/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=2 et sw=2 tw=80: */ /* This Source Code is subject to the terms of the Mozilla Public License * version 2.0 (the "License"). You can obtain a copy of the License at * http://mozilla.org/MPL/2.0/. */ /* rendering object for CSS "display: flex" */ #include "nsFlexContainerFrame.h" #include "nsContentUtils.h" #include "nsCSSAnonBoxes.h" #include "nsDisplayList.h" #include "nsIFrameInlines.h" #include "nsLayoutUtils.h" #include "nsPlaceholderFrame.h" #include "nsPresContext.h" #include "nsStyleContext.h" #include "prlog.h" #include using namespace mozilla::css; using namespace mozilla::layout; #ifdef PR_LOGGING static PRLogModuleInfo* GetFlexContainerLog() { static PRLogModuleInfo *sLog; if (!sLog) sLog = PR_NewLogModule("nsFlexContainerFrame"); return sLog; } #endif /* PR_LOGGING */ // XXXdholbert Some of this helper-stuff should be separated out into a general // "LogicalAxisUtils.h" helper. Should that be a class, or a namespace (under // what super-namespace?), or what? // Helper enums // ============ // Represents a physical orientation for an axis. // The directional suffix indicates the direction in which the axis *grows*. // So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT // means a vertical bottom-to-top axis. // NOTE: The order here is important -- these values are used as indices into // the static array 'kAxisOrientationToSidesMap', defined below. enum AxisOrientationType { eAxis_LR, eAxis_RL, eAxis_TB, eAxis_BT, eNumAxisOrientationTypes // For sizing arrays that use these values as indices }; // Represents one or the other extreme of an axis (e.g. for the main axis, the // main-start vs. main-end edge. // NOTE: The order here is important -- these values are used as indices into // the sub-arrays in 'kAxisOrientationToSidesMap', defined below. enum AxisEdgeType { eAxisEdge_Start, eAxisEdge_End, eNumAxisEdges // For sizing arrays that use these values as indices }; // This array maps each axis orientation to a pair of corresponding // [start, end] physical mozilla::css::Side values. static const Side kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = { { eSideLeft, eSideRight }, // eAxis_LR { eSideRight, eSideLeft }, // eAxis_RL { eSideTop, eSideBottom }, // eAxis_TB { eSideBottom, eSideTop } // eAxis_BT }; // Helper structs / classes / methods // ================================== // Indicates whether advancing along the given axis is equivalent to // increasing our X or Y position (as opposed to decreasing it). static inline bool AxisGrowsInPositiveDirection(AxisOrientationType aAxis) { return eAxis_LR == aAxis || eAxis_TB == aAxis; } // Indicates whether the given axis is horizontal. static inline bool IsAxisHorizontal(AxisOrientationType aAxis) { return eAxis_LR == aAxis || eAxis_RL == aAxis; } // Given an AxisOrientationType, returns the "reverse" AxisOrientationType // (in the same dimension, but the opposite direction) static inline AxisOrientationType GetReverseAxis(AxisOrientationType aAxis) { AxisOrientationType reversedAxis; if (aAxis % 2 == 0) { // even enum value. Add 1 to reverse. reversedAxis = AxisOrientationType(aAxis + 1); } else { // odd enum value. Subtract 1 to reverse. reversedAxis = AxisOrientationType(aAxis - 1); } // Check that we're still in the enum's valid range MOZ_ASSERT(reversedAxis >= eAxis_LR && reversedAxis <= eAxis_BT); return reversedAxis; } // Returns aFrame's computed value for 'height' or 'width' -- whichever is in // the same dimension as aAxis. static inline const nsStyleCoord& GetSizePropertyForAxis(const nsIFrame* aFrame, AxisOrientationType aAxis) { const nsStylePosition* stylePos = aFrame->StylePosition(); return IsAxisHorizontal(aAxis) ? stylePos->mWidth : stylePos->mHeight; } /** * Converts a logical position in a given axis into a position in the * corresponding physical (x or y) axis. If the logical axis already maps * directly onto one of our physical axes (i.e. LTR or TTB), then the logical * and physical positions are equal; otherwise, we subtract the logical * position from the container-size in that axis, to flip the polarity. * (so e.g. a logical position of 2px in a RTL 20px-wide container * would correspond to a physical position of 18px.) */ static nscoord PhysicalPosFromLogicalPos(nscoord aLogicalPosn, nscoord aLogicalContainerSize, AxisOrientationType aAxis) { if (AxisGrowsInPositiveDirection(aAxis)) { return aLogicalPosn; } return aLogicalContainerSize - aLogicalPosn; } static nscoord MarginComponentForSide(const nsMargin& aMargin, Side aSide) { switch (aSide) { case eSideLeft: return aMargin.left; case eSideRight: return aMargin.right; case eSideTop: return aMargin.top; case eSideBottom: return aMargin.bottom; } NS_NOTREACHED("unexpected Side enum"); return aMargin.left; // have to return something // (but something's busted if we got here) } static nscoord& MarginComponentForSide(nsMargin& aMargin, Side aSide) { switch (aSide) { case eSideLeft: return aMargin.left; case eSideRight: return aMargin.right; case eSideTop: return aMargin.top; case eSideBottom: return aMargin.bottom; } NS_NOTREACHED("unexpected Side enum"); return aMargin.left; // have to return something // (but something's busted if we got here) } // Helper-macro to let us pick one of two expressions to evaluate // (a width expression vs. a height expression), to get a main-axis or // cross-axis component. // For code that has e.g. a nsSize object, FlexboxAxisTracker::GetMainComponent // and GetCrossComponent are cleaner; but in cases where we simply have // two separate expressions for width and height (which may be expensive to // evaluate), these macros will ensure that only the expression for the correct // axis gets evaluated. #define GET_MAIN_COMPONENT(axisTracker_, width_, height_) \ IsAxisHorizontal((axisTracker_).GetMainAxis()) ? (width_) : (height_) #define GET_CROSS_COMPONENT(axisTracker_, width_, height_) \ IsAxisHorizontal((axisTracker_).GetCrossAxis()) ? (width_) : (height_) // Encapsulates our flex container's main & cross axes. class MOZ_STACK_CLASS FlexboxAxisTracker { public: FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame); // Accessors: AxisOrientationType GetMainAxis() const { return mMainAxis; } AxisOrientationType GetCrossAxis() const { return mCrossAxis; } nscoord GetMainComponent(const nsSize& aSize) const { return GET_MAIN_COMPONENT(*this, aSize.width, aSize.height); } int32_t GetMainComponent(const nsIntSize& aIntSize) const { return GET_MAIN_COMPONENT(*this, aIntSize.width, aIntSize.height); } nscoord GetCrossComponent(const nsSize& aSize) const { return GET_CROSS_COMPONENT(*this, aSize.width, aSize.height); } int32_t GetCrossComponent(const nsIntSize& aIntSize) const { return GET_CROSS_COMPONENT(*this, aIntSize.width, aIntSize.height); } nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const { return IsAxisHorizontal(mMainAxis) ? aMargin.LeftRight() : aMargin.TopBottom(); } nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const { return IsAxisHorizontal(mCrossAxis) ? aMargin.LeftRight() : aMargin.TopBottom(); } /** * Converts a logical point into a "physical" x,y point. * * In the simplest case where the main-axis is left-to-right and the * cross-axis is top-to-bottom, this just returns * nsPoint(aMainPosn, aCrossPosn). * * @arg aMainPosn The main-axis position -- i.e an offset from the * main-start edge of the container's content box. * @arg aCrossPosn The cross-axis position -- i.e an offset from the * cross-start edge of the container's content box. * @return A nsPoint representing the same position (in coordinates * relative to the container's content box). */ nsPoint PhysicalPointFromLogicalPoint(nscoord aMainPosn, nscoord aCrossPosn, nscoord aContainerMainSize, nscoord aContainerCrossSize) const { nscoord physicalPosnInMainAxis = PhysicalPosFromLogicalPos(aMainPosn, aContainerMainSize, mMainAxis); nscoord physicalPosnInCrossAxis = PhysicalPosFromLogicalPos(aCrossPosn, aContainerCrossSize, mCrossAxis); return IsAxisHorizontal(mMainAxis) ? nsPoint(physicalPosnInMainAxis, physicalPosnInCrossAxis) : nsPoint(physicalPosnInCrossAxis, physicalPosnInMainAxis); } nsSize PhysicalSizeFromLogicalSizes(nscoord aMainSize, nscoord aCrossSize) const { return IsAxisHorizontal(mMainAxis) ? nsSize(aMainSize, aCrossSize) : nsSize(aCrossSize, aMainSize); } private: AxisOrientationType mMainAxis; AxisOrientationType mCrossAxis; }; // Represents a flex item. // Includes the various pieces of input that the Flexbox Layout Algorithm uses // to resolve a flexible width. class FlexItem { public: FlexItem(nsIFrame* aChildFrame, float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize, nscoord aMainMinSize, nscoord aMainMaxSize, nscoord aCrossMinSize, nscoord aCrossMaxSize, nsMargin aMargin, nsMargin aBorderPadding, const FlexboxAxisTracker& aAxisTracker); // Accessors nsIFrame* Frame() const { return mFrame; } nscoord GetFlexBaseSize() const { return mFlexBaseSize; } nscoord GetMainMinSize() const { return mMainMinSize; } nscoord GetMainMaxSize() const { return mMainMaxSize; } // Note: These return the main-axis position and size of our *content box*. nscoord GetMainSize() const { return mMainSize; } nscoord GetMainPosition() const { return mMainPosn; } nscoord GetCrossMinSize() const { return mCrossMinSize; } nscoord GetCrossMaxSize() const { return mCrossMaxSize; } // Note: These return the cross-axis position and size of our *content box*. nscoord GetCrossSize() const { return mCrossSize; } nscoord GetCrossPosition() const { return mCrossPosn; } // Returns the distance between this FlexItem's baseline and the cross-start // edge of its margin-box. Used in baseline alignment. // (This function needs to be told what the cross axis is so that it can // look up the appropriate component from mMargin.) nscoord GetBaselineOffsetFromOuterCrossStart( AxisOrientationType aCrossAxis) const; float GetShareOfFlexWeightSoFar() const { return mShareOfFlexWeightSoFar; } bool IsFrozen() const { return mIsFrozen; } bool HadMinViolation() const { return mHadMinViolation; } bool HadMaxViolation() const { return mHadMaxViolation; } // Indicates whether this item received a preliminary "measuring" reflow // before its actual reflow. bool HadMeasuringReflow() const { return mHadMeasuringReflow; } // Indicates whether this item's cross-size has been stretched (from having // "align-self: stretch" with an auto cross-size and no auto margins in the // cross axis). bool IsStretched() const { return mIsStretched; } uint8_t GetAlignSelf() const { return mAlignSelf; } // Returns the flex weight that we should use in the "resolving flexible // lengths" algorithm. If we're using flex grow, we just return that; // otherwise, we use the "scaled flex shrink weight" (scaled by our flex // base size, so that when both large and small items are shrinking, // the large items shrink more). float GetFlexWeightToUse(bool aIsUsingFlexGrow) { if (IsFrozen()) { return 0.0f; } if (aIsUsingFlexGrow) { return mFlexGrow; } // We're using flex-shrink --> return mFlexShrink * mFlexBaseSize if (mFlexBaseSize == 0) { // Special-case for mFlexBaseSize == 0 -- we have no room to shrink, so // regardless of mFlexShrink, we should just return 0. // (This is really a special-case for when mFlexShrink is infinity, to // avoid performing mFlexShrink * mFlexBaseSize = inf * 0 = undefined.) return 0.0f; } return mFlexShrink * mFlexBaseSize; } // Getters for margin: // =================== const nsMargin& GetMargin() const { return mMargin; } // Returns the margin component for a given mozilla::css::Side nscoord GetMarginComponentForSide(Side aSide) const { return MarginComponentForSide(mMargin, aSide); } // Returns the total space occupied by this item's margins in the given axis nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const { Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; return GetMarginComponentForSide(startSide) + GetMarginComponentForSide(endSide); } // Getters for border/padding // ========================== const nsMargin& GetBorderPadding() const { return mBorderPadding; } // Returns the border+padding component for a given mozilla::css::Side nscoord GetBorderPaddingComponentForSide(Side aSide) const { return MarginComponentForSide(mBorderPadding, aSide); } // Returns the total space occupied by this item's borders and padding in // the given axis nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const { Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start]; Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End]; return GetBorderPaddingComponentForSide(startSide) + GetBorderPaddingComponentForSide(endSide); } // Getter for combined margin/border/padding // ========================================= // Returns the total space occupied by this item's margins, borders and // padding in the given axis nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const { return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis); } // Setters // ======= // This sets our flex base size, and then updates the main size to the // base size clamped to our main-axis [min,max] constraints. void SetFlexBaseSizeAndMainSize(nscoord aNewFlexBaseSize) { MOZ_ASSERT(!mIsFrozen || mFlexBaseSize == NS_INTRINSICSIZE, "flex base size shouldn't change after we're frozen " "(unless we're just resolving an intrinsic size)"); mFlexBaseSize = aNewFlexBaseSize; // Before we've resolved flexible lengths, we keep mMainSize set to // the 'hypothetical main size', which is the flex base size, clamped // to the [min,max] range: mMainSize = NS_CSS_MINMAX(mFlexBaseSize, mMainMinSize, mMainMaxSize); } // Setters used while we're resolving flexible lengths // --------------------------------------------------- // Sets the main-size of our flex item's content-box. void SetMainSize(nscoord aNewMainSize) { MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen"); mMainSize = aNewMainSize; } void SetShareOfFlexWeightSoFar(float aNewShare) { MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f, "shouldn't be giving this item any share of the weight " "after it's frozen"); mShareOfFlexWeightSoFar = aNewShare; } void Freeze() { mIsFrozen = true; } void SetHadMinViolation() { MOZ_ASSERT(!mIsFrozen, "shouldn't be changing main size & having violations " "after we're frozen"); mHadMinViolation = true; } void SetHadMaxViolation() { MOZ_ASSERT(!mIsFrozen, "shouldn't be changing main size & having violations " "after we're frozen"); mHadMaxViolation = true; } void ClearViolationFlags() { mHadMinViolation = mHadMaxViolation = false; } // Setters for values that are determined after we've resolved our main size // ------------------------------------------------------------------------- // Sets the main-axis position of our flex item's content-box. // (This is the distance between the main-start edge of the flex container // and the main-start edge of the flex item's content-box.) void SetMainPosition(nscoord aPosn) { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mMainPosn = aPosn; } // Sets the cross-size of our flex item's content-box. void SetCrossSize(nscoord aCrossSize) { MOZ_ASSERT(!mIsStretched, "Cross size shouldn't be modified after it's been stretched"); mCrossSize = aCrossSize; } // Sets the cross-axis position of our flex item's content-box. // (This is the distance between the cross-start edge of the flex container // and the cross-start edge of the flex item.) void SetCrossPosition(nscoord aPosn) { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mCrossPosn = aPosn; } void SetAscent(nscoord aAscent) { mAscent = aAscent; } void SetHadMeasuringReflow() { mHadMeasuringReflow = true; } void SetIsStretched() { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); mIsStretched = true; } // Setter for margin components (for resolving "auto" margins) void SetMarginComponentForSide(Side aSide, nscoord aLength) { MOZ_ASSERT(mIsFrozen, "main size should be resolved before this"); MarginComponentForSide(mMargin, aSide) = aLength; } void ResolveStretchedCrossSize(nscoord aLineCrossSize, const FlexboxAxisTracker& aAxisTracker); uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const; protected: // Our frame: nsIFrame* const mFrame; // Values that we already know in constructor: (and are hence mostly 'const') const float mFlexGrow; const float mFlexShrink; const nsMargin mBorderPadding; nsMargin mMargin; // non-const because we need to resolve auto margins nscoord mFlexBaseSize; const nscoord mMainMinSize; const nscoord mMainMaxSize; const nscoord mCrossMinSize; const nscoord mCrossMaxSize; // Values that we compute after constructor: nscoord mMainSize; nscoord mMainPosn; nscoord mCrossSize; nscoord mCrossPosn; nscoord mAscent; // Temporary state, while we're resolving flexible widths (for our main size) // XXXdholbert To save space, we could use a union to make these variables // overlay the same memory as some other member vars that aren't touched // until after main-size has been resolved. In particular, these could share // memory with mMainPosn through mAscent, and mIsStretched. float mShareOfFlexWeightSoFar; bool mIsFrozen; bool mHadMinViolation; bool mHadMaxViolation; // Misc: bool mHadMeasuringReflow; // Did this item get a preliminary reflow, // to measure its desired height? bool mIsStretched; // See IsStretched() documentation uint8_t mAlignSelf; // My "align-self" computed value (with "auto" // swapped out for parent"s "align-items" value, // in our constructor). }; // Represents a single flex line in a flex container. // Manages an array of the FlexItems that are in the line. class FlexLine { public: FlexLine() : mTotalInnerHypotheticalMainSize(0), mTotalOuterHypotheticalMainSize(0), mLineCrossSize(0), mBaselineOffsetFromCrossStart(nscoord_MIN) {} // Returns the sum of our FlexItems' outer hypothetical main sizes. // ("outer" = margin-box, and "hypothetical" = before flexing) nscoord GetTotalOuterHypotheticalMainSize() const { return mTotalOuterHypotheticalMainSize; } // Adds a new FlexItem's hypothetical main sizes to our totals. // (Should only be called when a FlexItem is being appended to this line.) void AddToMainSizeTotals(nscoord aItemInnerHypotheticalMainSize, nscoord aItemOuterHypotheticalMainSize) { mTotalInnerHypotheticalMainSize += aItemInnerHypotheticalMainSize; mTotalOuterHypotheticalMainSize += aItemOuterHypotheticalMainSize; } // Computes the cross-size and baseline position of this FlexLine, based on // its FlexItems. void ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker); // Returns the cross-size of this line. nscoord GetLineCrossSize() const { return mLineCrossSize; } // Setter for line cross-size -- needed for cases where the flex container // imposes a cross-size on the line. (e.g. for single-line flexbox, or for // multi-line flexbox with 'align-content: stretch') void SetLineCrossSize(nscoord aLineCrossSize) { mLineCrossSize = aLineCrossSize; } // Returns the distance from the cross-start edge of this FlexLine // to its baseline (derived from its baseline-aligned FlexItems). // If there are no baseline-aligned FlexItems, returns nscoord_MIN. nscoord GetBaselineOffsetFromCrossStart() const { return mBaselineOffsetFromCrossStart; } // Runs the "resolve the flexible lengths" algorithm, distributing // |aFlexContainerMainSize| among the |aItems| and freezing them. void ResolveFlexibleLengths(nscoord aFlexContainerMainSize); void PositionItemsInMainAxis(uint8_t aJustifyContent, nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker); void PositionItemsInCrossAxis(nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker); nsTArray mItems; // Array of the flex items in this flex line. private: nscoord mTotalInnerHypotheticalMainSize; nscoord mTotalOuterHypotheticalMainSize; nscoord mLineCrossSize; nscoord mBaselineOffsetFromCrossStart; }; // Helper-function to find the first non-anonymous-box descendent of aFrame. static nsIFrame* GetFirstNonAnonBoxDescendant(nsIFrame* aFrame) { while (aFrame) { nsIAtom* pseudoTag = aFrame->StyleContext()->GetPseudo(); // If aFrame isn't an anonymous container, then it'll do. if (!pseudoTag || // No pseudotag. !nsCSSAnonBoxes::IsAnonBox(pseudoTag) || // Pseudotag isn't anon. pseudoTag == nsCSSAnonBoxes::mozNonElement) { // Text, not a container. break; } // Otherwise, descend to its first child and repeat. // SPECIAL CASE: if we're dealing with an anonymous table, then it might // be wrapping something non-anonymous in its caption or col-group lists // (instead of its principal child list), so we have to look there. // (Note: For anonymous tables that have a non-anon cell *and* a non-anon // column, we'll always return the column. This is fine; we're really just // looking for a handle to *anything* with a meaningful content node inside // the table, for use in DOM comparisons to things outside of the table.) if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableOuterFrame)) { nsIFrame* captionDescendant = GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kCaptionList)); if (captionDescendant) { return captionDescendant; } } else if (MOZ_UNLIKELY(aFrame->GetType() == nsGkAtoms::tableFrame)) { nsIFrame* colgroupDescendant = GetFirstNonAnonBoxDescendant(aFrame->GetFirstChild(kColGroupList)); if (colgroupDescendant) { return colgroupDescendant; } } // USUAL CASE: Descend to the first child in principal list. aFrame = aFrame->GetFirstPrincipalChild(); } return aFrame; } /** * Sorting helper-function that compares two frames' "order" property-values, * and if they're equal, compares the DOM positions of their corresponding * content nodes. Returns true if aFrame1 is "less than or equal to" aFrame2 * according to this comparison. * * Note: This can't be a static function, because we need to pass it as a * template argument. (Only functions with external linkage can be passed as * template arguments.) * * @return true if the computed "order" property of aFrame1 is less than that * of aFrame2, or if the computed "order" values are equal and aFrame1's * corresponding DOM node is earlier than aFrame2's in the DOM tree. * Otherwise, returns false. */ bool IsOrderLEQWithDOMFallback(nsIFrame* aFrame1, nsIFrame* aFrame2) { MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), "this method only intended for comparing flex items"); if (aFrame1 == aFrame2) { // Anything is trivially LEQ itself, so we return "true" here... but it's // probably bad if we end up actually needing this, so let's assert. NS_ERROR("Why are we checking if a frame is LEQ itself?"); return true; } // If we've got a placeholder frame, use its out-of-flow frame's 'order' val. { nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1); nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2); int32_t order1 = aRealFrame1->StylePosition()->mOrder; int32_t order2 = aRealFrame2->StylePosition()->mOrder; if (order1 != order2) { return order1 < order2; } } // The "order" values are equal, so we need to fall back on DOM comparison. // For that, we need to dig through any anonymous box wrapper frames to find // the actual frame that corresponds to our child content. aFrame1 = GetFirstNonAnonBoxDescendant(aFrame1); aFrame2 = GetFirstNonAnonBoxDescendant(aFrame2); MOZ_ASSERT(aFrame1 && aFrame2, "why do we have an anonymous box without any " "non-anonymous descendants?"); // Special case: // If either frame is for generated content from ::before or ::after, then // we can't use nsContentUtils::PositionIsBefore(), since that method won't // recognize generated content as being an actual sibling of other nodes. // We know where ::before and ::after nodes *effectively* insert in the DOM // tree, though (at the beginning & end), so we can just special-case them. nsIAtom* pseudo1 = aFrame1->StyleContext()->GetPseudo(); nsIAtom* pseudo2 = aFrame2->StyleContext()->GetPseudo(); if (pseudo1 == nsCSSPseudoElements::before || pseudo2 == nsCSSPseudoElements::after) { // frame1 is ::before and/or frame2 is ::after => frame1 is LEQ frame2. return true; } if (pseudo1 == nsCSSPseudoElements::after || pseudo2 == nsCSSPseudoElements::before) { // frame1 is ::after and/or frame2 is ::before => frame1 is not LEQ frame2. return false; } // Usual case: Compare DOM position. nsIContent* content1 = aFrame1->GetContent(); nsIContent* content2 = aFrame2->GetContent(); MOZ_ASSERT(content1 != content2, "Two different flex items are using the same nsIContent node for " "comparison, so we may be sorting them in an arbitrary order"); return nsContentUtils::PositionIsBefore(content1, content2); } /** * Sorting helper-function that compares two frames' "order" property-values. * Returns true if aFrame1 is "less than or equal to" aFrame2 according to this * comparison. * * Note: This can't be a static function, because we need to pass it as a * template argument. (Only functions with external linkage can be passed as * template arguments.) * * @return true if the computed "order" property of aFrame1 is less than or * equal to that of aFrame2. Otherwise, returns false. */ bool IsOrderLEQ(nsIFrame* aFrame1, nsIFrame* aFrame2) { MOZ_ASSERT(aFrame1->IsFlexItem() && aFrame2->IsFlexItem(), "this method only intended for comparing flex items"); // If we've got a placeholder frame, use its out-of-flow frame's 'order' val. nsIFrame* aRealFrame1 = nsPlaceholderFrame::GetRealFrameFor(aFrame1); nsIFrame* aRealFrame2 = nsPlaceholderFrame::GetRealFrameFor(aFrame2); int32_t order1 = aRealFrame1->StylePosition()->mOrder; int32_t order2 = aRealFrame2->StylePosition()->mOrder; return order1 <= order2; } bool nsFlexContainerFrame::IsHorizontal() { const FlexboxAxisTracker axisTracker(this); return IsAxisHorizontal(axisTracker.GetMainAxis()); } FlexItem nsFlexContainerFrame::GenerateFlexItemForChild( nsPresContext* aPresContext, nsIFrame* aChildFrame, const nsHTMLReflowState& aParentReflowState, const FlexboxAxisTracker& aAxisTracker) { // Create temporary reflow state just for sizing -- to get hypothetical // main-size and the computed values of min / max main-size property. // (This reflow state will _not_ be used for reflow.) nsHTMLReflowState childRS(aPresContext, aParentReflowState, aChildFrame, nsSize(aParentReflowState.ComputedWidth(), aParentReflowState.ComputedHeight())); // FLEX GROW & SHRINK WEIGHTS // -------------------------- const nsStylePosition* stylePos = aChildFrame->StylePosition(); float flexGrow = stylePos->mFlexGrow; float flexShrink = stylePos->mFlexShrink; // MAIN SIZES (flex base size, min/max size) // ----------------------------------------- nscoord flexBaseSize = GET_MAIN_COMPONENT(aAxisTracker, childRS.ComputedWidth(), childRS.ComputedHeight()); nscoord mainMinSize = GET_MAIN_COMPONENT(aAxisTracker, childRS.ComputedMinWidth(), childRS.ComputedMinHeight()); nscoord mainMaxSize = GET_MAIN_COMPONENT(aAxisTracker, childRS.ComputedMaxWidth(), childRS.ComputedMaxHeight()); // This is enforced by the nsHTMLReflowState where these values come from: MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size"); // CROSS MIN/MAX SIZE // ------------------ nscoord crossMinSize = GET_CROSS_COMPONENT(aAxisTracker, childRS.ComputedMinWidth(), childRS.ComputedMinHeight()); nscoord crossMaxSize = GET_CROSS_COMPONENT(aAxisTracker, childRS.ComputedMaxWidth(), childRS.ComputedMaxHeight()); // SPECIAL-CASE FOR WIDGET-IMPOSED SIZES // Check if we're a themed widget, in which case we might have a minimum // main & cross size imposed by our widget (which we can't go below), or // (more severe) our widget might have only a single valid size. bool isFixedSizeWidget = false; const nsStyleDisplay* disp = aChildFrame->StyleDisplay(); if (aChildFrame->IsThemed(disp)) { nsIntSize widgetMinSize(0, 0); bool canOverride = true; aPresContext->GetTheme()-> GetMinimumWidgetSize(childRS.rendContext, aChildFrame, disp->mAppearance, &widgetMinSize, &canOverride); nscoord widgetMainMinSize = aPresContext->DevPixelsToAppUnits( aAxisTracker.GetMainComponent(widgetMinSize)); nscoord widgetCrossMinSize = aPresContext->DevPixelsToAppUnits( aAxisTracker.GetCrossComponent(widgetMinSize)); // GMWS() returns border-box. We need content-box, so subtract // borderPadding (but don't let that push our min sizes below 0). nsMargin& bp = childRS.ComputedPhysicalBorderPadding(); widgetMainMinSize = std::max(widgetMainMinSize - aAxisTracker.GetMarginSizeInMainAxis(bp), 0); widgetCrossMinSize = std::max(widgetCrossMinSize - aAxisTracker.GetMarginSizeInCrossAxis(bp), 0); if (!canOverride) { // Fixed-size widget: freeze our main-size at the widget's mandated size. // (Set min and max main-sizes to that size, too, to keep us from // clamping to any other size later on.) flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize; crossMinSize = crossMaxSize = widgetCrossMinSize; isFixedSizeWidget = true; } else { // Variable-size widget: ensure our min/max sizes are at least as large // as the widget's mandated minimum size, so we don't flex below that. mainMinSize = std::max(mainMinSize, widgetMainMinSize); mainMaxSize = std::max(mainMaxSize, widgetMainMinSize); crossMinSize = std::max(crossMinSize, widgetCrossMinSize); crossMaxSize = std::max(crossMaxSize, widgetCrossMinSize); } } // Construct the flex item! FlexItem item(aChildFrame, flexGrow, flexShrink, flexBaseSize, mainMinSize, mainMaxSize, crossMinSize, crossMaxSize, childRS.ComputedPhysicalMargin(), childRS.ComputedPhysicalBorderPadding(), aAxisTracker); // If we're inflexible, we can just freeze to our hypothetical main-size // up-front. Similarly, if we're a fixed-size widget, we only have one // valid size, so we freeze to keep ourselves from flexing. if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) { item.Freeze(); } return item; } nsresult nsFlexContainerFrame:: ResolveFlexItemMaxContentSizing(nsPresContext* aPresContext, FlexItem& aFlexItem, const nsHTMLReflowState& aParentReflowState, const FlexboxAxisTracker& aAxisTracker) { if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { // Nothing to do -- this function is only for measuring flex items // in a vertical flex container. return NS_OK; } if (NS_AUTOHEIGHT != aFlexItem.GetFlexBaseSize()) { // Nothing to do; this function's only relevant for flex items // with a base size of "auto" (or equivalent). // XXXdholbert If & when we handle "min-height: min-content" for flex items, // we'll want to resolve that in this function, too. return NS_OK; } // If we get here, we're vertical and our main size ended up being // unconstrained. We need to use our "max-content" height, which is what we // get from reflowing into our available width. // Note: This has to come *after* we construct the FlexItem, since we // invoke at least one convenience method (ResolveStretchedCrossSize) which // requires a FlexItem. // Give the item a special reflow with "mIsFlexContainerMeasuringHeight" // set. This tells it to behave as if it had "height: auto", regardless // of what the "height" property is actually set to. nsHTMLReflowState childRSForMeasuringHeight(aPresContext, aParentReflowState, aFlexItem.Frame(), nsSize(aParentReflowState.ComputedWidth(), NS_UNCONSTRAINEDSIZE), -1, -1, nsHTMLReflowState::CALLER_WILL_INIT); childRSForMeasuringHeight.mFlags.mIsFlexContainerMeasuringHeight = true; childRSForMeasuringHeight.Init(aPresContext); aFlexItem.ResolveStretchedCrossSize(aParentReflowState.ComputedWidth(), aAxisTracker); if (aFlexItem.IsStretched()) { childRSForMeasuringHeight.SetComputedWidth(aFlexItem.GetCrossSize()); childRSForMeasuringHeight.mFlags.mHResize = true; } // If this item is flexible (vertically), then we assume that the // computed-height we're reflowing with now could be different // from the one we'll use for this flex item's "actual" reflow later on. // In that case, we need to be sure the flex item treats this as a // vertical resize, even though none of its ancestors are necessarily // being vertically resized. // (Note: We don't have to do this for width, because InitResizeFlags // will always turn on mHResize on when it sees that the computed width // is different from current width, and that's all we need.) if (!aFlexItem.IsFrozen()) { // Are we flexible? childRSForMeasuringHeight.mFlags.mVResize = true; } nsHTMLReflowMetrics childDesiredSize(childRSForMeasuringHeight.GetWritingMode()); nsReflowStatus childReflowStatus; const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; nsresult rv = ReflowChild(aFlexItem.Frame(), aPresContext, childDesiredSize, childRSForMeasuringHeight, 0, 0, flags, childReflowStatus); NS_ENSURE_SUCCESS(rv, rv); MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), "We gave flex item unconstrained available height, so it " "should be complete"); rv = FinishReflowChild(aFlexItem.Frame(), aPresContext, childDesiredSize, &childRSForMeasuringHeight, 0, 0, flags); NS_ENSURE_SUCCESS(rv, rv); // Subtract border/padding in vertical axis, to get _just_ // the effective computed value of the "height" property. nscoord childDesiredHeight = childDesiredSize.Height() - childRSForMeasuringHeight.ComputedPhysicalBorderPadding().TopBottom(); childDesiredHeight = std::max(0, childDesiredHeight); aFlexItem.SetFlexBaseSizeAndMainSize(childDesiredHeight); aFlexItem.SetHadMeasuringReflow(); return NS_OK; } FlexItem::FlexItem(nsIFrame* aChildFrame, float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize, nscoord aMainMinSize, nscoord aMainMaxSize, nscoord aCrossMinSize, nscoord aCrossMaxSize, nsMargin aMargin, nsMargin aBorderPadding, const FlexboxAxisTracker& aAxisTracker) : mFrame(aChildFrame), mFlexGrow(aFlexGrow), mFlexShrink(aFlexShrink), mBorderPadding(aBorderPadding), mMargin(aMargin), mMainMinSize(aMainMinSize), mMainMaxSize(aMainMaxSize), mCrossMinSize(aCrossMinSize), mCrossMaxSize(aCrossMaxSize), mMainPosn(0), mCrossSize(0), mCrossPosn(0), mAscent(0), mShareOfFlexWeightSoFar(0.0f), mIsFrozen(false), mHadMinViolation(false), mHadMaxViolation(false), mHadMeasuringReflow(false), mIsStretched(false), mAlignSelf(aChildFrame->StylePosition()->mAlignSelf) { MOZ_ASSERT(aChildFrame, "expecting a non-null child frame"); SetFlexBaseSizeAndMainSize(aFlexBaseSize); // Assert that any "auto" margin components are set to 0. // (We'll resolve them later; until then, we want to treat them as 0-sized.) #ifdef DEBUG { const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; NS_FOR_CSS_SIDES(side) { if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { MOZ_ASSERT(GetMarginComponentForSide(side) == 0, "Someone else tried to resolve our auto margin"); } } } #endif // DEBUG // Resolve "align-self: auto" to parent's "align-items" value. if (mAlignSelf == NS_STYLE_ALIGN_SELF_AUTO) { mAlignSelf = mFrame->StyleContext()->GetParent()->StylePosition()->mAlignItems; } // If the flex item's inline axis is the same as the cross axis, then // 'align-self:baseline' is identical to 'flex-start'. If that's the case, we // just directly convert our align-self value here, so that we don't have to // handle this with special cases elsewhere. // Moreover: for the time being (until we support writing-modes), // all inline axes are horizontal -- so we can just check if the cross axis // is horizontal. // FIXME: Once we support writing-mode (vertical text), this IsAxisHorizontal // check won't be sufficient anymore -- we'll actually need to compare our // inline axis vs. the cross axis. if (mAlignSelf == NS_STYLE_ALIGN_ITEMS_BASELINE && IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { mAlignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START; } } nscoord FlexItem::GetBaselineOffsetFromOuterCrossStart( AxisOrientationType aCrossAxis) const { // NOTE: Currently, 'mAscent' (taken from reflow) is an inherently vertical // measurement -- it's the distance from the border-top edge of this FlexItem // to its baseline. So, we can really only do baseline alignment when the // cross axis is vertical. (The FlexItem constructor enforces this when // resolving the item's "mAlignSelf" value). MOZ_ASSERT(!IsAxisHorizontal(aCrossAxis), "Only expecting to be doing baseline computations when the " "cross axis is vertical"); nscoord marginTopToBaseline = mAscent + mMargin.top; if (aCrossAxis == eAxis_TB) { // Top-to-bottom (normal case): the distance from the cross-start margin-box // edge (i.e. the margin-top edge) to the baseline is ascent + margin-top. return marginTopToBaseline; } // Bottom-to-top: The distance from the cross-start margin-box edge (i.e. the // margin-bottom edge) to the baseline is just the margin-box cross size // (i.e. outer cross size), minus the distance from margin-top to baseline // (already computed above). nscoord outerCrossSize = mCrossSize + GetMarginBorderPaddingSizeInAxis(aCrossAxis); return outerCrossSize - marginTopToBaseline; } uint32_t FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const { uint32_t numAutoMargins = 0; const nsStyleSides& styleMargin = mFrame->StyleMargin()->mMargin; for (uint32_t i = 0; i < eNumAxisEdges; i++) { Side side = kAxisOrientationToSidesMap[aAxis][i]; if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { numAutoMargins++; } } // Mostly for clarity: MOZ_ASSERT(numAutoMargins <= 2, "We're just looking at one item along one dimension, so we " "should only have examined 2 margins"); return numAutoMargins; } // Keeps track of our position along a particular axis (where a '0' position // corresponds to the 'start' edge of that axis). // This class shouldn't be instantiated directly -- rather, it should only be // instantiated via its subclasses defined below. class MOZ_STACK_CLASS PositionTracker { public: // Accessor for the current value of the position that we're tracking. inline nscoord GetPosition() const { return mPosition; } inline AxisOrientationType GetAxis() const { return mAxis; } // Advances our position across the start edge of the given margin, in the // axis we're tracking. void EnterMargin(const nsMargin& aMargin) { Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start]; mPosition += MarginComponentForSide(aMargin, side); } // Advances our position across the end edge of the given margin, in the axis // we're tracking. void ExitMargin(const nsMargin& aMargin) { Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End]; mPosition += MarginComponentForSide(aMargin, side); } // Advances our current position from the start side of a child frame's // border-box to the frame's upper or left edge (depending on our axis). // (Note that this is a no-op if our axis grows in positive direction.) void EnterChildFrame(nscoord aChildFrameSize) { if (!AxisGrowsInPositiveDirection(mAxis)) mPosition += aChildFrameSize; } // Advances our current position from a frame's upper or left border-box edge // (whichever is in the axis we're tracking) to the 'end' side of the frame // in the axis that we're tracking. (Note that this is a no-op if our axis // grows in the negative direction.) void ExitChildFrame(nscoord aChildFrameSize) { if (AxisGrowsInPositiveDirection(mAxis)) mPosition += aChildFrameSize; } protected: // Protected constructor, to be sure we're only instantiated via a subclass. PositionTracker(AxisOrientationType aAxis) : mPosition(0), mAxis(aAxis) {} private: // Private copy-constructor, since we don't want any instances of our // subclasses to be accidentally copied. PositionTracker(const PositionTracker& aOther) : mPosition(aOther.mPosition), mAxis(aOther.mAxis) {} protected: // Member data: nscoord mPosition; // The position we're tracking const AxisOrientationType mAxis; // The axis along which we're moving }; // Tracks our position in the main axis, when we're laying out flex items. // The "0" position represents the main-start edge of the flex container's // content-box. class MOZ_STACK_CLASS MainAxisPositionTracker : public PositionTracker { public: MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, const nsTArray& aItems, uint8_t aJustifyContent, nscoord aContentBoxMainSize); ~MainAxisPositionTracker() { MOZ_ASSERT(mNumPackingSpacesRemaining == 0, "miscounted the number of packing spaces"); MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0, "miscounted the number of auto margins"); } // Advances past the packing space (if any) between two flex items void TraversePackingSpace(); // If aItem has any 'auto' margins in the main axis, this method updates the // corresponding values in its margin. void ResolveAutoMarginsInMainAxis(FlexItem& aItem); private: nscoord mPackingSpaceRemaining; uint32_t mNumAutoMarginsInMainAxis; uint32_t mNumPackingSpacesRemaining; uint8_t mJustifyContent; }; // Utility class for managing our position along the cross axis along // the whole flex container (at a higher level than a single line). // The "0" position represents the cross-start edge of the flex container's // content-box. class MOZ_STACK_CLASS CrossAxisPositionTracker : public PositionTracker { public: CrossAxisPositionTracker(nsTArray& aLines, uint8_t aAlignContent, nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite, const FlexboxAxisTracker& aAxisTracker); // Advances past the packing space (if any) between two flex lines void TraversePackingSpace(); // Advances past the given FlexLine void TraverseLine(FlexLine& aLine) { mPosition += aLine.GetLineCrossSize(); } private: // Redeclare the frame-related methods from PositionTracker as private with // MOZ_DELETE, to be sure (at compile time) that no client code can invoke // them. (Unlike the other PositionTracker derived classes, this class here // deals with FlexLines, not with individual FlexItems or frames.) void EnterMargin(const nsMargin& aMargin) MOZ_DELETE; void ExitMargin(const nsMargin& aMargin) MOZ_DELETE; void EnterChildFrame(nscoord aChildFrameSize) MOZ_DELETE; void ExitChildFrame(nscoord aChildFrameSize) MOZ_DELETE; nscoord mPackingSpaceRemaining; uint32_t mNumPackingSpacesRemaining; uint8_t mAlignContent; }; // Utility class for managing our position along the cross axis, *within* a // single flex line. class MOZ_STACK_CLASS SingleLineCrossAxisPositionTracker : public PositionTracker { public: SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker); void ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem); void EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem); // Resets our position to the cross-start edge of this line. inline void ResetPosition() { mPosition = 0; } }; //---------------------------------------------------------------------- // Frame class boilerplate // ======================= NS_QUERYFRAME_HEAD(nsFlexContainerFrame) NS_QUERYFRAME_ENTRY(nsFlexContainerFrame) NS_QUERYFRAME_TAIL_INHERITING(nsFlexContainerFrameSuper) NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame) nsIFrame* NS_NewFlexContainerFrame(nsIPresShell* aPresShell, nsStyleContext* aContext) { return new (aPresShell) nsFlexContainerFrame(aContext); } //---------------------------------------------------------------------- // nsFlexContainerFrame Method Implementations // =========================================== /* virtual */ nsFlexContainerFrame::~nsFlexContainerFrame() { } template /* static */ bool nsFlexContainerFrame::SortChildrenIfNeeded() { if (nsIFrame::IsFrameListSorted(mFrames)) { return false; } nsIFrame::SortFrameList(mFrames); return true; } /* virtual */ nsIAtom* nsFlexContainerFrame::GetType() const { return nsGkAtoms::flexContainerFrame; } #ifdef DEBUG_FRAME_DUMP NS_IMETHODIMP nsFlexContainerFrame::GetFrameName(nsAString& aResult) const { return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult); } #endif // Helper for BuildDisplayList, to implement this special-case for flex items // from the spec: // Flex items paint exactly the same as block-level elements in the // normal flow, except that 'z-index' values other than 'auto' create // a stacking context even if 'position' is 'static'. // http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#painting uint32_t GetDisplayFlagsForFlexItem(nsIFrame* aFrame) { MOZ_ASSERT(aFrame->IsFlexItem(), "Should only be called on flex items"); const nsStylePosition* pos = aFrame->StylePosition(); if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) { return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT; } return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT; } void nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, const nsRect& aDirtyRect, const nsDisplayListSet& aLists) { NS_ASSERTION( nsIFrame::IsFrameListSorted(mFrames), "Child frames aren't sorted correctly"); DisplayBorderBackgroundOutline(aBuilder, aLists); // Our children are all block-level, so their borders/backgrounds all go on // the BlockBorderBackgrounds list. nsDisplayListSet childLists(aLists, aLists.BlockBorderBackgrounds()); for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { BuildDisplayListForChild(aBuilder, e.get(), aDirtyRect, childLists, GetDisplayFlagsForFlexItem(e.get())); } } #ifdef DEBUG // helper for the debugging method below bool FrameWantsToBeInAnonymousFlexItem(nsIFrame* aFrame) { // Note: This needs to match the logic in // nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexItem() return (aFrame->IsFrameOfType(nsIFrame::eLineParticipant) || nsGkAtoms::placeholderFrame == aFrame->GetType()); } // Debugging method, to let us assert that our anonymous flex items are // set up correctly -- in particular, we assert: // (1) we don't have any inline non-replaced children // (2) we don't have any consecutive anonymous flex items // (3) we don't have any empty anonymous flex items // // XXXdholbert This matches what nsCSSFrameConstructor currently does, and what // the spec used to say. However, the spec has now changed regarding what // types of content get wrapped in an anonymous flexbox item. The patch that // implements those changes (in nsCSSFrameConstructor) will need to change // this method as well. void nsFlexContainerFrame::SanityCheckAnonymousFlexItems() const { bool prevChildWasAnonFlexItem = false; for (nsIFrame* child = mFrames.FirstChild(); child; child = child->GetNextSibling()) { MOZ_ASSERT(!FrameWantsToBeInAnonymousFlexItem(child), "frame wants to be inside an anonymous flex item, " "but it isn't"); if (child->StyleContext()->GetPseudo() == nsCSSAnonBoxes::anonymousFlexItem) { MOZ_ASSERT(!prevChildWasAnonFlexItem || mChildrenHaveBeenReordered, "two anon flex items in a row (shouldn't happen, unless our " "children have been reordered with the 'order' property)"); nsIFrame* firstWrappedChild = child->GetFirstPrincipalChild(); MOZ_ASSERT(firstWrappedChild, "anonymous flex item is empty (shouldn't happen)"); prevChildWasAnonFlexItem = true; } else { prevChildWasAnonFlexItem = false; } } } #endif // DEBUG // Based on the sign of aTotalViolation, this function freezes a subset of our // flexible sizes, and restores the remaining ones to their initial pref sizes. static void FreezeOrRestoreEachFlexibleSize( const nscoord aTotalViolation, nsTArray& aItems, bool aFinalIteration) { enum FreezeType { eFreezeEverything, eFreezeMinViolations, eFreezeMaxViolations }; FreezeType freezeType; if (aTotalViolation == 0) { freezeType = eFreezeEverything; } else if (aTotalViolation > 0) { freezeType = eFreezeMinViolations; } else { // aTotalViolation < 0 freezeType = eFreezeMaxViolations; } for (uint32_t i = 0; i < aItems.Length(); i++) { FlexItem& item = aItems[i]; MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(), "Can have either min or max violation, but not both"); if (!item.IsFrozen()) { if (eFreezeEverything == freezeType || (eFreezeMinViolations == freezeType && item.HadMinViolation()) || (eFreezeMaxViolations == freezeType && item.HadMaxViolation())) { MOZ_ASSERT(item.GetMainSize() >= item.GetMainMinSize(), "Freezing item at a size below its minimum"); MOZ_ASSERT(item.GetMainSize() <= item.GetMainMaxSize(), "Freezing item at a size above its maximum"); item.Freeze(); } else if (MOZ_UNLIKELY(aFinalIteration)) { // XXXdholbert If & when bug 765861 is fixed, we should upgrade this // assertion to be fatal except in documents with enormous lengths. NS_ERROR("Final iteration still has unfrozen items, this shouldn't" " happen unless there was nscoord under/overflow."); item.Freeze(); } // else, we'll reset this item's main size to its flex base size on the // next iteration of this algorithm. // Clear this item's violation(s), now that we've dealt with them item.ClearViolationFlags(); } } } // Implementation of flexbox spec's "resolve the flexible lengths" algorithm. // NOTE: aTotalFreeSpace should already have the flex items' margin, border, // & padding values subtracted out, so that all we need to do is distribute the // remaining free space among content-box sizes. (The spec deals with // margin-box sizes, but we can have fewer values in play & a simpler algorithm // if we subtract margin/border/padding up front.) void FlexLine::ResolveFlexibleLengths(nscoord aFlexContainerMainSize) { PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, ("ResolveFlexibleLengths\n")); if (mItems.IsEmpty()) { return; } // Subtract space occupied by our items' margins/borders/padding, so we can // just be dealing with the space available for our flex items' content // boxes. nscoord spaceReservedForMarginBorderPadding = mTotalOuterHypotheticalMainSize - mTotalInnerHypotheticalMainSize; nscoord spaceAvailableForFlexItemsContentBoxes = aFlexContainerMainSize - spaceReservedForMarginBorderPadding; // Determine whether we're going to be growing or shrinking items. const bool isUsingFlexGrow = (mTotalOuterHypotheticalMainSize < aFlexContainerMainSize); // NOTE: I claim that this chunk of the algorithm (the looping part) needs to // run the loop at MOST aItems.Length() times. This claim should hold up // because we'll freeze at least one item on each loop iteration, and once // we've run out of items to freeze, there's nothing left to do. However, // in most cases, we'll break out of this loop long before we hit that many // iterations. for (uint32_t iterationCounter = 0; iterationCounter < mItems.Length(); iterationCounter++) { // Set every not-yet-frozen item's used main size to its // flex base size, and subtract all the used main sizes from our // total amount of space to determine the 'available free space' // (positive or negative) to be distributed among our flexible items. nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes; for (uint32_t i = 0; i < mItems.Length(); i++) { FlexItem& item = mItems[i]; if (!item.IsFrozen()) { item.SetMainSize(item.GetFlexBaseSize()); } availableFreeSpace -= item.GetMainSize(); } PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, (" available free space = %d\n", availableFreeSpace)); // If sign of free space matches the type of flexing that we're doing, give // each flexible item a portion of availableFreeSpace. if ((availableFreeSpace > 0 && isUsingFlexGrow) || (availableFreeSpace < 0 && !isUsingFlexGrow)) { // STRATEGY: On each item, we compute & store its "share" of the total // flex weight that we've seen so far: // curFlexWeight / runningFlexWeightSum // // Then, when we go to actually distribute the space (in the next loop), // we can simply walk backwards through the elements and give each item // its "share" multiplied by the remaining available space. // // SPECIAL CASE: If the sum of the flex weights is larger than the // maximum representable float (overflowing to infinity), then we can't // sensibly divide out proportional shares anymore. In that case, we // simply treat the flex item(s) with the largest flex weights as if // their weights were infinite (dwarfing all the others), and we // distribute all of the available space among them. float runningFlexWeightSum = 0.0f; float largestFlexWeight = 0.0f; uint32_t numItemsWithLargestFlexWeight = 0; for (uint32_t i = 0; i < mItems.Length(); i++) { FlexItem& item = mItems[i]; float curFlexWeight = item.GetFlexWeightToUse(isUsingFlexGrow); MOZ_ASSERT(curFlexWeight >= 0.0f, "weights are non-negative"); runningFlexWeightSum += curFlexWeight; if (NS_finite(runningFlexWeightSum)) { if (curFlexWeight == 0.0f) { item.SetShareOfFlexWeightSoFar(0.0f); } else { item.SetShareOfFlexWeightSoFar(curFlexWeight / runningFlexWeightSum); } } // else, the sum of weights overflows to infinity, in which // case we don't bother with "SetShareOfFlexWeightSoFar" since // we know we won't use it. (instead, we'll just give every // item with the largest flex weight an equal share of space.) // Update our largest-flex-weight tracking vars if (curFlexWeight > largestFlexWeight) { largestFlexWeight = curFlexWeight; numItemsWithLargestFlexWeight = 1; } else if (curFlexWeight == largestFlexWeight) { numItemsWithLargestFlexWeight++; } } if (runningFlexWeightSum != 0.0f) { // no distribution if no flexibility PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, (" Distributing available space:")); for (uint32_t i = mItems.Length() - 1; i < mItems.Length(); --i) { FlexItem& item = mItems[i]; if (!item.IsFrozen()) { // To avoid rounding issues, we compute the change in size for this // item, and then subtract it from the remaining available space. nscoord sizeDelta = 0; if (NS_finite(runningFlexWeightSum)) { float myShareOfRemainingSpace = item.GetShareOfFlexWeightSoFar(); MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f && myShareOfRemainingSpace <= 1.0f, "my share should be nonnegative fractional amount"); if (myShareOfRemainingSpace == 1.0f) { // (We special-case 1.0f to avoid float error from converting // availableFreeSpace from integer*1.0f --> float --> integer) sizeDelta = availableFreeSpace; } else if (myShareOfRemainingSpace > 0.0f) { sizeDelta = NSToCoordRound(availableFreeSpace * myShareOfRemainingSpace); } } else if (item.GetFlexWeightToUse(isUsingFlexGrow) == largestFlexWeight) { // Total flexibility is infinite, so we're just distributing // the available space equally among the items that are tied for // having the largest weight (and this is one of those items). sizeDelta = NSToCoordRound(availableFreeSpace / float(numItemsWithLargestFlexWeight)); numItemsWithLargestFlexWeight--; } availableFreeSpace -= sizeDelta; item.SetMainSize(item.GetMainSize() + sizeDelta); PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, (" child %d receives %d, for a total of %d\n", i, sizeDelta, item.GetMainSize())); } } } } // Fix min/max violations: nscoord totalViolation = 0; // keeps track of adjustments for min/max PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, (" Checking for violations:")); for (uint32_t i = 0; i < mItems.Length(); i++) { FlexItem& item = mItems[i]; if (!item.IsFrozen()) { if (item.GetMainSize() < item.GetMainMinSize()) { // min violation totalViolation += item.GetMainMinSize() - item.GetMainSize(); item.SetMainSize(item.GetMainMinSize()); item.SetHadMinViolation(); } else if (item.GetMainSize() > item.GetMainMaxSize()) { // max violation totalViolation += item.GetMainMaxSize() - item.GetMainSize(); item.SetMainSize(item.GetMainMaxSize()); item.SetHadMaxViolation(); } } } FreezeOrRestoreEachFlexibleSize(totalViolation, mItems, iterationCounter + 1 == mItems.Length()); PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, (" Total violation: %d\n", totalViolation)); if (totalViolation == 0) { break; } } // Post-condition: all lengths should've been frozen. #ifdef DEBUG for (uint32_t i = 0; i < mItems.Length(); ++i) { MOZ_ASSERT(mItems[i].IsFrozen(), "All flexible lengths should've been resolved"); } #endif // DEBUG } MainAxisPositionTracker:: MainAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker, const nsTArray& aItems, uint8_t aJustifyContent, nscoord aContentBoxMainSize) : PositionTracker(aAxisTracker.GetMainAxis()), mPackingSpaceRemaining(aContentBoxMainSize), // we chip away at this below mNumAutoMarginsInMainAxis(0), mNumPackingSpacesRemaining(0), mJustifyContent(aJustifyContent) { // mPackingSpaceRemaining is initialized to the container's main size. Now // we'll subtract out the main sizes of our flex items, so that it ends up // with the *actual* amount of packing space. for (uint32_t i = 0; i < aItems.Length(); i++) { const FlexItem& curItem = aItems[i]; nscoord itemMarginBoxMainSize = curItem.GetMainSize() + curItem.GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis()); mPackingSpaceRemaining -= itemMarginBoxMainSize; mNumAutoMarginsInMainAxis += curItem.GetNumAutoMarginsInAxis(mAxis); } if (mPackingSpaceRemaining <= 0) { // No available packing space to use for resolving auto margins. mNumAutoMarginsInMainAxis = 0; } // If packing space is negative, 'space-between' behaves like 'flex-start', // and 'space-around' behaves like 'center'. In those cases, it's simplest to // just pretend we have a different 'justify-content' value and share code. if (mPackingSpaceRemaining < 0) { if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN) { mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START; } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND) { mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_CENTER; } } // Figure out how much space we'll set aside for auto margins or // packing spaces, and advance past any leading packing-space. if (mNumAutoMarginsInMainAxis == 0 && mPackingSpaceRemaining != 0 && !aItems.IsEmpty()) { switch (mJustifyContent) { case NS_STYLE_JUSTIFY_CONTENT_FLEX_START: // All packing space should go at the end --> nothing to do here. break; case NS_STYLE_JUSTIFY_CONTENT_FLEX_END: // All packing space goes at the beginning mPosition += mPackingSpaceRemaining; break; case NS_STYLE_JUSTIFY_CONTENT_CENTER: // Half the packing space goes at the beginning mPosition += mPackingSpaceRemaining / 2; break; case NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN: MOZ_ASSERT(mPackingSpaceRemaining >= 0, "negative packing space should make us use 'flex-start' " "instead of 'space-between'"); // 1 packing space between each flex item, no packing space at ends. mNumPackingSpacesRemaining = aItems.Length() - 1; break; case NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND: MOZ_ASSERT(mPackingSpaceRemaining >= 0, "negative packing space should make us use 'center' " "instead of 'space-around'"); // 1 packing space between each flex item, plus half a packing space // at beginning & end. So our number of full packing-spaces is equal // to the number of flex items. mNumPackingSpacesRemaining = aItems.Length(); if (mNumPackingSpacesRemaining > 0) { // The edges (start/end) share one full packing space nscoord totalEdgePackingSpace = mPackingSpaceRemaining / mNumPackingSpacesRemaining; // ...and we'll use half of that right now, at the start mPosition += totalEdgePackingSpace / 2; // ...but we need to subtract all of it right away, so that we won't // hand out any of it to intermediate packing spaces. mPackingSpaceRemaining -= totalEdgePackingSpace; mNumPackingSpacesRemaining--; } break; default: MOZ_CRASH("Unexpected justify-content value"); } } MOZ_ASSERT(mNumPackingSpacesRemaining == 0 || mNumAutoMarginsInMainAxis == 0, "extra space should either go to packing space or to " "auto margins, but not to both"); } void MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem) { if (mNumAutoMarginsInMainAxis) { const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; for (uint32_t i = 0; i < eNumAxisEdges; i++) { Side side = kAxisOrientationToSidesMap[mAxis][i]; if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { // NOTE: This integer math will skew the distribution of remainder // app-units towards the end, which is fine. nscoord curAutoMarginSize = mPackingSpaceRemaining / mNumAutoMarginsInMainAxis; MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, "Expecting auto margins to have value '0' before we " "resolve them"); aItem.SetMarginComponentForSide(side, curAutoMarginSize); mNumAutoMarginsInMainAxis--; mPackingSpaceRemaining -= curAutoMarginSize; } } } } void MainAxisPositionTracker::TraversePackingSpace() { if (mNumPackingSpacesRemaining) { MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN || mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND, "mNumPackingSpacesRemaining only applies for " "space-between/space-around"); MOZ_ASSERT(mPackingSpaceRemaining >= 0, "ran out of packing space earlier than we expected"); // NOTE: This integer math will skew the distribution of remainder // app-units towards the end, which is fine. nscoord curPackingSpace = mPackingSpaceRemaining / mNumPackingSpacesRemaining; mPosition += curPackingSpace; mNumPackingSpacesRemaining--; mPackingSpaceRemaining -= curPackingSpace; } } CrossAxisPositionTracker:: CrossAxisPositionTracker(nsTArray& aLines, uint8_t aAlignContent, nscoord aContentBoxCrossSize, bool aIsCrossSizeDefinite, const FlexboxAxisTracker& aAxisTracker) : PositionTracker(aAxisTracker.GetCrossAxis()), mPackingSpaceRemaining(0), mNumPackingSpacesRemaining(0), mAlignContent(aAlignContent) { MOZ_ASSERT(!aLines.IsEmpty(), "We should have at least 1 line"); if (aIsCrossSizeDefinite && aLines.Length() == 1) { // "If the flex container has only a single line (even if it's a // multi-line flex container) and has a definite cross size, the cross // size of the flex line is the flex container's inner cross size." // SOURCE: http://dev.w3.org/csswg/css-flexbox/#algo-line-break // NOTE: This means (by definition) that there's no packing space, which // means we don't need to be concerned with "align-conent" at all and we // can return early. This is handy, because this is the usual case (for // single-line flexbox). aLines[0].SetLineCrossSize(aContentBoxCrossSize); return; } // NOTE: The rest of this function should essentially match // MainAxisPositionTracker's constructor, though with FlexLines instead of // FlexItems, and with the additional value "stretch" (and of course with // cross sizes instead of main sizes.) // Figure out how much packing space we have (container's cross size minus // all the lines' cross sizes) mPackingSpaceRemaining = aContentBoxCrossSize; for (uint32_t i = 0; i < aLines.Length(); i++) { const FlexLine& line = aLines[i]; mPackingSpaceRemaining -= line.GetLineCrossSize(); } // If packing space is negative, 'space-between' and 'stretch' behave like // 'flex-start', and 'space-around' behaves like 'center'. In those cases, // it's simplest to just pretend we have a different 'align-content' value // and share code. if (mPackingSpaceRemaining < 0) { if (mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN || mAlignContent == NS_STYLE_ALIGN_CONTENT_STRETCH) { mAlignContent = NS_STYLE_ALIGN_CONTENT_FLEX_START; } else if (mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_AROUND) { mAlignContent = NS_STYLE_ALIGN_CONTENT_CENTER; } } // Figure out how much space we'll set aside for packing spaces, and advance // past any leading packing-space. if (mPackingSpaceRemaining != 0) { switch (mAlignContent) { case NS_STYLE_ALIGN_CONTENT_FLEX_START: // All packing space should go at the end --> nothing to do here. break; case NS_STYLE_ALIGN_CONTENT_FLEX_END: // All packing space goes at the beginning mPosition += mPackingSpaceRemaining; break; case NS_STYLE_ALIGN_CONTENT_CENTER: // Half the packing space goes at the beginning mPosition += mPackingSpaceRemaining / 2; break; case NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN: MOZ_ASSERT(mPackingSpaceRemaining >= 0, "negative packing space should make us use 'flex-start' " "instead of 'space-between'"); // 1 packing space between each flex line, no packing space at ends. mNumPackingSpacesRemaining = aLines.Length() - 1; break; case NS_STYLE_ALIGN_CONTENT_SPACE_AROUND: { MOZ_ASSERT(mPackingSpaceRemaining >= 0, "negative packing space should make us use 'center' " "instead of 'space-around'"); // 1 packing space between each flex line, plus half a packing space // at beginning & end. So our number of full packing-spaces is equal // to the number of flex lines. mNumPackingSpacesRemaining = aLines.Length(); // The edges (start/end) share one full packing space nscoord totalEdgePackingSpace = mPackingSpaceRemaining / mNumPackingSpacesRemaining; // ...and we'll use half of that right now, at the start mPosition += totalEdgePackingSpace / 2; // ...but we need to subtract all of it right away, so that we won't // hand out any of it to intermediate packing spaces. mPackingSpaceRemaining -= totalEdgePackingSpace; mNumPackingSpacesRemaining--; break; } case NS_STYLE_ALIGN_CONTENT_STRETCH: // Split space equally between the lines: MOZ_ASSERT(mPackingSpaceRemaining > 0, "negative packing space should make us use 'flex-start' " "instead of 'stretch' (and we shouldn't bother with this " "code if we have 0 packing space)"); for (uint32_t i = 0; i < aLines.Length(); i++) { FlexLine& line = aLines[i]; // Our share is the amount of space remaining, divided by the number // of lines remainig. nscoord shareOfExtraSpace = mPackingSpaceRemaining / (aLines.Length() - i); nscoord newSize = line.GetLineCrossSize() + shareOfExtraSpace; line.SetLineCrossSize(newSize); mPackingSpaceRemaining -= shareOfExtraSpace; } break; default: MOZ_CRASH("Unexpected align-content value"); } } } void CrossAxisPositionTracker::TraversePackingSpace() { if (mNumPackingSpacesRemaining) { MOZ_ASSERT(mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_BETWEEN || mAlignContent == NS_STYLE_ALIGN_CONTENT_SPACE_AROUND, "mNumPackingSpacesRemaining only applies for " "space-between/space-around"); MOZ_ASSERT(mPackingSpaceRemaining >= 0, "ran out of packing space earlier than we expected"); // NOTE: This integer math will skew the distribution of remainder // app-units towards the end, which is fine. nscoord curPackingSpace = mPackingSpaceRemaining / mNumPackingSpacesRemaining; mPosition += curPackingSpace; mNumPackingSpacesRemaining--; mPackingSpaceRemaining -= curPackingSpace; } } SingleLineCrossAxisPositionTracker:: SingleLineCrossAxisPositionTracker(const FlexboxAxisTracker& aAxisTracker) : PositionTracker(aAxisTracker.GetCrossAxis()) { } void FlexLine::ComputeCrossSizeAndBaseline(const FlexboxAxisTracker& aAxisTracker) { nscoord crossStartToFurthestBaseline= nscoord_MIN; nscoord crossEndToFurthestBaseline = nscoord_MIN; nscoord largestOuterCrossSize = 0; for (uint32_t i = 0; i < mItems.Length(); ++i) { const FlexItem& curItem = mItems[i]; nscoord curOuterCrossSize = curItem.GetCrossSize() + curItem.GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis()); if (curItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE && curItem.GetNumAutoMarginsInAxis(aAxisTracker.GetCrossAxis()) == 0) { // FIXME: Once we support "writing-mode", we'll have to do baseline // alignment in vertical flex containers here (w/ horizontal cross-axes). // Find distance from our item's cross-start and cross-end margin-box // edges to its baseline. // // Here's a diagram of a flex-item that we might be doing this on. // "mmm" is the margin-box, "bbb" is the border-box. The bottom of // the text "BASE" is the baseline. // // ---(cross-start)--- // ___ ___ ___ // mmmmmmmmmmmm | |margin-start | // m m | _|_ ___ | // m bbbbbbbb m |curOuterCrossSize | |crossStartToBaseline // m b b m | |ascent | // m b BASE b m | _|_ _|_ // m b b m | | // m bbbbbbbb m | |crossEndToBaseline // m m | | // mmmmmmmmmmmm _|_ _|_ // // ---(cross-end)--- // // We already have the curOuterCrossSize, margin-start, and the ascent. // * We can get crossStartToBaseline by adding margin-start + ascent. // * If we subtract that from the curOuterCrossSize, we get // crossEndToBaseline. nscoord crossStartToBaseline = curItem.GetBaselineOffsetFromOuterCrossStart(aAxisTracker.GetCrossAxis()); nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline; // Now, update our "largest" values for these (across all the flex items // in this flex line), so we can use them in computing the line's cross // size below: crossStartToFurthestBaseline = std::max(crossStartToFurthestBaseline, crossStartToBaseline); crossEndToFurthestBaseline = std::max(crossEndToFurthestBaseline, crossEndToBaseline); } else { largestOuterCrossSize = std::max(largestOuterCrossSize, curOuterCrossSize); } } // The line's baseline is the distance from the cross-start edge to the // furthest baseline. (The item(s) with that baseline will be exactly // aligned with the line's cross-start edge.) mBaselineOffsetFromCrossStart = crossStartToFurthestBaseline; // The line's cross-size is the larger of: // (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of // all baseline-aligned items with no cross-axis auto margins... // and // (b) largest cross-size of all other children. mLineCrossSize = std::max(crossStartToFurthestBaseline + crossEndToFurthestBaseline, largestOuterCrossSize); } void FlexItem::ResolveStretchedCrossSize(nscoord aLineCrossSize, const FlexboxAxisTracker& aAxisTracker) { AxisOrientationType crossAxis = aAxisTracker.GetCrossAxis(); // We stretch IFF we are align-self:stretch, have no auto margins in // cross axis, and have cross-axis size property == "auto". If any of those // conditions don't hold up, we won't stretch. if (mAlignSelf != NS_STYLE_ALIGN_ITEMS_STRETCH || GetNumAutoMarginsInAxis(crossAxis) != 0 || eStyleUnit_Auto != GetSizePropertyForAxis(mFrame, crossAxis).GetUnit()) { return; } // If we've already been stretched, we can bail out early, too. // No need to redo the calculation. if (mIsStretched) { return; } // Reserve space for margins & border & padding, and then use whatever // remains as our item's cross-size (clamped to its min/max range). nscoord stretchedSize = aLineCrossSize - GetMarginBorderPaddingSizeInAxis(crossAxis); stretchedSize = NS_CSS_MINMAX(stretchedSize, mCrossMinSize, mCrossMaxSize); // Update the cross-size & make a note that it's stretched, so we know to // override the reflow state's computed cross-size in our final reflow. SetCrossSize(stretchedSize); mIsStretched = true; } void SingleLineCrossAxisPositionTracker:: ResolveAutoMarginsInCrossAxis(const FlexLine& aLine, FlexItem& aItem) { // Subtract the space that our item is already occupying, to see how much // space (if any) is available for its auto margins. nscoord spaceForAutoMargins = aLine.GetLineCrossSize() - (aItem.GetCrossSize() + aItem.GetMarginBorderPaddingSizeInAxis(mAxis)); if (spaceForAutoMargins <= 0) { return; // No available space --> nothing to do } uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis); if (numAutoMargins == 0) { return; // No auto margins --> nothing to do. } // OK, we have at least one auto margin and we have some available space. // Give each auto margin a share of the space. const nsStyleSides& styleMargin = aItem.Frame()->StyleMargin()->mMargin; for (uint32_t i = 0; i < eNumAxisEdges; i++) { Side side = kAxisOrientationToSidesMap[mAxis][i]; if (styleMargin.GetUnit(side) == eStyleUnit_Auto) { MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0, "Expecting auto margins to have value '0' before we " "update them"); // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2. // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half. nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins; aItem.SetMarginComponentForSide(side, curAutoMarginSize); numAutoMargins--; spaceForAutoMargins -= curAutoMarginSize; } } } void SingleLineCrossAxisPositionTracker:: EnterAlignPackingSpace(const FlexLine& aLine, const FlexItem& aItem) { // We don't do align-self alignment on items that have auto margins // in the cross axis. if (aItem.GetNumAutoMarginsInAxis(mAxis)) { return; } switch (aItem.GetAlignSelf()) { case NS_STYLE_ALIGN_ITEMS_FLEX_START: case NS_STYLE_ALIGN_ITEMS_STRETCH: // No space to skip over -- we're done. // NOTE: 'stretch' behaves like 'flex-start' once we've stretched any // auto-sized items (which we've already done). break; case NS_STYLE_ALIGN_ITEMS_FLEX_END: mPosition += aLine.GetLineCrossSize() - (aItem.GetCrossSize() + aItem.GetMarginBorderPaddingSizeInAxis(mAxis)); break; case NS_STYLE_ALIGN_ITEMS_CENTER: // Note: If cross-size is odd, the "after" space will get the extra unit. mPosition += (aLine.GetLineCrossSize() - (aItem.GetCrossSize() + aItem.GetMarginBorderPaddingSizeInAxis(mAxis))) / 2; break; case NS_STYLE_ALIGN_ITEMS_BASELINE: { nscoord lineBaselineOffset = aLine.GetBaselineOffsetFromCrossStart(); nscoord itemBaselineOffset = aItem.GetBaselineOffsetFromOuterCrossStart(mAxis); MOZ_ASSERT(lineBaselineOffset >= itemBaselineOffset, "failed at finding largest baseline offset"); // Advance so that aItem's baseline is aligned with the line's baseline. mPosition += (lineBaselineOffset - itemBaselineOffset); break; } default: NS_NOTREACHED("Unexpected align-self value"); break; } } FlexboxAxisTracker::FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame) { const nsStylePosition* pos = aFlexContainerFrame->StylePosition(); uint32_t flexDirection = pos->mFlexDirection; uint32_t cssDirection = aFlexContainerFrame->StyleVisibility()->mDirection; MOZ_ASSERT(cssDirection == NS_STYLE_DIRECTION_LTR || cssDirection == NS_STYLE_DIRECTION_RTL, "Unexpected computed value for 'direction' property"); // (Not asserting for flexDirection here; it's checked by the switch below.) // These are defined according to writing-modes' definitions of // start/end (for the inline dimension) and before/after (for the block // dimension), here: // http://www.w3.org/TR/css3-writing-modes/#logical-directions // (NOTE: I'm intentionally not calling this "inlineAxis"/"blockAxis", since // those terms have explicit definition in the writing-modes spec, which are // the opposite of how I'd be using them here.) // XXXdholbert Once we support the 'writing-mode' property, use its value // here to further customize inlineDimension & blockDimension. // Inline dimension ("start-to-end"): AxisOrientationType inlineDimension = cssDirection == NS_STYLE_DIRECTION_RTL ? eAxis_RL : eAxis_LR; // Block dimension ("before-to-after"): AxisOrientationType blockDimension = eAxis_TB; // Determine main axis: switch (flexDirection) { case NS_STYLE_FLEX_DIRECTION_ROW: mMainAxis = inlineDimension; break; case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE: mMainAxis = GetReverseAxis(inlineDimension); break; case NS_STYLE_FLEX_DIRECTION_COLUMN: mMainAxis = blockDimension; break; case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE: mMainAxis = GetReverseAxis(blockDimension); break; default: MOZ_CRASH("Unexpected computed value for 'flex-flow' property"); } // Determine cross axis: // (This is set up so that a bogus |flexDirection| value will // give us blockDimension. if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN || flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) { mCrossAxis = inlineDimension; } else { mCrossAxis = blockDimension; } // "flex-wrap: wrap-reverse" reverses our cross axis. if (pos->mFlexWrap == NS_STYLE_FLEX_WRAP_WRAP_REVERSE) { mCrossAxis = GetReverseAxis(mCrossAxis); } MOZ_ASSERT(IsAxisHorizontal(mMainAxis) != IsAxisHorizontal(mCrossAxis), "main & cross axes should be in different dimensions"); } nsresult nsFlexContainerFrame::GenerateFlexLines( nsPresContext* aPresContext, const nsHTMLReflowState& aReflowState, nscoord aContentBoxMainSize, nscoord aAvailableHeightForContent, const FlexboxAxisTracker& aAxisTracker, nsTArray& aLines) { MOZ_ASSERT(aLines.IsEmpty(), "Expecting outparam to start out empty"); const bool isSingleLine = NS_STYLE_FLEX_WRAP_NOWRAP == aReflowState.mStylePosition->mFlexWrap; // We have at least one FlexLine. Even an empty flex container has a single // (empty) flex line. FlexLine* curLine = aLines.AppendElement(); nscoord wrapThreshold; if (isSingleLine) { // Not wrapping. Set threshold to sentinel value that tells us not to wrap. wrapThreshold = NS_UNCONSTRAINEDSIZE; // Optimization: We know all items will end up in the first line, so we can // pre-allocate space for them. curLine->mItems.SetCapacity(mFrames.GetLength()); } else { // Wrapping! Set wrap threshold to flex container's content-box main-size. wrapThreshold = aContentBoxMainSize; // If the flex container doesn't have a definite content-box main-size // (e.g. if we're 'height:auto'), make sure we at least wrap when we hit // its max main-size. if (wrapThreshold == NS_UNCONSTRAINEDSIZE) { const nscoord flexContainerMaxMainSize = GET_MAIN_COMPONENT(aAxisTracker, aReflowState.ComputedMaxWidth(), aReflowState.ComputedMaxHeight()); wrapThreshold = flexContainerMaxMainSize; } // Also: if we're vertical and paginating, we may need to wrap sooner // (before we run off the end of the page) if (!IsAxisHorizontal(aAxisTracker.GetMainAxis()) && aAvailableHeightForContent != NS_UNCONSTRAINEDSIZE) { wrapThreshold = std::min(wrapThreshold, aAvailableHeightForContent); } } for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { nsIFrame* childFrame = e.get(); // Honor "page-break-before", if we're multi-line and this line isn't empty: if (!isSingleLine && !curLine->mItems.IsEmpty() && childFrame->StyleDisplay()->mBreakBefore) { curLine = aLines.AppendElement(); } FlexItem* item = curLine->mItems.AppendElement( GenerateFlexItemForChild(aPresContext, childFrame, aReflowState, aAxisTracker)); nsresult rv = ResolveFlexItemMaxContentSizing(aPresContext, *item, aReflowState, aAxisTracker); NS_ENSURE_SUCCESS(rv,rv); nscoord itemInnerHypotheticalMainSize = item->GetMainSize(); nscoord itemOuterHypotheticalMainSize = item->GetMainSize() + item->GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis()); // Check if we need to wrap |item| to a new line // (i.e. check if its outer hypothetical main size pushes our line over // the threshold) if (wrapThreshold != NS_UNCONSTRAINEDSIZE && curLine->mItems.Length() > 1 && // Don't wrap if it'll leave line empty wrapThreshold < (curLine->GetTotalOuterHypotheticalMainSize() + itemOuterHypotheticalMainSize)) { // Need to wrap to a new line! Create a new line, create a copy of the // newest FlexItem there, and clear that FlexItem out of the prev. line. curLine = aLines.AppendElement(); // NOTE: if that^ AppendElement had to realloc, then |item| may now // point to bogus memory. Null out our pointer and use a freshly-obtained // reference ('itemToCopy'), to be on the safe side. item = nullptr; FlexLine& prevLine = aLines[aLines.Length() - 2]; uint32_t itemIdxInPrevLine = prevLine.mItems.Length() - 1; FlexItem& itemToCopy = prevLine.mItems[itemIdxInPrevLine]; // Copy item into cur line: curLine->mItems.AppendElement(itemToCopy); // ...and remove the old copy in prev line: prevLine.mItems.RemoveElementAt(itemIdxInPrevLine); } curLine->AddToMainSizeTotals(itemInnerHypotheticalMainSize, itemOuterHypotheticalMainSize); // Honor "page-break-after", if we're multi-line and have more children: if (!isSingleLine && childFrame->GetNextSibling() && childFrame->StyleDisplay()->mBreakAfter) { curLine = aLines.AppendElement(); } } return NS_OK; } // Retrieves the content-box main-size of our flex container from the // reflow state (specifically, the main-size of *this continuation* of the // flex container). nscoord nsFlexContainerFrame::GetMainSizeFromReflowState( const nsHTMLReflowState& aReflowState, const FlexboxAxisTracker& aAxisTracker) { if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { // Horizontal case is easy -- our main size is our computed width // (which is already resolved). return aReflowState.ComputedWidth(); } return GetEffectiveComputedHeight(aReflowState); } // Returns the largest outer hypothetical main-size of any line in |aLines|. // (i.e. the hypothetical main-size of the largest line) static nscoord GetLargestLineMainSize(const nsTArray& aLines) { nscoord largestLineOuterSize = 0; for (uint32_t lineIdx = 0; lineIdx < aLines.Length(); lineIdx++) { largestLineOuterSize = std::max(largestLineOuterSize, aLines[lineIdx].GetTotalOuterHypotheticalMainSize()); } return largestLineOuterSize; } // Returns the content-box main-size of our flex container, based on the // available height (if appropriate) and the main-sizes of the flex items. static nscoord ClampFlexContainerMainSize(const nsHTMLReflowState& aReflowState, const FlexboxAxisTracker& aAxisTracker, nscoord aUnclampedMainSize, nscoord aAvailableHeightForContent, const nsTArray& aLines, nsReflowStatus& aStatus) { if (IsAxisHorizontal(aAxisTracker.GetMainAxis())) { // Horizontal case is easy -- our main size should already be resolved // before we get a call to Reflow. We don't have to worry about doing // page-breaking or shrinkwrapping in the horizontal axis. return aUnclampedMainSize; } if (aUnclampedMainSize != NS_INTRINSICSIZE) { // Vertical case, with fixed height: if (aAvailableHeightForContent == NS_UNCONSTRAINEDSIZE || aUnclampedMainSize < aAvailableHeightForContent) { // Not in a fragmenting context, OR no need to fragment because we have // more available height than we need. Either way, just use our fixed // height. (Note that the reflow state has already done the appropriate // min/max-height clamping.) return aUnclampedMainSize; } // Fragmenting *and* our fixed height is too tall for available height: // Mark incomplete so we get a next-in-flow, and take up all of the // available height (or the amount of height required by our children, if // that's larger; but of course not more than our own computed height). // XXXdholbert For now, we don't support pushing children to our next // continuation or splitting children, so "amount of height required by // our children" is just the sum of our children's heights. NS_FRAME_SET_INCOMPLETE(aStatus); nscoord largestLineOuterSize = GetLargestLineMainSize(aLines); if (largestLineOuterSize <= aAvailableHeightForContent) { return aAvailableHeightForContent; } return std::min(aUnclampedMainSize, largestLineOuterSize); } // Vertical case, with auto-height: // Resolve auto-height to the largest FlexLine-length, clamped to our // computed min/max main-size properties (min-height & max-height). // XXXdholbert Handle constrained-aAvailableHeightForContent case here. nscoord largestLineOuterSize = GetLargestLineMainSize(aLines); return NS_CSS_MINMAX(largestLineOuterSize, aReflowState.ComputedMinHeight(), aReflowState.ComputedMaxHeight()); } // Returns the sum of the cross sizes of all the lines in |aLines| static nscoord SumLineCrossSizes(const nsTArray& aLines) { nscoord sum = 0; for (uint32_t lineIdx = 0; lineIdx < aLines.Length(); lineIdx++) { sum += aLines[lineIdx].GetLineCrossSize(); } return sum; } nscoord nsFlexContainerFrame::ComputeCrossSize(const nsHTMLReflowState& aReflowState, const FlexboxAxisTracker& aAxisTracker, const nsTArray& aLines, nscoord aAvailableHeightForContent, bool* aIsDefinite, nsReflowStatus& aStatus) { MOZ_ASSERT(aIsDefinite, "outparam pointer must be non-null"); if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { // Cross axis is horizontal: our cross size is our computed width // (which is already resolved). *aIsDefinite = true; return aReflowState.ComputedWidth(); } nscoord effectiveComputedHeight = GetEffectiveComputedHeight(aReflowState); if (effectiveComputedHeight != NS_INTRINSICSIZE) { // Cross-axis is vertical, and we have a fixed height: *aIsDefinite = true; if (aAvailableHeightForContent == NS_UNCONSTRAINEDSIZE || effectiveComputedHeight < aAvailableHeightForContent) { // Not in a fragmenting context, OR no need to fragment because we have // more available height than we need. Either way, just use our fixed // height. (Note that the reflow state has already done the appropriate // min/max-height clamping.) return effectiveComputedHeight; } // Fragmenting *and* our fixed height is too tall for available height: // Mark incomplete so we get a next-in-flow, and take up all of the // available height (or the amount of height required by our children, if // that's larger; but of course not more than our own computed height). // XXXdholbert For now, we don't support pushing children to our next // continuation or splitting children, so "amount of height required by // our children" is just our line-height. NS_FRAME_SET_INCOMPLETE(aStatus); nscoord sumOfLineCrossSizes = SumLineCrossSizes(aLines); if (sumOfLineCrossSizes <= aAvailableHeightForContent) { return aAvailableHeightForContent; } return std::min(effectiveComputedHeight, sumOfLineCrossSizes); } // Cross axis is vertical and we have auto-height: shrink-wrap our line(s), // subject to our min-size / max-size constraints in that (vertical) axis. // XXXdholbert Handle constrained-aAvailableHeightForContent case here. *aIsDefinite = false; return NS_CSS_MINMAX(SumLineCrossSizes(aLines), aReflowState.ComputedMinHeight(), aReflowState.ComputedMaxHeight()); } void FlexLine::PositionItemsInMainAxis(uint8_t aJustifyContent, nscoord aContentBoxMainSize, const FlexboxAxisTracker& aAxisTracker) { MainAxisPositionTracker mainAxisPosnTracker(aAxisTracker, mItems, aJustifyContent, aContentBoxMainSize); for (uint32_t i = 0; i < mItems.Length(); ++i) { FlexItem& item = mItems[i]; nscoord itemMainBorderBoxSize = item.GetMainSize() + item.GetBorderPaddingSizeInAxis(mainAxisPosnTracker.GetAxis()); // Resolve any main-axis 'auto' margins on aChild to an actual value. mainAxisPosnTracker.ResolveAutoMarginsInMainAxis(item); // Advance our position tracker to child's upper-left content-box corner, // and use that as its position in the main axis. mainAxisPosnTracker.EnterMargin(item.GetMargin()); mainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize); item.SetMainPosition(mainAxisPosnTracker.GetPosition()); mainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize); mainAxisPosnTracker.ExitMargin(item.GetMargin()); mainAxisPosnTracker.TraversePackingSpace(); } } // Helper method to take care of children who ASK_FOR_BASELINE, when // we need their baseline. static void ResolveReflowedChildAscent(nsIFrame* aFrame, nsHTMLReflowMetrics& aChildDesiredSize) { if (aChildDesiredSize.TopAscent() == nsHTMLReflowMetrics::ASK_FOR_BASELINE) { // Use GetFirstLineBaseline(), or just GetBaseline() if that fails. nscoord ascent; if (nsLayoutUtils::GetFirstLineBaseline(aFrame, &ascent)) { aChildDesiredSize.SetTopAscent(ascent); } else { aChildDesiredSize.SetTopAscent(aFrame->GetBaseline()); } } } nsresult nsFlexContainerFrame::SizeItemInCrossAxis( nsPresContext* aPresContext, const FlexboxAxisTracker& aAxisTracker, nsHTMLReflowState& aChildReflowState, FlexItem& aItem) { // In vertical flexbox (with horizontal cross-axis), we can just trust the // reflow state's computed-width as our cross-size. We also don't need to // record the baseline because we'll have converted any "align-self:baseline" // items to be "align-self:flex-start" in the FlexItem constructor. // FIXME: Once we support writing-mode (vertical text), we will be able to // have baseline-aligned items in a vertical flexbox, and we'll need to // record baseline information here. if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) { MOZ_ASSERT(aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_BASELINE, "In vert flex container, we depend on FlexItem constructor to " "convert 'align-self: baseline' to 'align-self: flex-start'"); aItem.SetCrossSize(aChildReflowState.ComputedWidth()); return NS_OK; } MOZ_ASSERT(!aItem.HadMeasuringReflow(), "We shouldn't need more than one measuring reflow"); if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH) { // This item's got "align-self: stretch", so we probably imposed a // stretched computed height on it during its previous reflow. We're // not imposing that height for *this* measuring reflow, so we need to // tell it to treat this reflow as a vertical resize (regardless of // whether any of its ancestors are being resized). aChildReflowState.mFlags.mVResize = true; } nsHTMLReflowMetrics childDesiredSize(aChildReflowState.GetWritingMode()); nsReflowStatus childReflowStatus; const uint32_t flags = NS_FRAME_NO_MOVE_FRAME; nsresult rv = ReflowChild(aItem.Frame(), aPresContext, childDesiredSize, aChildReflowState, 0, 0, flags, childReflowStatus); aItem.SetHadMeasuringReflow(); NS_ENSURE_SUCCESS(rv, rv); // XXXdholbert Once we do pagination / splitting, we'll need to actually // handle incomplete childReflowStatuses. But for now, we give our kids // unconstrained available height, which means they should always complete. MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), "We gave flex item unconstrained available height, so it " "should be complete"); // Tell the child we're done with its initial reflow. // (Necessary for e.g. GetBaseline() to work below w/out asserting) rv = FinishReflowChild(aItem.Frame(), aPresContext, childDesiredSize, &aChildReflowState, 0, 0, flags); NS_ENSURE_SUCCESS(rv, rv); // Save the sizing info that we learned from this reflow // ----------------------------------------------------- // Tentatively store the child's desired content-box cross-size. // Note that childDesiredSize is the border-box size, so we have to // subtract border & padding to get the content-box size. // (Note that at this point in the code, we know our cross axis is vertical, // so we don't bother with making aAxisTracker pick the cross-axis component // for us.) nscoord crossAxisBorderPadding = aItem.GetBorderPadding().TopBottom(); if (childDesiredSize.Height() < crossAxisBorderPadding) { // Child's requested size isn't large enough for its border/padding! // This is OK for the trivial nsFrame::Reflow() impl, but other frame // classes should know better. So, if we get here, the child had better be // an instance of nsFrame (i.e. it should return null from GetType()). // XXXdholbert Once we've fixed bug 765861, we should upgrade this to an // assertion that trivially passes if bug 765861's flag has been flipped. NS_WARN_IF_FALSE(!aItem.Frame()->GetType(), "Child should at least request space for border/padding"); aItem.SetCrossSize(0); } else { // (normal case) aItem.SetCrossSize(childDesiredSize.Height() - crossAxisBorderPadding); } // If we need to do baseline-alignment, store the child's ascent. if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE) { ResolveReflowedChildAscent(aItem.Frame(), childDesiredSize); aItem.SetAscent(childDesiredSize.TopAscent()); } return NS_OK; } void FlexLine::PositionItemsInCrossAxis(nscoord aLineStartPosition, const FlexboxAxisTracker& aAxisTracker) { SingleLineCrossAxisPositionTracker lineCrossAxisPosnTracker(aAxisTracker); for (uint32_t i = 0; i < mItems.Length(); ++i) { FlexItem& item = mItems[i]; // First, stretch the item's cross size (if appropriate), and resolve any // auto margins in this axis. item.ResolveStretchedCrossSize(mLineCrossSize, aAxisTracker); lineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(*this, item); // Compute the cross-axis position of this item nscoord itemCrossBorderBoxSize = item.GetCrossSize() + item.GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis()); lineCrossAxisPosnTracker.EnterAlignPackingSpace(*this, item); lineCrossAxisPosnTracker.EnterMargin(item.GetMargin()); lineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize); item.SetCrossPosition(aLineStartPosition + lineCrossAxisPosnTracker.GetPosition()); // Back out to cross-axis edge of the line. lineCrossAxisPosnTracker.ResetPosition(); } } NS_IMETHODIMP nsFlexContainerFrame::Reflow(nsPresContext* aPresContext, nsHTMLReflowMetrics& aDesiredSize, const nsHTMLReflowState& aReflowState, nsReflowStatus& aStatus) { DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame"); DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus); PR_LOG(GetFlexContainerLog(), PR_LOG_DEBUG, ("Reflow() for nsFlexContainerFrame %p\n", this)); if (IsFrameTreeTooDeep(aReflowState, aDesiredSize, aStatus)) { return NS_OK; } aStatus = NS_FRAME_COMPLETE; // We (and our children) can only depend on our ancestor's height if we have // a percent-height, or if we're positioned and we have "top" and "bottom" // set and have height:auto. (There are actually other cases, too -- e.g. if // our parent is itself a vertical flex container and we're flexible -- but // we'll let our ancestors handle those sorts of cases.) const nsStylePosition* stylePos = StylePosition(); if (stylePos->mHeight.HasPercent() || (StyleDisplay()->IsAbsolutelyPositionedStyle() && eStyleUnit_Auto == stylePos->mHeight.GetUnit() && eStyleUnit_Auto != stylePos->mOffset.GetTopUnit() && eStyleUnit_Auto != stylePos->mOffset.GetBottomUnit())) { AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT); } #ifdef DEBUG SanityCheckAnonymousFlexItems(); #endif // DEBUG // If we've never reordered our children, then we can trust that they're // already in DOM-order, and we only need to consider their "order" property // when checking them for sortedness & sorting them. // // After we actually sort them, though, we can't trust that they're in DOM // order anymore. So, from that point on, our sort & sorted-order-checking // operations need to use a fancier LEQ function that also takes DOM order // into account, so that we can honor the spec's requirement that frames w/ // equal "order" values are laid out in DOM order. if (!mChildrenHaveBeenReordered) { mChildrenHaveBeenReordered = SortChildrenIfNeeded(); } else { SortChildrenIfNeeded(); } const FlexboxAxisTracker axisTracker(this); nscoord contentBoxMainSize = GetMainSizeFromReflowState(aReflowState, axisTracker); // If we're being fragmented into a constrained height, subtract off // borderpadding-top from it, to get the available height for our // content box. (Don't subtract if we're skipping top border/padding, // though.) nscoord availableHeightForContent = aReflowState.AvailableHeight(); if (availableHeightForContent != NS_UNCONSTRAINEDSIZE && !(GetSkipSides() & (1 << NS_SIDE_TOP))) { availableHeightForContent -= aReflowState.ComputedPhysicalBorderPadding().top; // (Don't let that push availableHeightForContent below zero, though): availableHeightForContent = std::max(availableHeightForContent, 0); } // Generate an array of our flex items (already sorted), in a FlexLine. nsAutoTArray lines; nsresult rv = GenerateFlexLines(aPresContext, aReflowState, contentBoxMainSize, availableHeightForContent, axisTracker, lines); NS_ENSURE_SUCCESS(rv, rv); contentBoxMainSize = ClampFlexContainerMainSize(aReflowState, axisTracker, contentBoxMainSize, availableHeightForContent, lines, aStatus); for (uint32_t i = 0; i < lines.Length(); i++) { lines[i].ResolveFlexibleLengths(contentBoxMainSize); } // Cross Size Determination - Flexbox spec section 9.4 // =================================================== // Calculate the hypothetical cross size of each item: for (uint32_t lineIdx = 0; lineIdx < lines.Length(); ++lineIdx) { FlexLine& line = lines[lineIdx]; for (uint32_t i = 0; i < line.mItems.Length(); ++i) { FlexItem& curItem = line.mItems[i]; // (If the item's already been stretched, then it already knows its // cross size. Don't bother trying to recalculate it.) if (!curItem.IsStretched()) { nsHTMLReflowState childReflowState(aPresContext, aReflowState, curItem.Frame(), nsSize(aReflowState.ComputedWidth(), NS_UNCONSTRAINEDSIZE)); // Override computed main-size if (IsAxisHorizontal(axisTracker.GetMainAxis())) { childReflowState.SetComputedWidth(curItem.GetMainSize()); } else { childReflowState.SetComputedHeight(curItem.GetMainSize()); } nsresult rv = SizeItemInCrossAxis(aPresContext, axisTracker, childReflowState, curItem); NS_ENSURE_SUCCESS(rv, rv); } } } // Calculate the cross size and (if necessary) baseline-alignment position // for each of our flex lines: for (uint32_t lineIdx = 0; lineIdx < lines.Length(); ++lineIdx) { lines[lineIdx].ComputeCrossSizeAndBaseline(axisTracker); } bool isCrossSizeDefinite; const nscoord contentBoxCrossSize = ComputeCrossSize(aReflowState, axisTracker, lines, availableHeightForContent, &isCrossSizeDefinite, aStatus); // Set up state for cross-axis alignment, at a high level (outside the // scope of a particular flex line) CrossAxisPositionTracker crossAxisPosnTracker(lines, aReflowState.mStylePosition->mAlignContent, contentBoxCrossSize, isCrossSizeDefinite, axisTracker); // Set the flex container's baseline, from the baseline-alignment position // of the first line's baseline-aligned items. nscoord flexContainerAscent; nscoord firstLineBaselineOffset = lines[0].GetBaselineOffsetFromCrossStart(); if (firstLineBaselineOffset == nscoord_MIN) { // No baseline-aligned flex items in first line --> just use a sentinel // value for now, and we'll update it during final reflow. flexContainerAscent = nscoord_MIN; } else { // Add the position of the first line to that line's baseline-alignment // offset, to get the baseline offset with respect to the *container's* // cross-start edge. nscoord firstLineBaselineOffsetWRTContainer = firstLineBaselineOffset + crossAxisPosnTracker.GetPosition(); // The container's ascent is that ^ offset, converted out of logical coords // (into distance from top of content-box), plus the top border/padding // (since ascent is measured with respect to the top of the border-box). flexContainerAscent = aReflowState.ComputedPhysicalBorderPadding().top + PhysicalPosFromLogicalPos(firstLineBaselineOffsetWRTContainer, contentBoxCrossSize, axisTracker.GetCrossAxis()); } for (uint32_t lineIdx = 0; lineIdx < lines.Length(); ++lineIdx) { FlexLine& line = lines[lineIdx]; // Main-Axis Alignment - Flexbox spec section 9.5 // ============================================== line.PositionItemsInMainAxis(aReflowState.mStylePosition->mJustifyContent, contentBoxMainSize, axisTracker); // Cross-Axis Alignment - Flexbox spec section 9.6 // =============================================== line.PositionItemsInCrossAxis(crossAxisPosnTracker.GetPosition(), axisTracker); crossAxisPosnTracker.TraverseLine(line); crossAxisPosnTracker.TraversePackingSpace(); } // Before giving each child a final reflow, calculate the origin of the // flex container's content box (with respect to its border-box), so that // we can compute our flex item's final positions. nsMargin containerBorderPadding(aReflowState.ComputedPhysicalBorderPadding()); ApplySkipSides(containerBorderPadding, &aReflowState); const nsPoint containerContentBoxOrigin(containerBorderPadding.left, containerBorderPadding.top); // FINAL REFLOW: Give each child frame another chance to reflow, now that // we know its final size and position. for (uint32_t lineIdx = 0; lineIdx < lines.Length(); ++lineIdx) { FlexLine& line = lines[lineIdx]; for (uint32_t i = 0; i < line.mItems.Length(); ++i) { FlexItem& curItem = line.mItems[i]; nsPoint physicalPosn = axisTracker.PhysicalPointFromLogicalPoint( curItem.GetMainPosition(), curItem.GetCrossPosition(), contentBoxMainSize, contentBoxCrossSize); // Adjust physicalPosn to be relative to the container's border-box // (i.e. its frame rect), instead of the container's content-box: physicalPosn += containerContentBoxOrigin; nsHTMLReflowState childReflowState(aPresContext, aReflowState, curItem.Frame(), nsSize(aReflowState.ComputedWidth(), NS_UNCONSTRAINEDSIZE)); // Keep track of whether we've overriden the child's computed height // and/or width, so we can set its resize flags accordingly. bool didOverrideComputedWidth = false; bool didOverrideComputedHeight = false; // Override computed main-size if (IsAxisHorizontal(axisTracker.GetMainAxis())) { childReflowState.SetComputedWidth(curItem.GetMainSize()); didOverrideComputedWidth = true; } else { childReflowState.SetComputedHeight(curItem.GetMainSize()); didOverrideComputedHeight = true; } // Override reflow state's computed cross-size, for stretched items. if (curItem.IsStretched()) { MOZ_ASSERT(curItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH, "stretched item w/o 'align-self: stretch'?"); if (IsAxisHorizontal(axisTracker.GetCrossAxis())) { childReflowState.SetComputedWidth(curItem.GetCrossSize()); didOverrideComputedWidth = true; } else { // If this item's height is stretched, it's a relative height. curItem.Frame()->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT); childReflowState.SetComputedHeight(curItem.GetCrossSize()); didOverrideComputedHeight = true; } } // XXXdholbert Might need to actually set the correct margins in the // reflow state at some point, so that they can be saved on the frame for // UsedMarginProperty(). Maybe doesn't matter though...? // If we're overriding the computed width or height, *and* we had an // earlier "measuring" reflow, then this upcoming reflow needs to be // treated as a resize. if (curItem.HadMeasuringReflow()) { if (didOverrideComputedWidth) { // (This is somewhat redundant, since the reflow state already // sets mHResize whenever our computed width has changed since the // previous reflow. Still, it's nice for symmetry, and it may become // necessary once we support orthogonal flows.) childReflowState.mFlags.mHResize = true; } if (didOverrideComputedHeight) { childReflowState.mFlags.mVResize = true; } } // NOTE: Be very careful about doing anything else with childReflowState // after this point, because some of its methods (e.g. SetComputedWidth) // internally call InitResizeFlags and stomp on mVResize & mHResize. nsHTMLReflowMetrics childDesiredSize(childReflowState.GetWritingMode()); nsReflowStatus childReflowStatus; nsresult rv = ReflowChild(curItem.Frame(), aPresContext, childDesiredSize, childReflowState, physicalPosn.x, physicalPosn.y, 0, childReflowStatus); NS_ENSURE_SUCCESS(rv, rv); // XXXdholbert Once we do pagination / splitting, we'll need to actually // handle incomplete childReflowStatuses. But for now, we give our kids // unconstrained available height, which means they should always // complete. MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus), "We gave flex item unconstrained available height, so it " "should be complete"); childReflowState.ApplyRelativePositioning(&physicalPosn); rv = FinishReflowChild(curItem.Frame(), aPresContext, childDesiredSize, &childReflowState, physicalPosn.x, physicalPosn.y, 0); NS_ENSURE_SUCCESS(rv, rv); // If this is our first child and we haven't established a baseline for // the container yet (i.e. if we don't have 'align-self: baseline' on any // children), then use this child's baseline as the container's baseline. if (lineIdx == 0 && i == 0 && flexContainerAscent == nscoord_MIN) { ResolveReflowedChildAscent(curItem.Frame(), childDesiredSize); // (We use GetNormalPosition() instead of physicalPosn because we don't // want relative positioning on the child to affect the baseline that we // read from it). flexContainerAscent = curItem.Frame()->GetNormalPosition().y + childDesiredSize.TopAscent(); } } } nsSize desiredContentBoxSize = axisTracker.PhysicalSizeFromLogicalSizes(contentBoxMainSize, contentBoxCrossSize); aDesiredSize.Width() = desiredContentBoxSize.width + containerBorderPadding.LeftRight(); // Does *NOT* include bottom border/padding yet (we add that a bit lower down) aDesiredSize.Height() = desiredContentBoxSize.height + containerBorderPadding.top; if (flexContainerAscent == nscoord_MIN) { // Still don't have our baseline set -- this happens if we have no // children (or if our children are huge enough that they have nscoord_MIN // as their baseline... in which case, we'll use the wrong baseline, but no // big deal) NS_WARN_IF_FALSE(lines[0].mItems.IsEmpty(), "Have flex items but didn't get an ascent - that's odd " "(or there are just gigantic sizes involved)"); // Per spec, just use the bottom of content-box. flexContainerAscent = aDesiredSize.Height(); } aDesiredSize.SetTopAscent(flexContainerAscent); // Now: If we're complete, add bottom border/padding to desired height // (unless that pushes us over available height, in which case we become // incomplete (unless we already weren't asking for any height, in which case // we stay complete to avoid looping forever)). // NOTE: If we're auto-height, we allow our bottom border/padding to push us // over the available height without requesting a continuation, for // consistency with the behavior of "display:block" elements. if (NS_FRAME_IS_COMPLETE(aStatus)) { // NOTE: We can't use containerBorderPadding.bottom for this, because if // we're auto-height, ApplySkipSides will have zeroed it (because it // assumed we might get a continuation). We have the correct value in // aReflowState.ComputedPhyiscalBorderPadding().bottom, though, so we use that. nscoord desiredHeightWithBottomBP = aDesiredSize.Height() + aReflowState.ComputedPhysicalBorderPadding().bottom; if (aReflowState.AvailableHeight() == NS_UNCONSTRAINEDSIZE || aDesiredSize.Height() == 0 || desiredHeightWithBottomBP <= aReflowState.AvailableHeight() || aReflowState.ComputedHeight() == NS_INTRINSICSIZE) { // Update desired height to include bottom border/padding aDesiredSize.Height() = desiredHeightWithBottomBP; } else { // We couldn't fit bottom border/padding, so we'll need a continuation. NS_FRAME_SET_INCOMPLETE(aStatus); } } // Overflow area = union(my overflow area, kids' overflow areas) aDesiredSize.SetOverflowAreasToDesiredBounds(); for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { ConsiderChildOverflow(aDesiredSize.mOverflowAreas, e.get()); } FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize, aReflowState, aStatus); NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize) return NS_OK; } /* virtual */ nscoord nsFlexContainerFrame::GetMinWidth(nsRenderingContext* aRenderingContext) { FlexboxAxisTracker axisTracker(this); nscoord minWidth = 0; for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { nscoord childMinWidth = nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(), nsLayoutUtils::MIN_WIDTH); // For a horizontal single-line flex container, the intrinsic min width is // the sum of its items' min widths. // For a vertical flex container, or for a multi-line horizontal flex // container, the intrinsic min width is the max of its items' min widths. if (IsAxisHorizontal(axisTracker.GetMainAxis()) && NS_STYLE_FLEX_WRAP_NOWRAP == StylePosition()->mFlexWrap) { minWidth += childMinWidth; } else { minWidth = std::max(minWidth, childMinWidth); } } return minWidth; } /* virtual */ nscoord nsFlexContainerFrame::GetPrefWidth(nsRenderingContext* aRenderingContext) { // XXXdholbert Optimization: We could cache our intrinsic widths like // nsBlockFrame does (and return it early from this function if it's set). // Whenever anything happens that might change it, set it to // NS_INTRINSIC_WIDTH_UNKNOWN (like nsBlockFrame::MarkIntrinsicWidthsDirty // does) FlexboxAxisTracker axisTracker(this); nscoord prefWidth = 0; for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) { nscoord childPrefWidth = nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(), nsLayoutUtils::PREF_WIDTH); if (IsAxisHorizontal(axisTracker.GetMainAxis())) { prefWidth += childPrefWidth; } else { prefWidth = std::max(prefWidth, childPrefWidth); } } return prefWidth; }