegisteredCommonAncestor = aNode; MarkDescendants(aNode); UniquePtr>& ranges = aNode->GetCommonAncestorRangesPtr(); if (!ranges) { ranges = MakeUnique>(); } MOZ_DIAGNOSTIC_ASSERT(!isInList()); ranges->insertBack(this); aNode->SetCommonAncestorForRangeInSelection(); } void nsRange::UnregisterCommonAncestor(nsINode* aNode, bool aIsUnlinking) { MOZ_ASSERT(aNode, "bad arg"); NS_ASSERTION(aNode->IsCommonAncestorForRangeInSelection(), "wrong node"); MOZ_DIAGNOSTIC_ASSERT(aNode == mRegisteredCommonAncestor, "wrong node"); LinkedList* ranges = aNode->GetExistingCommonAncestorRanges(); MOZ_ASSERT(ranges); mRegisteredCommonAncestor = nullptr; #ifdef DEBUG bool found = false; for (nsRange* range : *ranges) { if (range == this) { found = true; break; } } MOZ_ASSERT(found, "We should be in the list on our registered common ancestor"); #endif // DEBUG remove(); // We don't want to waste time unmarking flags on nodes that are // being unlinked anyway. if (!aIsUnlinking && ranges->isEmpty()) { aNode->ClearCommonAncestorForRangeInSelection(); UnmarkDescendants(aNode); } } /****************************************************** * nsIMutationObserver implementation ******************************************************/ void nsRange::CharacterDataChanged(nsIContent* aContent, const CharacterDataChangeInfo& aInfo) { // If this is called when this is not positioned, it means that this range // will be initialized again or destroyed soon. See Selection::mCachedRange. if (!mIsPositioned) { MOZ_ASSERT(mRoot); return; } MOZ_ASSERT(!mNextEndRef); MOZ_ASSERT(!mNextStartRef); nsINode* newRoot = nullptr; RawRangeBoundary newStart; RawRangeBoundary newEnd; if (aInfo.mDetails && aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eSplit) { // If the splitted text node is immediately before a range boundary point // that refers to a child index (i.e. its parent is the boundary container) // then we need to adjust the corresponding boundary to account for the new // text node that will be inserted. However, because the new sibling hasn't // been inserted yet, that would result in an invalid boundary. Therefore, // we store the new child in mNext*Ref to make sure we adjust the boundary // in the next ContentInserted or ContentAppended call. nsINode* parentNode = aContent->GetParentNode(); if (parentNode == mEnd.Container()) { if (aContent == mEnd.Ref()) { MOZ_ASSERT(aInfo.mDetails->mNextSibling); mNextEndRef = aInfo.mDetails->mNextSibling; } } if (parentNode == mStart.Container()) { if (aContent == mStart.Ref()) { MOZ_ASSERT(aInfo.mDetails->mNextSibling); mNextStartRef = aInfo.mDetails->mNextSibling; } } } // If the changed node contains our start boundary and the change starts // before the boundary we'll need to adjust the offset. if (aContent == mStart.Container() && aInfo.mChangeStart < mStart.Offset()) { if (aInfo.mDetails) { // splitText(), aInfo->mDetails->mNextSibling is the new text node NS_ASSERTION(aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eSplit, "only a split can start before the end"); NS_ASSERTION(mStart.Offset() <= aInfo.mChangeEnd + 1, "mStart.Offset() is beyond the end of this node"); int32_t newStartOffset = mStart.Offset() - aInfo.mChangeStart; newStart.Set(aInfo.mDetails->mNextSibling, newStartOffset); if (MOZ_UNLIKELY(aContent == mRoot)) { newRoot = IsValidBoundary(newStart.Container()); } bool isCommonAncestor = IsInSelection() && mStart.Container() == mEnd.Container(); if (isCommonAncestor) { UnregisterCommonAncestor(mStart.Container(), false); RegisterCommonAncestor(newStart.Container()); } if (mStart.Container()->IsDescendantOfCommonAncestorForRangeInSelection()) { newStart.Container()->SetDescendantOfCommonAncestorForRangeInSelection(); } } else { // If boundary is inside changed text, position it before change // else adjust start offset for the change in length. int32_t newStartOffset = mStart.Offset() <= aInfo.mChangeEnd ? aInfo.mChangeStart : mStart.Offset() + aInfo.mChangeStart - aInfo.mChangeEnd + aInfo.mReplaceLength; newStart.Set(mStart.Container(), newStartOffset); } } // Do the same thing for the end boundary, except for splitText of a node // with no parent then only switch to the new node if the start boundary // did so too (otherwise the range would end up with disconnected nodes). if (aContent == mEnd.Container() && aInfo.mChangeStart < mEnd.Offset()) { if (aInfo.mDetails && (aContent->GetParentNode() || newStart.Container())) { // splitText(), aInfo.mDetails->mNextSibling is the new text node NS_ASSERTION(aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eSplit, "only a split can start before the end"); NS_ASSERTION(mEnd.Offset() <= aInfo.mChangeEnd + 1, "mEnd.Offset() is beyond the end of this node"); newEnd.Set(aInfo.mDetails->mNextSibling, mEnd.Offset() - aInfo.mChangeStart); bool isCommonAncestor = IsInSelection() && mStart.Container() == mEnd.Container(); if (isCommonAncestor && !newStart.Container()) { // The split occurs inside the range. UnregisterCommonAncestor(mStart.Container(), false); RegisterCommonAncestor(mStart.Container()->GetParentNode()); newEnd.Container()->SetDescendantOfCommonAncestorForRangeInSelection(); } else if (mEnd.Container()-> IsDescendantOfCommonAncestorForRangeInSelection()) { newEnd.Container()->SetDescendantOfCommonAncestorForRangeInSelection(); } } else { int32_t newEndOffset = mEnd.Offset() <= aInfo.mChangeEnd ? aInfo.mChangeStart : mEnd.Offset() + aInfo.mChangeStart - aInfo.mChangeEnd + aInfo.mReplaceLength; newEnd.Set(mEnd.Container(), newEndOffset); } } if (aInfo.mDetails && aInfo.mDetails->mType == CharacterDataChangeInfo::Details::eMerge) { // normalize(), aInfo.mDetails->mNextSibling is the merged text node // that will be removed nsIContent* removed = aInfo.mDetails->mNextSibling; if (removed == mStart.Container()) { newStart.Set(aContent, mStart.Offset() + aInfo.mChangeStart); if (MOZ_UNLIKELY(removed == mRoot)) { newRoot = IsValidBoundary(newStart.Container()); } } if (removed == mEnd.Container()) { newEnd.Set(aContent, mEnd.Offset() + aInfo.mChangeStart); if (MOZ_UNLIKELY(removed == mRoot)) { newRoot = IsValidBoundary(newEnd.Container()); } } // When the removed text node's parent is one of our boundary nodes we may // need to adjust the offset to account for the removed node. However, // there will also be a ContentRemoved notification later so the only cases // we need to handle here is when the removed node is the text node after // the boundary. (The m*Offset > 0 check is an optimization - a boundary // point before the first child is never affected by normalize().) nsINode* parentNode = aContent->GetParentNode(); if (parentNode == mStart.Container() && mStart.Offset() > 0 && mStart.Offset() < parentNode->GetChildCount() && removed == mStart.GetChildAtOffset()) { newStart.Set(aContent, aInfo.mChangeStart); } if (parentNode == mEnd.Container() && mEnd.Offset() > 0 && mEnd.Offset() < parentNode->GetChildCount() && removed == mEnd.GetChildAtOffset()) { newEnd.Set(aContent, aInfo.mChangeEnd); } } if (newStart.IsSet() || newEnd.IsSet()) { if (!newStart.IsSet()) { newStart = mStart; } if (!newEnd.IsSet()) { newEnd = mEnd; } DoSetRange(newStart, newEnd, newRoot ? newRoot : mRoot.get(), !newEnd.Container()->GetParentNode() || !newStart.Container()->GetParentNode()); } } void nsRange::ContentAppended(nsIContent* aFirstNewContent) { // If this is called when this is not positioned, it means that this range // will be initialized again or destroyed soon. See Selection::mCachedRange. if (!mIsPositioned) { MOZ_ASSERT(mRoot); return; } nsINode* container = aFirstNewContent->GetParentNode(); MOZ_ASSERT(container); if (container->IsSelectionDescendant() && IsInSelection()) { nsINode* child = aFirstNewContent; while (child) { if (!child->IsDescendantOfCommonAncestorForRangeInSelection()) { MarkDescendants(child); child->SetDescendantOfCommonAncestorForRangeInSelection(); } child = child->GetNextSibling(); } } if (mNextStartRef || mNextEndRef) { // A splitText has occurred, if any mNext*Ref was set, we need to adjust // the range boundaries. if (mNextStartRef) { mStart.SetAfterRef(mStart.Container(), mNextStartRef); MOZ_ASSERT(mNextStartRef == aFirstNewContent); mNextStartRef = nullptr; } if (mNextEndRef) { mEnd.SetAfterRef(mEnd.Container(), mNextEndRef); MOZ_ASSERT(mNextEndRef == aFirstNewContent); mNextEndRef = nullptr; } DoSetRange(mStart.AsRaw(), mEnd.AsRaw(), mRoot, true); } } void nsRange::ContentInserted(nsIContent* aChild) { // If this is called when this is not positioned, it means that this range // will be initialized again or destroyed soon. See Selection::mCachedRange. if (!mIsPositioned) { MOZ_ASSERT(mRoot); return; } bool updateBoundaries = false; nsINode* container = aChild->GetParentNode(); MOZ_ASSERT(container); RawRangeBoundary newStart(mStart); RawRangeBoundary newEnd(mEnd); MOZ_ASSERT(aChild->GetParentNode() == container); // Invalidate boundary offsets if a child that may have moved them was // inserted. if (container == mStart.Container()) { newStart.InvalidateOffset(); updateBoundaries = true; } if (container == mEnd.Container()) { newEnd.InvalidateOffset(); updateBoundaries = true; } if (container->IsSelectionDescendant() && !aChild->IsDescendantOfCommonAncestorForRangeInSelection()) { MarkDescendants(aChild); aChild->SetDescendantOfCommonAncestorForRangeInSelection(); } if (mNextStartRef || mNextEndRef) { if (mNextStartRef) { newStart.SetAfterRef(mStart.Container(), mNextStartRef); MOZ_ASSERT(mNextStartRef == aChild); mNextStartRef = nullptr; } if (mNextEndRef) { newEnd.SetAfterRef(mEnd.Container(), mNextEndRef); MOZ_ASSERT(mNextEndRef == aChild); mNextEndRef = nullptr; } updateBoundaries = true; } if (updateBoundaries) { DoSetRange(newStart, newEnd, mRoot); } } void nsRange::ContentRemoved(nsIContent* aChild, nsIContent* aPreviousSibling) { // If this is called when this is not positioned, it means that this range // will be initialized again or destroyed soon. See Selection::mCachedRange. if (!mIsPositioned) { MOZ_ASSERT(mRoot); return; } nsINode* container = aChild->GetParentNode(); MOZ_ASSERT(container); RawRangeBoundary newStart; RawRangeBoundary newEnd; Maybe gravitateStart; bool gravitateEnd; // Adjust position if a sibling was removed... if (container == mStart.Container()) { // We're only interested if our boundary reference was removed, otherwise // we can just invalidate the offset. if (aChild == mStart.Ref()) { newStart.SetAfterRef(container, aPreviousSibling); } else { newStart = mStart; newStart.InvalidateOffset(); } } else { gravitateStart = Some(nsContentUtils::ContentIsDescendantOf(mStart.Container(), aChild)); if (gravitateStart.value()) { newStart.SetAfterRef(container, aPreviousSibling); } } // Do same thing for end boundry. if (container == mEnd.Container()) { if (aChild == mEnd.Ref()) { newEnd.SetAfterRef(container, aPreviousSibling); } else { newEnd = mEnd; newEnd.InvalidateOffset(); } } else { if (mStart.Container() == mEnd.Container() && gravitateStart.isSome()) { gravitateEnd = gravitateStart.value(); } else { gravitateEnd = nsContentUtils::ContentIsDescendantOf(mEnd.Container(), aChild); } if (gravitateEnd) { newEnd.SetAfterRef(container, aPreviousSibling); } } if (newStart.IsSet() || newEnd.IsSet()) { DoSetRange(newStart.IsSet() ? newStart : mStart.AsRaw(), newEnd.IsSet() ? newEnd : mEnd.AsRaw(), mRoot); } MOZ_ASSERT(mStart.Ref() != aChild); MOZ_ASSERT(mEnd.Ref() != aChild); if (container->IsSelectionDescendant() && aChild->IsDescendantOfCommonAncestorForRangeInSelection()) { aChild->ClearDescendantOfCommonAncestorForRangeInSelection(); UnmarkDescendants(aChild); } } void nsRange::ParentChainChanged(nsIContent *aContent) { NS_ASSERTION(mRoot == aContent, "Wrong ParentChainChanged notification?"); nsINode* newRoot = IsValidBoundary(mStart.Container()); NS_ASSERTION(newRoot, "No valid boundary or root found!"); if (newRoot != IsValidBoundary(mEnd.Container())) { // Sometimes ordering involved in cycle collection can lead to our // start parent and/or end parent being disconnected from our root // without our getting a ContentRemoved notification. // See bug 846096 for more details. NS_ASSERTION(mEnd.Container()->IsInNativeAnonymousSubtree(), "This special case should happen only with " "native-anonymous content"); // When that happens, bail out and set pointers to null; since we're // in cycle collection and unreachable it shouldn't matter. Reset(); return; } // This is safe without holding a strong ref to self as long as the change // of mRoot is the last thing in DoSetRange. DoSetRange(mStart.AsRaw(), mEnd.AsRaw(), newRoot); } bool nsRange::IsPointInRange(const RawRangeBoundary& aPoint, ErrorResult& aRv) { uint16_t compareResult = ComparePoint(aPoint, aRv); // If the node isn't in the range's document, it clearly isn't in the range. if (aRv.ErrorCodeIs(NS_ERROR_DOM_WRONG_DOCUMENT_ERR)) { aRv.SuppressException(); return false; } return compareResult == 0; } int16_t nsRange::ComparePoint(const RawRangeBoundary& aPoint, ErrorResult& aRv) { if (NS_WARN_IF(!aPoint.IsSet())) { // FYI: Shouldn't reach this case if it's called by JS. Therefore, it's // okay to warn. aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return 0; } // our range is in a good state? if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return 0; } if (!nsContentUtils::ContentIsDescendantOf(aPoint.Container(), mRoot)) { aRv.Throw(NS_ERROR_DOM_WRONG_DOCUMENT_ERR); return 0; } if (aPoint.Container()->NodeType() == nsINode::DOCUMENT_TYPE_NODE) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return 0; } if (aPoint.Offset() > aPoint.Container()->Length()) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return 0; } int32_t cmp = nsContentUtils::ComparePoints(aPoint, mStart.AsRaw()); if (cmp <= 0) { return cmp; } if (nsContentUtils::ComparePoints(mEnd.AsRaw(), aPoint) == -1) { return 1; } return 0; } bool nsRange::IntersectsNode(nsINode& aNode, ErrorResult& aRv) { if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return false; } // Step 3. nsINode* parent = aNode.GetParentNode(); if (!parent) { // Steps 2 and 4. // |parent| is null, so |node|'s root is |node| itself. return GetRoot() == &aNode; } // Step 5. int32_t nodeIndex = parent->ComputeIndexOf(&aNode); // Steps 6-7. // Note: if disconnected is true, ComparePoints returns 1. bool disconnected = false; bool result = nsContentUtils::ComparePoints(mStart.Container(), mStart.Offset(), parent, nodeIndex + 1, &disconnected) < 0 && nsContentUtils::ComparePoints(parent, nodeIndex, mEnd.Container(), mEnd.Offset(), &disconnected) < 0; // Step 2. if (disconnected) { result = false; } return result; } void nsRange::NotifySelectionListenersAfterRangeSet() { if (mSelection) { // Our internal code should not move focus with using this instance while // it's calling Selection::NotifySelectionListeners() which may move focus // or calls selection listeners. So, let's set mCalledByJS to false here // since non-*JS() methods don't set it to false. AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = false; // Be aware, this range may be modified or stop being a range for selection // after this call. Additionally, the selection instance may have gone. RefPtr selection = mSelection; selection->NotifySelectionListeners(calledByJSRestorer.SavedValue()); } } /****************************************************** * Private helper routines ******************************************************/ // It's important that all setting of the range start/end points // go through this function, which will do all the right voodoo // for content notification of range ownership. // Calling DoSetRange with either parent argument null will collapse // the range to have both endpoints point to the other node void nsRange::DoSetRange(const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd, nsINode* aRoot, bool aNotInsertedYet) { MOZ_ASSERT((aStart.IsSet() && aEnd.IsSet() && aRoot) || (!aStart.IsSet() && !aEnd.IsSet()), "Set all or none"); MOZ_ASSERT(!aRoot || (!aStart.IsSet() && !aEnd.IsSet()) || aNotInsertedYet || (nsContentUtils::ContentIsDescendantOf(aStart.Container(), aRoot) && nsContentUtils::ContentIsDescendantOf(aEnd.Container(), aRoot) && aRoot == IsValidBoundary(aStart.Container()) && aRoot == IsValidBoundary(aEnd.Container())), "Wrong root"); MOZ_ASSERT(!aRoot || (!aStart.IsSet() && !aEnd.IsSet()) || (aStart.Container()->IsContent() && aEnd.Container()->IsContent() && aRoot == static_cast(aStart.Container())->GetBindingParent() && aRoot == static_cast(aEnd.Container())->GetBindingParent()) || (!aRoot->GetParentNode() && (aRoot->IsDocument() || aRoot->IsAttr() || aRoot->IsDocumentFragment() || /*For backward compatibility*/ aRoot->IsContent())), "Bad root"); if (mRoot != aRoot) { if (mRoot) { mRoot->RemoveMutationObserver(this); } if (aRoot) { aRoot->AddMutationObserver(this); } } bool checkCommonAncestor = (mStart.Container() != aStart.Container() || mEnd.Container() != aEnd.Container()) && IsInSelection() && !aNotInsertedYet; // GetCommonAncestor is unreliable while we're unlinking (could // return null if our start/end have already been unlinked), so make // sure to not use it here to determine our "old" current ancestor. mStart = aStart; mEnd = aEnd; mIsPositioned = !!mStart.Container(); if (checkCommonAncestor) { nsINode* oldCommonAncestor = mRegisteredCommonAncestor; nsINode* newCommonAncestor = GetCommonAncestor(); if (newCommonAncestor != oldCommonAncestor) { if (oldCommonAncestor) { UnregisterCommonAncestor(oldCommonAncestor, false); } if (newCommonAncestor) { RegisterCommonAncestor(newCommonAncestor); } else { NS_ASSERTION(!mIsPositioned, "unexpected disconnected nodes"); mSelection = nullptr; MOZ_DIAGNOSTIC_ASSERT(!mRegisteredCommonAncestor, "How can we have a registered common ancestor when we " "didn't register ourselves?"); MOZ_DIAGNOSTIC_ASSERT(!isInList(), "Shouldn't be registered if we have no " "mRegisteredCommonAncestor"); } } } // This needs to be the last thing this function does, other than notifying // selection listeners. See comment in ParentChainChanged. mRoot = aRoot; // Notify any selection listeners. This has to occur last because otherwise the world // could be observed by a selection listener while the range was in an invalid state. // So we run it off of a script runner to ensure it runs after the mutation observers // have finished running. if (mSelection) { nsContentUtils::AddScriptRunner(NewRunnableMethod( "NotifySelectionListenersAfterRangeSet", this, &nsRange::NotifySelectionListenersAfterRangeSet)); } } static int32_t IndexOf(nsINode* aChild) { nsINode* parent = aChild->GetParentNode(); return parent ? parent->ComputeIndexOf(aChild) : -1; } void nsRange::SetSelection(mozilla::dom::Selection* aSelection) { if (mSelection == aSelection) { return; } // At least one of aSelection and mSelection must be null // aSelection will be null when we are removing from a selection // and a range can't be in more than one selection at a time, // thus mSelection must be null too. MOZ_ASSERT(!aSelection || !mSelection); // Extra step in case our parent failed to ensure the above // invariant. if (aSelection && mSelection) { mSelection->RemoveRange(*this, IgnoreErrors()); } mSelection = aSelection; if (mSelection) { nsINode* commonAncestor = GetCommonAncestor(); NS_ASSERTION(commonAncestor, "unexpected disconnected nodes"); RegisterCommonAncestor(commonAncestor); } else { UnregisterCommonAncestor(mRegisteredCommonAncestor, false); MOZ_DIAGNOSTIC_ASSERT(!mRegisteredCommonAncestor, "How can we have a registered common ancestor when we " "just unregistered?"); MOZ_DIAGNOSTIC_ASSERT(!isInList(), "Shouldn't be registered if we have no " "mRegisteredCommonAncestor after unregistering"); } } nsINode* nsRange::GetCommonAncestor() const { return mIsPositioned ? nsContentUtils::GetCommonAncestor(mStart.Container(), mEnd.Container()) : nullptr; } void nsRange::Reset() { DoSetRange(RawRangeBoundary(), RawRangeBoundary(), nullptr); } /****************************************************** * public functionality ******************************************************/ nsINode* nsRange::GetStartContainer(ErrorResult& aRv) const { if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return nullptr; } return mStart.Container(); } uint32_t nsRange::GetStartOffset(ErrorResult& aRv) const { if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return 0; } return mStart.Offset(); } nsINode* nsRange::GetEndContainer(ErrorResult& aRv) const { if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return nullptr; } return mEnd.Container(); } uint32_t nsRange::GetEndOffset(ErrorResult& aRv) const { if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return 0; } return mEnd.Offset(); } nsINode* nsRange::GetCommonAncestorContainer(ErrorResult& aRv) const { if (!mIsPositioned) { aRv.Throw(NS_ERROR_NOT_INITIALIZED); return nullptr; } return nsContentUtils::GetCommonAncestor(mStart.Container(), mEnd.Container()); } /* static */ bool nsRange::IsValidOffset(nsINode* aNode, uint32_t aOffset) { return aNode && IsValidOffset(aOffset) && static_cast(aOffset) <= aNode->Length(); } /* static */ nsINode* nsRange::ComputeRootNode(nsINode* aNode) { if (!aNode) { return nullptr; } if (aNode->IsContent()) { if (aNode->NodeInfo()->NameAtom() == nsGkAtoms::documentTypeNodeName) { return nullptr; } nsIContent* content = aNode->AsContent(); // If the node is in a shadow tree then the ShadowRoot is the root. if (ShadowRoot* containingShadow = content->GetContainingShadow()) { return containingShadow; } // If the node has a binding parent, that should be the root. // XXXbz maybe only for native anonymous content? if (nsINode* root = content->GetBindingParent()) { return root; } } // Elements etc. must be in document or in document fragment, // text nodes in document, in document fragment or in attribute. if (nsINode* root = aNode->GetUncomposedDoc()) { return root; } NS_ASSERTION(!aNode->SubtreeRoot()->IsDocument(), "GetUncomposedDoc should have returned a doc"); // We allow this because of backward compatibility. return aNode->SubtreeRoot(); } /* static */ bool nsRange::IsValidPoints(nsINode* aStartContainer, uint32_t aStartOffset, nsINode* aEndContainer, uint32_t aEndOffset) { // Use NS_WARN_IF() only for the cases where the arguments are unexpected. if (NS_WARN_IF(!aStartContainer) || NS_WARN_IF(!aEndContainer) || NS_WARN_IF(!IsValidOffset(aStartContainer, aStartOffset)) || NS_WARN_IF(!IsValidOffset(aEndContainer, aEndOffset))) { return false; } // Otherwise, don't use NS_WARN_IF() for preventing to make console messy. // Instead, check one by one since it is easier to catch the error reason // with debugger. if (ComputeRootNode(aStartContainer) != ComputeRootNode(aEndContainer)) { return false; } bool disconnected = false; int32_t order = nsContentUtils::ComparePoints(aStartContainer, static_cast(aStartOffset), aEndContainer, static_cast(aEndOffset), &disconnected); // FYI: disconnected should be false unless |order| is 1. if (order == 1 || NS_WARN_IF(disconnected)) { return false; } return true; } void nsRange::SetStartJS(nsINode& aNode, uint32_t aOffset, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SetStart(aNode, aOffset, aErr); } void nsRange::SetStart(nsINode& aNode, uint32_t aOffset, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); SetStart(RawRangeBoundary(&aNode, aOffset), aRv); } void nsRange::SetStart(const RawRangeBoundary& aPoint, ErrorResult& aRv) { nsINode* newRoot = IsValidBoundary(aPoint.Container()); if (!newRoot) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return; } if (!aPoint.IsSetAndValid()) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return; } // Collapse if not positioned yet, if positioned in another doc or // if the new start is after end. if (!mIsPositioned || newRoot != mRoot || nsContentUtils::ComparePoints(aPoint, mEnd.AsRaw()) == 1) { DoSetRange(aPoint, aPoint, newRoot); return; } DoSetRange(aPoint, mEnd.AsRaw(), mRoot); } void nsRange::SetStartBeforeJS(nsINode& aNode, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SetStartBefore(aNode, aErr); } void nsRange::SetStartBefore(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); // If the node is being removed from its parent, GetContainerAndOffsetBefore() // returns nullptr. Then, SetStart() will throw // NS_ERROR_DOM_INVALID_NODE_TYPE_ERR. uint32_t offset = UINT32_MAX; nsINode* container = GetContainerAndOffsetBefore(&aNode, &offset); aRv = SetStart(container, offset); } void nsRange::SetStartAfterJS(nsINode& aNode, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SetStartAfter(aNode, aErr); } void nsRange::SetStartAfter(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); // If the node is being removed from its parent, GetContainerAndOffsetAfter() // returns nullptr. Then, SetStart() will throw // NS_ERROR_DOM_INVALID_NODE_TYPE_ERR. uint32_t offset = UINT32_MAX; nsINode* container = GetContainerAndOffsetAfter(&aNode, &offset); aRv = SetStart(container, offset); } void nsRange::SetEndJS(nsINode& aNode, uint32_t aOffset, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SetEnd(aNode, aOffset, aErr); } void nsRange::SetEnd(nsINode& aNode, uint32_t aOffset, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); SetEnd(RawRangeBoundary(&aNode, aOffset), aRv); } void nsRange::SetEnd(const RawRangeBoundary& aPoint, ErrorResult& aRv) { nsINode* newRoot = IsValidBoundary(aPoint.Container()); if (!newRoot) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return; } if (!aPoint.IsSetAndValid()) { aRv.Throw(NS_ERROR_DOM_INDEX_SIZE_ERR); return; } // Collapse if not positioned yet, if positioned in another doc or // if the new end is before start. if (!mIsPositioned || newRoot != mRoot || nsContentUtils::ComparePoints(mStart.AsRaw(), aPoint) == 1) { DoSetRange(aPoint, aPoint, newRoot); return; } DoSetRange(mStart.AsRaw(), aPoint, mRoot); } void nsRange::SelectNodesInContainer(nsINode* aContainer, nsIContent* aStartContent, nsIContent* aEndContent) { MOZ_ASSERT(aContainer); MOZ_ASSERT(aContainer->ComputeIndexOf(aStartContent) <= aContainer->ComputeIndexOf(aEndContent)); MOZ_ASSERT(aStartContent && aContainer->ComputeIndexOf(aStartContent) != -1); MOZ_ASSERT(aEndContent && aContainer->ComputeIndexOf(aEndContent) != -1); nsINode* newRoot = ComputeRootNode(aContainer); MOZ_ASSERT(newRoot); if (!newRoot) { return; } RawRangeBoundary start(aContainer, aStartContent->GetPreviousSibling()); RawRangeBoundary end(aContainer, aEndContent); DoSetRange(start, end, newRoot); } nsresult nsRange::SetStartAndEnd(const RawRangeBoundary& aStart, const RawRangeBoundary& aEnd) { if (NS_WARN_IF(!aStart.IsSet()) || NS_WARN_IF(!aEnd.IsSet())) { return NS_ERROR_INVALID_ARG; } nsINode* newStartRoot = IsValidBoundary(aStart.Container()); if (!newStartRoot) { return NS_ERROR_DOM_INVALID_NODE_TYPE_ERR; } if (!aStart.IsSetAndValid()) { return NS_ERROR_DOM_INDEX_SIZE_ERR; } if (aStart.Container() == aEnd.Container()) { if (!aEnd.IsSetAndValid()) { return NS_ERROR_DOM_INDEX_SIZE_ERR; } // XXX: Offsets - handle this more efficiently. // If the end offset is less than the start offset, this should be // collapsed at the end offset. if (aStart.Offset() > aEnd.Offset()) { DoSetRange(aEnd, aEnd, newStartRoot); } else { DoSetRange(aStart, aEnd, newStartRoot); } return NS_OK; } nsINode* newEndRoot = IsValidBoundary(aEnd.Container()); if (!newEndRoot) { return NS_ERROR_DOM_INVALID_NODE_TYPE_ERR; } if (!aEnd.IsSetAndValid()) { return NS_ERROR_DOM_INDEX_SIZE_ERR; } // If they have different root, this should be collapsed at the end point. if (newStartRoot != newEndRoot) { DoSetRange(aEnd, aEnd, newEndRoot); return NS_OK; } // If the end point is before the start point, this should be collapsed at // the end point. if (nsContentUtils::ComparePoints(aStart, aEnd) == 1) { DoSetRange(aEnd, aEnd, newEndRoot); return NS_OK; } // Otherwise, set the range as specified. DoSetRange(aStart, aEnd, newStartRoot); return NS_OK; } void nsRange::SetEndBeforeJS(nsINode& aNode, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SetEndBefore(aNode, aErr); } void nsRange::SetEndBefore(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); // If the node is being removed from its parent, GetContainerAndOffsetBefore() // returns nullptr. Then, SetEnd() will throw // NS_ERROR_DOM_INVALID_NODE_TYPE_ERR. uint32_t offset = UINT32_MAX; nsINode* container = GetContainerAndOffsetBefore(&aNode, &offset); aRv = SetEnd(container, offset); } void nsRange::SetEndAfterJS(nsINode& aNode, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SetEndAfter(aNode, aErr); } void nsRange::SetEndAfter(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); // If the node is being removed from its parent, GetContainerAndOffsetAfter() // returns nullptr. Then, SetEnd() will throw // NS_ERROR_DOM_INVALID_NODE_TYPE_ERR. uint32_t offset = UINT32_MAX; nsINode* container = GetContainerAndOffsetAfter(&aNode, &offset); aRv = SetEnd(container, offset); } void nsRange::Collapse(bool aToStart) { if (!mIsPositioned) return; AutoInvalidateSelection atEndOfBlock(this); if (aToStart) { DoSetRange(mStart.AsRaw(), mStart.AsRaw(), mRoot); } else { DoSetRange(mEnd.AsRaw(), mEnd.AsRaw(), mRoot); } } void nsRange::CollapseJS(bool aToStart) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; Collapse(aToStart); } void nsRange::SelectNodeJS(nsINode& aNode, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SelectNode(aNode, aErr); } void nsRange::SelectNode(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } nsINode* container = aNode.GetParentNode(); nsINode* newRoot = IsValidBoundary(container); if (!newRoot) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return; } int32_t index = container->ComputeIndexOf(&aNode); // MOZ_ASSERT(index != -1); // We need to compute the index here unfortunately, because, while we have // support for XBL, |container| may be the node's binding parent without // actually containing it. if (NS_WARN_IF(index < 0) || !IsValidOffset(static_cast(index)) || !IsValidOffset(static_cast(index) + 1)) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); DoSetRange(RawRangeBoundary(container, index), RawRangeBoundary(container, index + 1), newRoot); } void nsRange::SelectNodeContentsJS(nsINode& aNode, ErrorResult& aErr) { AutoCalledByJSRestore calledByJSRestorer(*this); mCalledByJS = true; SelectNodeContents(aNode, aErr); } void nsRange::SelectNodeContents(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } nsINode* newRoot = IsValidBoundary(&aNode); if (!newRoot) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return; } AutoInvalidateSelection atEndOfBlock(this); DoSetRange(RawRangeBoundary(&aNode, 0), RawRangeBoundary(&aNode, aNode.Length()), newRoot); } // The Subtree Content Iterator only returns subtrees that are // completely within a given range. It doesn't return a CharacterData // node that contains either the start or end point of the range., // nor does it return element nodes when nothing in the element is selected. // We need an iterator that will also include these start/end points // so that our methods/algorithms aren't cluttered with special // case code that tries to include these points while iterating. // // The RangeSubtreeIterator class mimics the nsIContentIterator // methods we need, so should the Content Iterator support the // start/end points in the future, we can switchover relatively // easy. class MOZ_STACK_CLASS RangeSubtreeIterator { private: enum RangeSubtreeIterState { eDone=0, eUseStart, eUseIterator, eUseEnd }; nsCOMPtr mIter; RangeSubtreeIterState mIterState; nsCOMPtr mStart; nsCOMPtr mEnd; public: RangeSubtreeIterator() : mIterState(eDone) { } ~RangeSubtreeIterator() { } nsresult Init(nsRange *aRange); already_AddRefed GetCurrentNode(); void First(); void Last(); void Next(); void Prev(); bool IsDone() { return mIterState == eDone; } }; nsresult RangeSubtreeIterator::Init(nsRange *aRange) { mIterState = eDone; if (aRange->Collapsed()) { return NS_OK; } // Grab the start point of the range and QI it to // a CharacterData pointer. If it is CharacterData store // a pointer to the node. ErrorResult rv; nsCOMPtr node = aRange->GetStartContainer(rv); if (!node) return NS_ERROR_FAILURE; if (node->IsCharacterData() || (node->IsElement() && node->AsElement()->GetChildCount() == aRange->GetStartOffset(rv))) { mStart = node; } // Grab the end point of the range and QI it to // a CharacterData pointer. If it is CharacterData store // a pointer to the node. node = aRange->GetEndContainer(rv); if (!node) return NS_ERROR_FAILURE; if (node->IsCharacterData() || (node->IsElement() && aRange->GetEndOffset(rv) == 0)) { mEnd = node; } if (mStart && mStart == mEnd) { // The range starts and stops in the same CharacterData // node. Null out the end pointer so we only visit the // node once! mEnd = nullptr; } else { // Now create a Content Subtree Iterator to be used // for the subtrees between the end points! mIter = NS_NewContentSubtreeIterator(); nsresult res = mIter->Init(aRange); if (NS_FAILED(res)) return res; if (mIter->IsDone()) { // The subtree iterator thinks there's nothing // to iterate over, so just free it up so we // don't accidentally call into it. mIter = nullptr; } } // Initialize the iterator by calling First(). // Note that we are ignoring the return value on purpose! First(); return NS_OK; } already_AddRefed RangeSubtreeIterator::GetCurrentNode() { nsCOMPtr node; if (mIterState == eUseStart && mStart) { node = mStart; } else if (mIterState == eUseEnd && mEnd) { node = mEnd; } else if (mIterState == eUseIterator && mIter) { node = mIter->GetCurrentNode(); } return node.forget(); } void RangeSubtreeIterator::First() { if (mStart) mIterState = eUseStart; else if (mIter) { mIter->First(); mIterState = eUseIterator; } else if (mEnd) mIterState = eUseEnd; else mIterState = eDone; } void RangeSubtreeIterator::Last() { if (mEnd) mIterState = eUseEnd; else if (mIter) { mIter->Last(); mIterState = eUseIterator; } else if (mStart) mIterState = eUseStart; else mIterState = eDone; } void RangeSubtreeIterator::Next() { if (mIterState == eUseStart) { if (mIter) { mIter->First(); mIterState = eUseIterator; } else if (mEnd) mIterState = eUseEnd; else mIterState = eDone; } else if (mIterState == eUseIterator) { mIter->Next(); if (mIter->IsDone()) { if (mEnd) mIterState = eUseEnd; else mIterState = eDone; } } else mIterState = eDone; } void RangeSubtreeIterator::Prev() { if (mIterState == eUseEnd) { if (mIter) { mIter->Last(); mIterState = eUseIterator; } else if (mStart) mIterState = eUseStart; else mIterState = eDone; } else if (mIterState == eUseIterator) { mIter->Prev(); if (mIter->IsDone()) { if (mStart) mIterState = eUseStart; else mIterState = eDone; } } else mIterState = eDone; } // CollapseRangeAfterDelete() is a utility method that is used by // DeleteContents() and ExtractContents() to collapse the range // in the correct place, under the range's root container (the // range end points common container) as outlined by the Range spec: // // http://www.w3.org/TR/2000/REC-DOM-Level-2-Traversal-Range-20001113/ranges.html // The assumption made by this method is that the delete or extract // has been done already, and left the range in a state where there is // no content between the 2 end points. static nsresult CollapseRangeAfterDelete(nsRange* aRange) { NS_ENSURE_ARG_POINTER(aRange); // Check if range gravity took care of collapsing the range for us! if (aRange->Collapsed()) { // aRange is collapsed so there's nothing for us to do. // // There are 2 possible scenarios here: // // 1. aRange could've been collapsed prior to the delete/extract, // which would've resulted in nothing being removed, so aRange // is already where it should be. // // 2. Prior to the delete/extract, aRange's start and end were in // the same container which would mean everything between them // was removed, causing range gravity to collapse the range. return NS_OK; } // aRange isn't collapsed so figure out the appropriate place to collapse! // First get both end points and their common ancestor. ErrorResult rv; nsCOMPtr commonAncestor = aRange->GetCommonAncestorContainer(rv); if (rv.Failed()) return rv.StealNSResult(); nsCOMPtr startContainer = aRange->GetStartContainer(rv); if (rv.Failed()) return rv.StealNSResult(); nsCOMPtr endContainer = aRange->GetEndContainer(rv); if (rv.Failed()) return rv.StealNSResult(); // Collapse to one of the end points if they are already in the // commonAncestor. This should work ok since this method is called // immediately after a delete or extract that leaves no content // between the 2 end points! if (startContainer == commonAncestor) { aRange->Collapse(true); return NS_OK; } if (endContainer == commonAncestor) { aRange->Collapse(false); return NS_OK; } // End points are at differing levels. We want to collapse to the // point that is between the 2 subtrees that contain each point, // under the common ancestor. nsCOMPtr nodeToSelect(startContainer); while (nodeToSelect) { nsCOMPtr parent = nodeToSelect->GetParentNode(); if (parent == commonAncestor) break; // We found the nodeToSelect! nodeToSelect = parent; } if (!nodeToSelect) return NS_ERROR_FAILURE; // This should never happen! aRange->SelectNode(*nodeToSelect, rv); if (rv.Failed()) return rv.StealNSResult(); aRange->Collapse(false); return NS_OK; } NS_IMETHODIMP PrependChild(nsINode* aContainer, nsINode* aChild) { nsCOMPtr first = aContainer->GetFirstChild(); ErrorResult rv; aContainer->InsertBefore(*aChild, first, rv); return rv.StealNSResult(); } // Helper function for CutContents, making sure that the current node wasn't // removed by mutation events (bug 766426) static bool ValidateCurrentNode(nsRange* aRange, RangeSubtreeIterator& aIter) { bool before, after; nsCOMPtr node = aIter.GetCurrentNode(); if (!node) { // We don't have to worry that the node was removed if it doesn't exist, // e.g., the iterator is done. return true; } nsresult res = nsRange::CompareNodeToRange(node, aRange, &before, &after); NS_ENSURE_SUCCESS(res, false); if (before || after) { if (node->IsCharacterData()) { // If we're dealing with the start/end container which is a character // node, pretend that the node is in the range. if (before && node == aRange->GetStartContainer()) { before = false; } if (after && node == aRange->GetEndContainer()) { after = false; } } } return !before && !after; } nsresult nsRange::CutContents(DocumentFragment** aFragment) { if (aFragment) { *aFragment = nullptr; } nsCOMPtr doc = mStart.Container()->OwnerDoc(); ErrorResult res; nsCOMPtr commonAncestor = GetCommonAncestorContainer(res); NS_ENSURE_TRUE(!res.Failed(), res.StealNSResult()); // If aFragment isn't null, create a temporary fragment to hold our return. RefPtr retval; if (aFragment) { retval = new DocumentFragment(doc->NodeInfoManager()); } nsCOMPtr commonCloneAncestor = retval.get(); // Batch possible DOMSubtreeModified events. mozAutoSubtreeModified subtree(mRoot ? mRoot->OwnerDoc(): nullptr, nullptr); // Save the range end points locally to avoid interference // of Range gravity during our edits! nsCOMPtr startContainer = mStart.Container(); uint32_t startOffset = mStart.Offset(); nsCOMPtr endContainer = mEnd.Container(); uint32_t endOffset = mEnd.Offset(); if (retval) { // For extractContents(), abort early if there's a doctype (bug 719533). // This can happen only if the common ancestor is a document, in which case // we just need to find its doctype child and check if that's in the range. nsCOMPtr commonAncestorDocument = do_QueryInterface(commonAncestor); if (commonAncestorDocument) { RefPtr doctype = commonAncestorDocument->GetDoctype(); if (doctype && nsContentUtils::ComparePoints(startContainer, static_cast(startOffset), doctype, 0) < 0 && nsContentUtils::ComparePoints(doctype, 0, endContainer, static_cast(endOffset)) < 0) { return NS_ERROR_DOM_HIERARCHY_REQUEST_ERR; } } } // Create and initialize a subtree iterator that will give // us all the subtrees within the range. RangeSubtreeIterator iter; nsresult rv = iter.Init(this); if (NS_FAILED(rv)) return rv; if (iter.IsDone()) { // There's nothing for us to delete. rv = CollapseRangeAfterDelete(this); if (NS_SUCCEEDED(rv) && aFragment) { retval.forget(aFragment); } return rv; } iter.First(); bool handled = false; // With the exception of text nodes that contain one of the range // end points, the subtree iterator should only give us back subtrees // that are completely contained between the range's end points. while (!iter.IsDone()) { nsCOMPtr nodeToResult; nsCOMPtr node = iter.GetCurrentNode(); // Before we delete anything, advance the iterator to the next node that's // not a descendant of this one. XXX It's a bit silly to iterate through // the descendants only to throw them out, we should use an iterator that // skips the descendants to begin with. iter.Next(); nsCOMPtr nextNode = iter.GetCurrentNode(); while (nextNode && nsContentUtils::ContentIsDescendantOf(nextNode, node)) { iter.Next(); nextNode = iter.GetCurrentNode(); } handled = false; // If it's CharacterData, make sure we might need to delete // part of the data, instead of removing the whole node. // // XXX_kin: We need to also handle ProcessingInstruction // XXX_kin: according to the spec. if (auto charData = CharacterData::FromNode(node)) { uint32_t dataLength = 0; if (node == startContainer) { if (node == endContainer) { // This range is completely contained within a single text node. // Delete or extract the data between startOffset and endOffset. if (endOffset > startOffset) { if (retval) { nsAutoString cutValue; ErrorResult err; charData->SubstringData(startOffset, endOffset - startOffset, cutValue, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } nsCOMPtr clone = node->CloneNode(false, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } clone->SetNodeValue(cutValue, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } nodeToResult = clone; } nsMutationGuard guard; ErrorResult err; charData->DeleteData(startOffset, endOffset - startOffset, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } NS_ENSURE_STATE(!guard.Mutated(0) || ValidateCurrentNode(this, iter)); } handled = true; } else { // Delete or extract everything after startOffset. dataLength = charData->Length(); if (dataLength >= startOffset) { if (retval) { nsAutoString cutValue; ErrorResult err; charData->SubstringData(startOffset, dataLength, cutValue, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } nsCOMPtr clone = node->CloneNode(false, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } clone->SetNodeValue(cutValue, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } nodeToResult = clone; } nsMutationGuard guard; ErrorResult err; charData->DeleteData(startOffset, dataLength, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } NS_ENSURE_SUCCESS(rv, rv); NS_ENSURE_STATE(!guard.Mutated(0) || ValidateCurrentNode(this, iter)); } handled = true; } } else if (node == endContainer) { // Delete or extract everything before endOffset. if (retval) { nsAutoString cutValue; ErrorResult err; charData->SubstringData(0, endOffset, cutValue, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } nsCOMPtr clone = node->CloneNode(false, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } clone->SetNodeValue(cutValue, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } nodeToResult = clone; } nsMutationGuard guard; ErrorResult err; charData->DeleteData(0, endOffset, err); if (NS_WARN_IF(err.Failed())) { return err.StealNSResult(); } NS_ENSURE_STATE(!guard.Mutated(0) || ValidateCurrentNode(this, iter)); handled = true; } } if (!handled && (node == endContainer || node == startContainer)) { if (node && node->IsElement() && ((node == endContainer && endOffset == 0) || (node == startContainer && node->AsElement()->GetChildCount() == startOffset))) { if (retval) { ErrorResult rv; nodeToResult = node->CloneNode(false, rv); NS_ENSURE_TRUE(!rv.Failed(), rv.StealNSResult()); } handled = true; } } if (!handled) { // node was not handled above, so it must be completely contained // within the range. Just remove it from the tree! nodeToResult = node; } uint32_t parentCount = 0; // Set the result to document fragment if we have 'retval'. if (retval) { nsCOMPtr oldCommonAncestor = commonAncestor; if (!iter.IsDone()) { // Setup the parameters for the next iteration of the loop. NS_ENSURE_STATE(nextNode); // Get node's and nextNode's common parent. Do this before moving // nodes from original DOM to result fragment. commonAncestor = nsContentUtils::GetCommonAncestor(node, nextNode); NS_ENSURE_STATE(commonAncestor); nsCOMPtr parentCounterNode = node; while (parentCounterNode && parentCounterNode != commonAncestor) { ++parentCount; parentCounterNode = parentCounterNode->GetParentNode(); NS_ENSURE_STATE(parentCounterNode); } } // Clone the parent hierarchy between commonAncestor and node. nsCOMPtr closestAncestor, farthestAncestor; rv = CloneParentsBetween(oldCommonAncestor, node, getter_AddRefs(closestAncestor), getter_AddRefs(farthestAncestor)); NS_ENSURE_SUCCESS(rv, rv); ErrorResult res; if (farthestAncestor) { commonCloneAncestor->AppendChild(*farthestAncestor, res); res.WouldReportJSException(); if (NS_WARN_IF(res.Failed())) { return res.StealNSResult(); } } nsMutationGuard guard; nsCOMPtr parent = nodeToResult->GetParentNode(); if (closestAncestor) { closestAncestor->AppendChild(*nodeToResult, res); } else { commonCloneAncestor->AppendChild(*nodeToResult, res); } res.WouldReportJSException(); if (NS_WARN_IF(res.Failed())) { return res.StealNSResult(); } NS_ENSURE_STATE(!guard.Mutated(parent ? 2 : 1) || ValidateCurrentNode(this, iter)); } else if (nodeToResult) { nsMutationGuard guard; nsCOMPtr node = nodeToResult; nsCOMPtr parent = node->GetParentNode(); if (parent) { mozilla::ErrorResult error; parent->RemoveChild(*node, error); NS_ENSURE_FALSE(error.Failed(), error.StealNSResult()); } NS_ENSURE_STATE(!guard.Mutated(1) || ValidateCurrentNode(this, iter)); } if (!iter.IsDone() && retval) { // Find the equivalent of commonAncestor in the cloned tree. nsCOMPtr newCloneAncestor = nodeToResult; for (uint32_t i = parentCount; i; --i) { newCloneAncestor = newCloneAncestor->GetParentNode(); NS_ENSURE_STATE(newCloneAncestor); } commonCloneAncestor = newCloneAncestor; } } rv = CollapseRangeAfterDelete(this); if (NS_SUCCEEDED(rv) && aFragment) { retval.forget(aFragment); } return rv; } void nsRange::DeleteContents(ErrorResult& aRv) { aRv = CutContents(nullptr); } already_AddRefed nsRange::ExtractContents(ErrorResult& rv) { RefPtr fragment; rv = CutContents(getter_AddRefs(fragment)); return fragment.forget(); } int16_t nsRange::CompareBoundaryPoints(uint16_t aHow, nsRange& aOtherRange, ErrorResult& rv) { if (!mIsPositioned || !aOtherRange.IsPositioned()) { rv.Throw(NS_ERROR_NOT_INITIALIZED); return 0; } nsINode *ourNode, *otherNode; uint32_t ourOffset, otherOffset; switch (aHow) { case Range_Binding::START_TO_START: ourNode = mStart.Container(); ourOffset = mStart.Offset(); otherNode = aOtherRange.GetStartContainer(); otherOffset = aOtherRange.StartOffset(); break; case Range_Binding::START_TO_END: ourNode = mEnd.Container(); ourOffset = mEnd.Offset(); otherNode = aOtherRange.GetStartContainer(); otherOffset = aOtherRange.StartOffset(); break; case Range_Binding::END_TO_START: ourNode = mStart.Container(); ourOffset = mStart.Offset(); otherNode = aOtherRange.GetEndContainer(); otherOffset = aOtherRange.EndOffset(); break; case Range_Binding::END_TO_END: ourNode = mEnd.Container(); ourOffset = mEnd.Offset(); otherNode = aOtherRange.GetEndContainer(); otherOffset = aOtherRange.EndOffset(); break; default: // We were passed an illegal value rv.Throw(NS_ERROR_DOM_NOT_SUPPORTED_ERR); return 0; } if (mRoot != aOtherRange.GetRoot()) { rv.Throw(NS_ERROR_DOM_WRONG_DOCUMENT_ERR); return 0; } return nsContentUtils::ComparePoints(ourNode, static_cast(ourOffset), otherNode, static_cast(otherOffset)); } /* static */ nsresult nsRange::CloneParentsBetween(nsINode *aAncestor, nsINode *aNode, nsINode **aClosestAncestor, nsINode **aFarthestAncestor) { NS_ENSURE_ARG_POINTER((aAncestor && aNode && aClosestAncestor && aFarthestAncestor)); *aClosestAncestor = nullptr; *aFarthestAncestor = nullptr; if (aAncestor == aNode) return NS_OK; AutoTArray, 16> parentStack; nsCOMPtr parent = aNode->GetParentNode(); while(parent && parent != aAncestor) { parentStack.AppendElement(parent); parent = parent->GetParentNode(); } nsCOMPtr firstParent; nsCOMPtr lastParent; for (int32_t i = parentStack.Length() - 1; i >= 0; i--) { ErrorResult rv; nsCOMPtr clone = parentStack[i]->CloneNode(false, rv); if (rv.Failed()) { return rv.StealNSResult(); } if (!clone) { return NS_ERROR_FAILURE; } if (!lastParent) { lastParent = clone; } else { firstParent->AppendChild(*clone, rv); if (rv.Failed()) { return rv.StealNSResult(); } } firstParent = clone; } firstParent.forget(aClosestAncestor); lastParent.forget(aFarthestAncestor); return NS_OK; } already_AddRefed nsRange::CloneContents(ErrorResult& aRv) { nsCOMPtr commonAncestor = GetCommonAncestorContainer(aRv); MOZ_ASSERT(!aRv.Failed(), "GetCommonAncestorContainer() shouldn't fail!"); nsCOMPtr doc = mStart.Container()->OwnerDoc(); NS_ASSERTION(doc, "CloneContents needs a document to continue."); if (!doc) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } // Create a new document fragment in the context of this document, // which might be null RefPtr clonedFrag = new DocumentFragment(doc->NodeInfoManager()); nsCOMPtr commonCloneAncestor = clonedFrag.get(); // Create and initialize a subtree iterator that will give // us all the subtrees within the range. RangeSubtreeIterator iter; aRv = iter.Init(this); if (aRv.Failed()) { return nullptr; } if (iter.IsDone()) { // There's nothing to add to the doc frag, we must be done! return clonedFrag.forget(); } iter.First(); // With the exception of text nodes that contain one of the range // end points and elements which don't have any content selected the subtree // iterator should only give us back subtrees that are completely contained // between the range's end points. // // Unfortunately these subtrees don't contain the parent hierarchy/context // that the Range spec requires us to return. This loop clones the // parent hierarchy, adds a cloned version of the subtree, to it, then // correctly places this new subtree into the doc fragment. while (!iter.IsDone()) { nsCOMPtr node = iter.GetCurrentNode(); bool deepClone = !node->IsElement() || (!(node == mEnd.Container() && mEnd.Offset() == 0) && !(node == mStart.Container() && mStart.Offset() == node->AsElement()->GetChildCount())); // Clone the current subtree! nsCOMPtr clone = node->CloneNode(deepClone, aRv); if (aRv.Failed()) { return nullptr; } // If it's CharacterData, make sure we only clone what // is in the range. // // XXX_kin: We need to also handle ProcessingInstruction // XXX_kin: according to the spec. if (auto charData = CharacterData::FromNode(clone)) { if (node == mEnd.Container()) { // We only need the data before mEndOffset, so get rid of any // data after it. uint32_t dataLength = charData->Length(); if (dataLength > (uint32_t)mEnd.Offset()) { charData->DeleteData(mEnd.Offset(), dataLength - mEnd.Offset(), aRv); if (aRv.Failed()) { return nullptr; } } } if (node == mStart.Container()) { // We don't need any data before mStartOffset, so just // delete it! if (mStart.Offset() > 0) { charData->DeleteData(0, mStart.Offset(), aRv); if (aRv.Failed()) { return nullptr; } } } } // Clone the parent hierarchy between commonAncestor and node. nsCOMPtr closestAncestor, farthestAncestor; aRv = CloneParentsBetween(commonAncestor, node, getter_AddRefs(closestAncestor), getter_AddRefs(farthestAncestor)); if (aRv.Failed()) { return nullptr; } // Hook the parent hierarchy/context of the subtree into the clone tree. if (farthestAncestor) { commonCloneAncestor->AppendChild(*farthestAncestor, aRv); if (aRv.Failed()) { return nullptr; } } // Place the cloned subtree into the cloned doc frag tree! nsCOMPtr cloneNode = clone; if (closestAncestor) { // Append the subtree under closestAncestor since it is the // immediate parent of the subtree. closestAncestor->AppendChild(*cloneNode, aRv); } else { // If we get here, there is no missing parent hierarchy between // commonAncestor and node, so just append clone to commonCloneAncestor. commonCloneAncestor->AppendChild(*cloneNode, aRv); } if (aRv.Failed()) { return nullptr; } // Get the next subtree to be processed. The idea here is to setup // the parameters for the next iteration of the loop. iter.Next(); if (iter.IsDone()) break; // We must be done! nsCOMPtr nextNode = iter.GetCurrentNode(); if (!nextNode) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } // Get node and nextNode's common parent. commonAncestor = nsContentUtils::GetCommonAncestor(node, nextNode); if (!commonAncestor) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } // Find the equivalent of commonAncestor in the cloned tree! while (node && node != commonAncestor) { node = node->GetParentNode(); if (aRv.Failed()) { return nullptr; } if (!node) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } cloneNode = cloneNode->GetParentNode(); if (!cloneNode) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } } commonCloneAncestor = cloneNode; } return clonedFrag.forget(); } already_AddRefed nsRange::CloneRange() const { RefPtr range = new nsRange(mOwner); range->DoSetRange(mStart.AsRaw(), mEnd.AsRaw(), mRoot); return range.forget(); } void nsRange::InsertNode(nsINode& aNode, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNode)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } uint32_t tStartOffset = StartOffset(); nsCOMPtr tStartContainer = GetStartContainer(aRv); if (aRv.Failed()) { return; } if (&aNode == tStartContainer) { aRv.Throw(NS_ERROR_DOM_HIERARCHY_REQUEST_ERR); return; } // This is the node we'll be inserting before, and its parent nsCOMPtr referenceNode; nsCOMPtr referenceParentNode = tStartContainer; RefPtr startTextNode = tStartContainer ? tStartContainer->GetAsText() : nullptr; nsCOMPtr tChildList; if (startTextNode) { referenceParentNode = tStartContainer->GetParentNode(); if (!referenceParentNode) { aRv.Throw(NS_ERROR_DOM_HIERARCHY_REQUEST_ERR); return; } referenceParentNode->EnsurePreInsertionValidity(aNode, tStartContainer, aRv); if (aRv.Failed()) { return; } RefPtr secondPart = startTextNode->SplitText(tStartOffset, aRv); if (aRv.Failed()) { return; } referenceNode = secondPart; } else { tChildList = tStartContainer->ChildNodes(); // find the insertion point in the DOM and insert the Node referenceNode = tChildList->Item(tStartOffset); tStartContainer->EnsurePreInsertionValidity(aNode, referenceNode, aRv); if (aRv.Failed()) { return; } } // We might need to update the end to include the new node (bug 433662). // Ideally we'd only do this if needed, but it's tricky to know when it's // needed in advance (bug 765799). uint32_t newOffset; if (referenceNode) { int32_t indexInParent = IndexOf(referenceNode); if (NS_WARN_IF(indexInParent < 0)) { aRv.Throw(NS_ERROR_FAILURE); return; } newOffset = static_cast(indexInParent); } else { newOffset = tChildList->Length(); } if (aNode.NodeType() == nsINode::DOCUMENT_FRAGMENT_NODE) { newOffset += aNode.GetChildCount(); } else { newOffset++; } // Now actually insert the node nsCOMPtr tResultNode; tResultNode = referenceParentNode->InsertBefore(aNode, referenceNode, aRv); if (aRv.Failed()) { return; } if (Collapsed()) { aRv = SetEnd(referenceParentNode, newOffset); } } void nsRange::SurroundContents(nsINode& aNewParent, ErrorResult& aRv) { if (!nsContentUtils::LegacyIsCallerNativeCode() && !nsContentUtils::CanCallerAccess(&aNewParent)) { aRv.Throw(NS_ERROR_DOM_SECURITY_ERR); return; } if (!mRoot) { aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR); return; } // INVALID_STATE_ERROR: Raised if the Range partially selects a non-text // node. if (mStart.Container() != mEnd.Container()) { bool startIsText = mStart.Container()->IsText(); bool endIsText = mEnd.Container()->IsText(); nsINode* startGrandParent = mStart.Container()->GetParentNode(); nsINode* endGrandParent = mEnd.Container()->GetParentNode(); if (!((startIsText && endIsText && startGrandParent && startGrandParent == endGrandParent) || (startIsText && startGrandParent && startGrandParent == mEnd.Container()) || (endIsText && endGrandParent && endGrandParent == mStart.Container()))) { aRv.Throw(NS_ERROR_DOM_INVALID_STATE_ERR); return; } } // INVALID_NODE_TYPE_ERROR if aNewParent is something that can't be inserted // (Document, DocumentType, DocumentFragment) uint16_t nodeType = aNewParent.NodeType(); if (nodeType == nsINode::DOCUMENT_NODE || nodeType == nsINode::DOCUMENT_TYPE_NODE || nodeType == nsINode::DOCUMENT_FRAGMENT_NODE) { aRv.Throw(NS_ERROR_DOM_INVALID_NODE_TYPE_ERR); return; } // Extract the contents within the range. RefPtr docFrag = ExtractContents(aRv); if (aRv.Failed()) { return; } if (!docFrag) { aRv.Throw(NS_ERROR_FAILURE); return; } // Spec says we need to remove all of aNewParent's // children prior to insertion. nsCOMPtr children = aNewParent.ChildNodes(); if (!children) { aRv.Throw(NS_ERROR_FAILURE); return; } uint32_t numChildren = children->Length(); while (numChildren) { nsCOMPtr child = children->Item(--numChildren); if (!child) { aRv.Throw(NS_ERROR_FAILURE); return; } aNewParent.RemoveChild(*child, aRv); if (aRv.Failed()) { return; } } // Insert aNewParent at the range's start point. InsertNode(aNewParent, aRv); if (aRv.Failed()) { return; } // Append the content we extracted under aNewParent. aNewParent.AppendChild(*docFrag, aRv); if (aRv.Failed()) { return; } // Select aNewParent, and its contents. SelectNode(aNewParent, aRv); } void nsRange::ToString(nsAString& aReturn, ErrorResult& aErr) { // clear the string aReturn.Truncate(); // If we're unpositioned, return the empty string if (!mIsPositioned) { return; } #ifdef DEBUG_range printf("Range dump: -----------------------\n"); #endif /* DEBUG */ // effeciency hack for simple case if (mStart.Container() == mEnd.Container()) { Text* textNode = mStart.Container() ? mStart.Container()->GetAsText() : nullptr; if (textNode) { #ifdef DEBUG_range // If debug, dump it: textNode->List(stdout); printf("End Range dump: -----------------------\n"); #endif /* DEBUG */ // grab the text textNode->SubstringData(mStart.Offset(), mEnd.Offset() - mStart.Offset(), aReturn, aErr); return; } } /* complex case: mStart.Container() != mEnd.Container(), or mStartParent not a text node revisit - there are potential optimizations here and also tradeoffs. */ nsCOMPtr iter = NS_NewContentIterator(); nsresult rv = iter->Init(this); if (NS_WARN_IF(NS_FAILED(rv))) { aErr.Throw(rv); return; } nsString tempString; // loop through the content iterator, which returns nodes in the range in // close tag order, and grab the text from any text node while (!iter->IsDone()) { nsINode *n = iter->GetCurrentNode(); #ifdef DEBUG_range // If debug, dump it: n->List(stdout); #endif /* DEBUG */ Text* textNode = n->GetAsText(); if (textNode) // if it's a text node, get the text { if (n == mStart.Container()) { // only include text past start offset uint32_t strLength = textNode->Length(); textNode->SubstringData(mStart.Offset(), strLength-mStart.Offset(), tempString, IgnoreErrors()); aReturn += tempString; } else if (n == mEnd.Container()) { // only include text before end offset textNode->SubstringData(0, mEnd.Offset(), tempString, IgnoreErrors()); aReturn += tempString; } else { // grab the whole kit-n-kaboodle textNode->GetData(tempString); aReturn += tempString; } } iter->Next(); } #ifdef DEBUG_range printf("End Range dump: -----------------------\n"); #endif /* DEBUG */ } void nsRange::Detach() { } already_AddRefed nsRange::CreateContextualFragment(const nsAString& aFragment, ErrorResult& aRv) { if (!mIsPositioned) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } return nsContentUtils::CreateContextualFragment(mStart.Container(), aFragment, false, aRv); } static void ExtractRectFromOffset(nsIFrame* aFrame, const int32_t aOffset, nsRect* aR, bool aFlushToOriginEdge, bool aClampToEdge) { MOZ_ASSERT(aFrame); MOZ_ASSERT(aR); nsPoint point; aFrame->GetPointFromOffset(aOffset, &point); // Determine if aFrame has a vertical writing mode, which will change our math // on the output rect. bool isVertical = aFrame->GetWritingMode().IsVertical(); if (!aClampToEdge && !aR->Contains(point)) { // If point is outside aR, and we aren't clamping, output an empty rect // with origin at the point. if (isVertical) { aR->SetHeight(0); aR->y = point.y; } else { aR->SetWidth(0); aR->x = point.x; } return; } if (aClampToEdge) { point = aR->ClampPoint(point); } // point is within aR, and now we'll modify aR to output a rect that has point // on one edge. But which edge? if (aFlushToOriginEdge) { // The output rect should be flush to the edge of aR that contains the origin. if (isVertical) { aR->SetHeight(point.y - aR->y); } else { aR->SetWidth(point.x - aR->x); } } else { // The output rect should be flush to the edge of aR opposite the origin. if (isVertical) { aR->SetHeight(aR->YMost() - point.y); aR->y = point.y; } else { aR->SetWidth(aR->XMost() - point.x); aR->x = point.x; } } } static nsTextFrame* GetTextFrameForContent(nsIContent* aContent, bool aFlushLayout) { nsIDocument* doc = aContent->OwnerDoc(); nsIPresShell* presShell = doc->GetShell(); if (!presShell) { return nullptr; } const bool frameWillBeUnsuppressed = presShell->FrameConstructor()->EnsureFrameForTextNodeIsCreatedAfterFlush( static_cast(aContent)); if (aFlushLayout) { doc->FlushPendingNotifications(FlushType::Layout); } else if (frameWillBeUnsuppressed) { doc->FlushPendingNotifications(FlushType::Frames); } nsIFrame* frame = aContent->GetPrimaryFrame(); if (!frame || !frame->IsTextFrame()) { return nullptr; } return static_cast(frame); } static nsresult GetPartialTextRect(nsLayoutUtils::RectCallback* aCallback, Sequence* aTextList, nsIContent* aContent, int32_t aStartOffset, int32_t aEndOffset, bool aClampToEdge, bool aFlushLayout) { nsTextFrame* textFrame = GetTextFrameForContent(aContent, aFlushLayout); if (textFrame) { nsIFrame* relativeTo = nsLayoutUtils::GetContainingBlockForClientRect(textFrame); for (nsTextFrame* f = textFrame; f; f = static_cast(f->GetNextContinuation())) { int32_t fstart = f->GetContentOffset(), fend = f->GetContentEnd(); if (fend <= aStartOffset || fstart >= aEndOffset) continue; // Calculate the text content offsets we'll need if text is requested. int32_t textContentStart = fstart; int32_t textContentEnd = fend; // overlapping with the offset we want f->EnsureTextRun(nsTextFrame::eInflated); NS_ENSURE_TRUE(f->GetTextRun(nsTextFrame::eInflated), NS_ERROR_OUT_OF_MEMORY); bool rtl = f->GetTextRun(nsTextFrame::eInflated)->IsRightToLeft(); nsRect r = f->GetRectRelativeToSelf(); if (fstart < aStartOffset) { // aStartOffset is within this frame ExtractRectFromOffset(f, aStartOffset, &r, rtl, aClampToEdge); textContentStart = aStartOffset; } if (fend > aEndOffset) { // aEndOffset is in the middle of this frame ExtractRectFromOffset(f, aEndOffset, &r, !rtl, aClampToEdge); textContentEnd = aEndOffset; } r = nsLayoutUtils::TransformFrameRectToAncestor(f, r, relativeTo); aCallback->AddRect(r); // Finally capture the text, if requested. if (aTextList) { nsIFrame::RenderedText renderedText = f->GetRenderedText( textContentStart, textContentEnd, nsIFrame::TextOffsetType::OFFSETS_IN_CONTENT_TEXT, nsIFrame::TrailingWhitespace::DONT_TRIM_TRAILING_WHITESPACE); aTextList->AppendElement(renderedText.mString, fallible); } } } return NS_OK; } /* static */ void nsRange::CollectClientRectsAndText(nsLayoutUtils::RectCallback* aCollector, Sequence* aTextList, nsRange* aRange, nsINode* aStartContainer, uint32_t aStartOffset, nsINode* aEndContainer, uint32_t aEndOffset, bool aClampToEdge, bool aFlushLayout) { // Currently, this method is called with start of end offset of nsRange. // So, they must be between 0 - INT32_MAX. MOZ_ASSERT(IsValidOffset(aStartOffset)); MOZ_ASSERT(IsValidOffset(aEndOffset)); // Hold strong pointers across the flush nsCOMPtr startContainer = aStartContainer; nsCOMPtr endContainer = aEndContainer; // Flush out layout so our frames are up to date. if (!aStartContainer->IsInComposedDoc()) { return; } if (aFlushLayout) { aStartContainer->OwnerDoc()->FlushPendingNotifications(FlushType::Layout); // Recheck whether we're still in the document if (!aStartContainer->IsInComposedDoc()) { return; } } RangeSubtreeIterator iter; nsresult rv = iter.Init(aRange); if (NS_FAILED(rv)) return; if (iter.IsDone()) { // the range is collapsed, only continue if the cursor is in a text node if (aStartContainer->IsText()) { nsTextFrame* textFrame = GetTextFrameForContent(aStartContainer->AsText(), aFlushLayout); if (textFrame) { int32_t outOffset; nsIFrame* outFrame; textFrame->GetChildFrameContainingOffset( static_cast(aStartOffset), false, &outOffset, &outFrame); if (outFrame) { nsIFrame* relativeTo = nsLayoutUtils::GetContainingBlockForClientRect(outFrame); nsRect r = outFrame->GetRectRelativeToSelf(); ExtractRectFromOffset(outFrame, static_cast(aStartOffset), &r, false, aClampToEdge); r.SetWidth(0); r = nsLayoutUtils::TransformFrameRectToAncestor(outFrame, r, relativeTo); aCollector->AddRect(r); } } } return; } do { nsCOMPtr node = iter.GetCurrentNode(); iter.Next(); nsCOMPtr content = do_QueryInterface(node); if (!content) continue; if (content->IsText()) { if (node == startContainer) { int32_t offset = startContainer == endContainer ? static_cast(aEndOffset) : content->GetText()->GetLength(); GetPartialTextRect(aCollector, aTextList, content, static_cast(aStartOffset), offset, aClampToEdge, aFlushLayout); continue; } else if (node == endContainer) { GetPartialTextRect(aCollector, aTextList, content, 0, static_cast(aEndOffset), aClampToEdge, aFlushLayout); continue; } } nsIFrame* frame = content->GetPrimaryFrame(); if (frame) { nsLayoutUtils::GetAllInFlowRectsAndTexts(frame, nsLayoutUtils::GetContainingBlockForClientRect(frame), aCollector, aTextList, nsLayoutUtils::RECTS_ACCOUNT_FOR_TRANSFORMS); } } while (!iter.IsDone()); } already_AddRefed nsRange::GetBoundingClientRect(bool aClampToEdge, bool aFlushLayout) { RefPtr rect = new DOMRect(ToSupports(this)); if (!mStart.Container()) { return rect.forget(); } nsLayoutUtils::RectAccumulator accumulator; CollectClientRectsAndText(&accumulator, nullptr, this, mStart.Container(), mStart.Offset(), mEnd.Container(), mEnd.Offset(), aClampToEdge, aFlushLayout); nsRect r = accumulator.mResultRect.IsEmpty() ? accumulator.mFirstRect : accumulator.mResultRect; rect->SetLayoutRect(r); return rect.forget(); } already_AddRefed nsRange::GetClientRects(bool aClampToEdge, bool aFlushLayout) { if (!mStart.Container()) { return nullptr; } RefPtr rectList = new DOMRectList(this); nsLayoutUtils::RectListBuilder builder(rectList); CollectClientRectsAndText(&builder, nullptr, this, mStart.Container(), mStart.Offset(), mEnd.Container(), mEnd.Offset(), aClampToEdge, aFlushLayout); return rectList.forget(); } void nsRange::GetClientRectsAndTexts( mozilla::dom::ClientRectsAndTexts& aResult, ErrorResult& aErr) { if (!mStart.Container()) { return; } aResult.mRectList = new DOMRectList(this); nsLayoutUtils::RectListBuilder builder(aResult.mRectList); CollectClientRectsAndText(&builder, &aResult.mTextList, this, mStart.Container(), mStart.Offset(), mEnd.Container(), mEnd.Offset(), true, true); } nsresult nsRange::GetUsedFontFaces(nsLayoutUtils::UsedFontFaceList& aResult, uint32_t aMaxRanges, bool aSkipCollapsedWhitespace) { NS_ENSURE_TRUE(mStart.Container(), NS_ERROR_UNEXPECTED); nsCOMPtr startContainer = mStart.Container(); nsCOMPtr endContainer = mEnd.Container(); // Flush out layout so our frames are up to date. nsIDocument* doc = mStart.Container()->OwnerDoc(); NS_ENSURE_TRUE(doc, NS_ERROR_UNEXPECTED); doc->FlushPendingNotifications(FlushType::Frames); // Recheck whether we're still in the document NS_ENSURE_TRUE(mStart.Container()->IsInComposedDoc(), NS_ERROR_UNEXPECTED); // A table to map gfxFontEntry objects to InspectorFontFace objects. // This table does NOT own the InspectorFontFace objects, it only holds // raw pointers to them. They are owned by the aResult array. nsLayoutUtils::UsedFontFaceTable fontFaces; RangeSubtreeIterator iter; nsresult rv = iter.Init(this); NS_ENSURE_SUCCESS(rv, rv); while (!iter.IsDone()) { // only collect anything if the range is not collapsed nsCOMPtr node = iter.GetCurrentNode(); iter.Next(); nsCOMPtr content = do_QueryInterface(node); if (!content) { continue; } nsIFrame* frame = content->GetPrimaryFrame(); if (!frame) { continue; } if (content->IsText()) { if (node == startContainer) { int32_t offset = startContainer == endContainer ? mEnd.Offset() : content->GetText()->GetLength(); nsLayoutUtils::GetFontFacesForText(frame, mStart.Offset(), offset, true, aResult, fontFaces, aMaxRanges, aSkipCollapsedWhitespace); continue; } if (node == endContainer) { nsLayoutUtils::GetFontFacesForText(frame, 0, mEnd.Offset(), true, aResult, fontFaces, aMaxRanges, aSkipCollapsedWhitespace); continue; } } nsLayoutUtils::GetFontFacesForFrames(frame, aResult, fontFaces, aMaxRanges, aSkipCollapsedWhitespace); } return NS_OK; } nsINode* nsRange::GetRegisteredCommonAncestor() { MOZ_ASSERT(IsInSelection(), "GetRegisteredCommonAncestor only valid for range in selection"); MOZ_ASSERT(mRegisteredCommonAncestor); return mRegisteredCommonAncestor; } /* static */ bool nsRange::AutoInvalidateSelection::sIsNested; nsRange::AutoInvalidateSelection::~AutoInvalidateSelection() { if (!mCommonAncestor) { return; } sIsNested = false; ::InvalidateAllFrames(mCommonAncestor); // Our range might not be in a selection anymore, because one of our selection // listeners might have gone ahead and run script of various sorts that messed // with selections, ranges, etc. But if it still is, we should check whether // we have a different common ancestor now, and if so invalidate its subtree // so it paints the selection it's in now. if (mRange->IsInSelection()) { nsINode* commonAncestor = mRange->GetRegisteredCommonAncestor(); // XXXbz can commonAncestor really be null here? I wouldn't think so! If // it _were_, then in a debug build GetRegisteredCommonAncestor() would have // fatally asserted. if (commonAncestor && commonAncestor != mCommonAncestor) { ::InvalidateAllFrames(commonAncestor); } } } /* static */ already_AddRefed nsRange::Constructor(const GlobalObject& aGlobal, ErrorResult& aRv) { nsCOMPtr window = do_QueryInterface(aGlobal.GetAsSupports()); if (!window || !window->GetDoc()) { aRv.Throw(NS_ERROR_FAILURE); return nullptr; } return window->GetDoc()->CreateRange(aRv); } static bool ExcludeIfNextToNonSelectable(nsIContent* aContent) { return aContent->IsText() && aContent->HasFlag(NS_CREATE_FRAME_IF_NON_WHITESPACE); } void nsRange::ExcludeNonSelectableNodes(nsTArray>* aOutRanges) { MOZ_ASSERT(mIsPositioned); MOZ_ASSERT(mEnd.Container()); MOZ_ASSERT(mStart.Container()); nsRange* range = this; RefPtr newRange; while (range) { nsCOMPtr iter = NS_NewPreContentIterator(); nsresult rv = iter->Init(range); if (NS_FAILED(rv)) { return; } bool added = false; bool seenSelectable = false; // |firstNonSelectableContent| is the first node in a consecutive sequence // of non-IsSelectable nodes. When we find a selectable node after such // a sequence we'll end the last nsRange, create a new one and restart // the outer loop. nsIContent* firstNonSelectableContent = nullptr; while (true) { ErrorResult err; nsINode* node = iter->GetCurrentNode(); iter->Next(); bool selectable = true; nsIContent* content = node && node->IsContent() ? node->AsContent() : nullptr; if (content) { if (firstNonSelectableContent && ExcludeIfNextToNonSelectable(content)) { // Ignorable whitespace next to a sequence of non-selectable nodes // counts as non-selectable (bug 1216001). selectable = false; } if (selectable) { nsIFrame* frame = content->GetPrimaryFrame(); for (nsIContent* p = content; !frame && (p = p->GetParent()); ) { frame = p->GetPrimaryFrame(); } if (frame) { selectable = frame->IsSelectable(nullptr); } } } if (!selectable) { if (!firstNonSelectableContent) { firstNonSelectableContent = content; } if (iter->IsDone() && seenSelectable) { // The tail end of the initial range is non-selectable - truncate the // current range before the first non-selectable node. range->SetEndBefore(*firstNonSelectableContent, err); } } else if (firstNonSelectableContent) { if (range == this && !seenSelectable) { // This is the initial range and all its nodes until now are // non-selectable so just trim them from the start. range->SetStartBefore(*node, err); if (err.Failed()) { return; } break; // restart the same range with a new iterator } else { // Save the end point before truncating the range. nsINode* endContainer = range->mEnd.Container(); int32_t endOffset = range->mEnd.Offset(); // Truncate the current range before the first non-selectable node. range->SetEndBefore(*firstNonSelectableContent, err); // Store it in the result (strong ref) - do this before creating // a new range in |newRange| below so we don't drop the last ref // to the range created in the previous iteration. if (!added && !err.Failed()) { aOutRanges->AppendElement(range); } // Create a new range for the remainder. nsINode* startContainer = node; int32_t startOffset = 0; // Don't start *inside* a node with independent selection though // (e.g. ). if (content && content->HasIndependentSelection()) { nsINode* parent = startContainer->GetParent(); if (parent) { startOffset = parent->ComputeIndexOf(startContainer); startContainer = parent; } } rv = CreateRange(startContainer, startOffset, endContainer, endOffset, getter_AddRefs(newRange)); if (NS_FAILED(rv) || newRange->Collapsed()) { newRange = nullptr; } range = newRange; break; // create a new iterator for the new range, if any } } else { seenSelectable = true; if (!added) { added = true; aOutRanges->AppendElement(range); } } if (iter->IsDone()) { return; } } } } struct InnerTextAccumulator { explicit InnerTextAccumulator(mozilla::dom::DOMString& aValue) : mString(aValue.AsAString()), mRequiredLineBreakCount(0) {} void FlushLineBreaks() { while (mRequiredLineBreakCount > 0) { // Required line breaks at the start of the text are suppressed. if (!mString.IsEmpty()) { mString.Append('\n'); } --mRequiredLineBreakCount; } } void Append(char aCh) { Append(nsAutoString(aCh)); } void Append(const nsAString& aString) { if (aString.IsEmpty()) { return; } FlushLineBreaks(); mString.Append(aString); } void AddRequiredLineBreakCount(int8_t aCount) { mRequiredLineBreakCount = std::max(mRequiredLineBreakCount, aCount); } nsAString& mString; int8_t mRequiredLineBreakCount; }; static bool IsVisibleAndNotInReplacedElement(nsIFrame* aFrame) { if (!aFrame || !aFrame->StyleVisibility()->IsVisible()) { return false; } for (nsIFrame* f = aFrame->GetParent(); f; f = f->GetParent()) { if (f->IsFrameOfType(nsIFrame::eReplaced) && !f->GetContent()->IsHTMLElement(nsGkAtoms::button) && !f->GetContent()->IsHTMLElement(nsGkAtoms::select)) { return false; } } return true; } static void AppendTransformedText(InnerTextAccumulator& aResult, nsIContent* aContainer) { auto textNode = static_cast(aContainer); nsIFrame* frame = textNode->GetPrimaryFrame(); if (!IsVisibleAndNotInReplacedElement(frame)) { return; } nsIFrame::RenderedText text = frame->GetRenderedText(0, aContainer->GetChildCount()); aResult.Append(text.mString); } /** * States for tree traversal. AT_NODE means that we are about to enter * the current DOM node. AFTER_NODE means that we have just finished traversing * the children of the current DOM node and are about to apply any * "after processing the node's children" steps before we finish visiting * the node. */ enum TreeTraversalState { AT_NODE, AFTER_NODE }; static int8_t GetRequiredInnerTextLineBreakCount(nsIFrame* aFrame) { if (aFrame->GetContent()->IsHTMLElement(nsGkAtoms::p)) { return 2; } const nsStyleDisplay* styleDisplay = aFrame->StyleDisplay(); if (styleDisplay->IsBlockOutside(aFrame) || styleDisplay->mDisplay == StyleDisplay::TableCaption) { return 1; } return 0; } static bool IsLastCellOfRow(nsIFrame* aFrame) { LayoutFrameType type = aFrame->Type(); if (type != LayoutFrameType::TableCell && type != LayoutFrameType::BCTableCell) { return true; } for (nsIFrame* c = aFrame; c; c = c->GetNextContinuation()) { if (c->GetNextSibling()) { return false; } } return true; } static bool IsLastRowOfRowGroup(nsIFrame* aFrame) { if (!aFrame->IsTableRowFrame()) { return true; } for (nsIFrame* c = aFrame; c; c = c->GetNextContinuation()) { if (c->GetNextSibling()) { return false; } } return true; } static bool IsLastNonemptyRowGroupOfTable(nsIFrame* aFrame) { if (!aFrame->IsTableRowGroupFrame()) { return true; } for (nsIFrame* c = aFrame; c; c = c->GetNextContinuation()) { for (nsIFrame* next = c->GetNextSibling(); next; next = next->GetNextSibling()) { if (next->PrincipalChildList().FirstChild()) { return false; } } } return true; } void nsRange::GetInnerTextNoFlush(DOMString& aValue, ErrorResult& aError, nsIContent* aContainer) { InnerTextAccumulator result(aValue); if (aContainer->IsText()) { AppendTransformedText(result, aContainer); return; } nsIContent* currentNode = aContainer; TreeTraversalState currentState = AFTER_NODE; nsIContent* endNode = aContainer; TreeTraversalState endState = AFTER_NODE; nsIContent* firstChild = aContainer->GetFirstChild(); if (firstChild) { currentNode = firstChild; currentState = AT_NODE; } while (currentNode != endNode || currentState != endState) { nsIFrame* f = currentNode->GetPrimaryFrame(); bool isVisibleAndNotReplaced = IsVisibleAndNotInReplacedElement(f); if (currentState == AT_NODE) { bool isText = currentNode->IsText(); if (isVisibleAndNotReplaced) { result.AddRequiredLineBreakCount(GetRequiredInnerTextLineBreakCount(f)); if (isText) { nsIFrame::RenderedText text = f->GetRenderedText(); result.Append(text.mString); } } nsIContent* child = currentNode->GetFirstChild(); if (child) { currentNode = child; continue; } currentState = AFTER_NODE; } if (currentNode == endNode && currentState == endState) { break; } if (isVisibleAndNotReplaced) { if (currentNode->IsHTMLElement(nsGkAtoms::br)) { result.Append('\n'); } switch (f->StyleDisplay()->mDisplay) { case StyleDisplay::TableCell: if (!IsLastCellOfRow(f)) { result.Append('\t'); } break; case StyleDisplay::TableRow: if (!IsLastRowOfRowGroup(f) || !IsLastNonemptyRowGroupOfTable(f->GetParent())) { result.Append('\n'); } break; default: break; // Do nothing } result.AddRequiredLineBreakCount(GetRequiredInnerTextLineBreakCount(f)); } nsIContent* next = currentNode->GetNextSibling(); if (next) { currentNode = next; currentState = AT_NODE; } else { currentNode = currentNode->GetParent(); } } // Do not flush trailing line breaks! Required breaks at the end of the text // are suppressed. }