/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "RotatedBuffer.h" #include // for int32_t #include // for max #include "BasicImplData.h" // for BasicImplData #include "BasicLayersImpl.h" // for ToData #include "GeckoProfiler.h" // for AUTO_PROFILER_LABEL #include "Layers.h" // for PaintedLayer, Layer, etc #include "gfxPlatform.h" // for gfxPlatform #include "gfxPrefs.h" // for gfxPrefs #include "gfxUtils.h" // for gfxUtils #include "mozilla/ArrayUtils.h" // for ArrayLength #include "mozilla/gfx/BasePoint.h" // for BasePoint #include "mozilla/gfx/BaseRect.h" // for BaseRect #include "mozilla/gfx/BaseSize.h" // for BaseSize #include "mozilla/gfx/Matrix.h" // for Matrix #include "mozilla/gfx/Point.h" // for Point, IntPoint #include "mozilla/gfx/Rect.h" // for Rect, IntRect #include "mozilla/gfx/Types.h" // for ExtendMode::ExtendMode::CLAMP, etc #include "mozilla/layers/ShadowLayers.h" // for ShadowableLayer #include "mozilla/layers/TextureClient.h" // for TextureClient #include "mozilla/Move.h" // for Move #include "mozilla/gfx/Point.h" // for IntSize #include "gfx2DGlue.h" #include "nsLayoutUtils.h" // for invalidation debugging #include "PaintThread.h" namespace mozilla { using namespace gfx; namespace layers { void BorrowDrawTarget::ReturnDrawTarget(gfx::DrawTarget*& aReturned) { MOZ_ASSERT(mLoanedDrawTarget); MOZ_ASSERT(aReturned == mLoanedDrawTarget); if (mLoanedDrawTarget) { mLoanedDrawTarget->SetTransform(mLoanedTransform); mLoanedDrawTarget = nullptr; } aReturned = nullptr; } IntRect RotatedBuffer::GetQuadrantRectangle(XSide aXSide, YSide aYSide) const { // quadrantTranslation is the amount we translate the top-left // of the quadrant by to get coordinates relative to the layer IntPoint quadrantTranslation = -mBufferRotation; quadrantTranslation.x += aXSide == LEFT ? mBufferRect.Width() : 0; quadrantTranslation.y += aYSide == TOP ? mBufferRect.Height() : 0; return mBufferRect + quadrantTranslation; } Rect RotatedBuffer::GetSourceRectangle(XSide aXSide, YSide aYSide) const { Rect result; if (aXSide == LEFT) { result.SetBoxX(0, mBufferRotation.x); } else { result.SetBoxX(mBufferRotation.x, mBufferRect.Width()); } if (aYSide == TOP) { result.SetBoxY(0, mBufferRotation.y); } else { result.SetBoxY(mBufferRotation.y, mBufferRect.Height()); } return result; } void RotatedBuffer::BeginCapture() { RefPtr target = GetBufferTarget(); MOZ_ASSERT(!mCapture); MOZ_ASSERT(target); mCapture = Factory::CreateCaptureDrawTargetForTarget(target, gfxPrefs::LayersOMTPCaptureLimit()); } RefPtr RotatedBuffer::EndCapture() { MOZ_ASSERT(mCapture); return std::move(mCapture); } /** * @param aXSide LEFT means we draw from the left side of the buffer (which * is drawn on the right side of mBufferRect). RIGHT means we draw from * the right side of the buffer (which is drawn on the left side of * mBufferRect). * @param aYSide TOP means we draw from the top side of the buffer (which * is drawn on the bottom side of mBufferRect). BOTTOM means we draw from * the bottom side of the buffer (which is drawn on the top side of * mBufferRect). */ void RotatedBuffer::DrawBufferQuadrant(gfx::DrawTarget* aTarget, XSide aXSide, YSide aYSide, float aOpacity, gfx::CompositionOp aOperator, gfx::SourceSurface* aMask, const gfx::Matrix* aMaskTransform) const { // The rectangle that we're going to fill. Basically we're going to // render the buffer at mBufferRect + quadrantTranslation to get the // pixels in the right place, but we're only going to paint within // mBufferRect IntRect quadrantRect = GetQuadrantRectangle(aXSide, aYSide); IntRect fillRect; if (!fillRect.IntersectRect(mBufferRect, quadrantRect)) return; gfx::Point quadrantTranslation(quadrantRect.X(), quadrantRect.Y()); RefPtr snapshot = GetBufferSource(); if (!snapshot) { gfxCriticalError() << "Invalid snapshot in RotatedBuffer::DrawBufferQuadrant"; return; } // direct2d is much slower when using OP_SOURCE so use OP_OVER and // (maybe) a clear instead. Normally we need to draw in a single operation // (to avoid flickering) but direct2d is ok since it defers rendering. // We should try abstract this logic in a helper when we have other use // cases. if ((aTarget->GetBackendType() == BackendType::DIRECT2D || aTarget->GetBackendType() == BackendType::DIRECT2D1_1) && aOperator == CompositionOp::OP_SOURCE) { aOperator = CompositionOp::OP_OVER; if (snapshot->GetFormat() == SurfaceFormat::B8G8R8A8) { aTarget->ClearRect(IntRectToRect(fillRect)); } } // OP_SOURCE is unbounded in Azure, and we really don't want that behaviour here. // We also can't do a ClearRect+FillRect since we need the drawing to happen // as an atomic operation (to prevent flickering). // We also need this clip in the case where we have a mask, since the mask surface // might cover more than fillRect, but we only want to touch the pixels inside // fillRect. aTarget->PushClipRect(IntRectToRect(fillRect)); if (aMask) { Matrix oldTransform = aTarget->GetTransform(); // Transform from user -> buffer space. Matrix transform = Matrix::Translation(quadrantTranslation.x, quadrantTranslation.y); Matrix inverseMask = *aMaskTransform; inverseMask.Invert(); transform *= oldTransform; transform *= inverseMask; #ifdef MOZ_GFX_OPTIMIZE_MOBILE SurfacePattern source(snapshot, ExtendMode::CLAMP, transform, SamplingFilter::POINT); #else SurfacePattern source(snapshot, ExtendMode::CLAMP, transform); #endif aTarget->SetTransform(*aMaskTransform); aTarget->MaskSurface(source, aMask, Point(0, 0), DrawOptions(aOpacity, aOperator)); aTarget->SetTransform(oldTransform); } else { #ifdef MOZ_GFX_OPTIMIZE_MOBILE DrawSurfaceOptions options(SamplingFilter::POINT); #else DrawSurfaceOptions options; #endif aTarget->DrawSurface(snapshot, IntRectToRect(fillRect), GetSourceRectangle(aXSide, aYSide), options, DrawOptions(aOpacity, aOperator)); } aTarget->PopClip(); } void RotatedBuffer::DrawBufferWithRotation(gfx::DrawTarget *aTarget, float aOpacity, gfx::CompositionOp aOperator, gfx::SourceSurface* aMask, const gfx::Matrix* aMaskTransform) const { AUTO_PROFILER_LABEL("RotatedBuffer::DrawBufferWithRotation", GRAPHICS); // See above, in Azure Repeat should always be a safe, even faster choice // though! Particularly on D2D Repeat should be a lot faster, need to look // into that. TODO[Bas] DrawBufferQuadrant(aTarget, LEFT, TOP, aOpacity, aOperator, aMask, aMaskTransform); DrawBufferQuadrant(aTarget, RIGHT, TOP, aOpacity, aOperator, aMask, aMaskTransform); DrawBufferQuadrant(aTarget, LEFT, BOTTOM, aOpacity, aOperator, aMask, aMaskTransform); DrawBufferQuadrant(aTarget, RIGHT, BOTTOM, aOpacity, aOperator,aMask, aMaskTransform); } bool IsClippingCheap(gfx::DrawTarget* aTarget, const nsIntRegion& aRegion) { // Assume clipping is cheap if the draw target just has an integer // translation, and the visible region is simple. return !aTarget->GetTransform().HasNonIntegerTranslation() && aRegion.GetNumRects() <= 1; } void RotatedBuffer::DrawTo(PaintedLayer* aLayer, DrawTarget* aTarget, float aOpacity, CompositionOp aOp, SourceSurface* aMask, const Matrix* aMaskTransform) { bool clipped = false; // If the entire buffer is valid, we can just draw the whole thing, // no need to clip. But we'll still clip if clipping is cheap --- // that might let us copy a smaller region of the buffer. // Also clip to the visible region if we're told to. if (!aLayer->GetValidRegion().Contains(BufferRect()) || (ToData(aLayer)->GetClipToVisibleRegion() && !aLayer->GetVisibleRegion().ToUnknownRegion().Contains(BufferRect())) || IsClippingCheap(aTarget, aLayer->GetLocalVisibleRegion().ToUnknownRegion())) { // We don't want to draw invalid stuff, so we need to clip. Might as // well clip to the smallest area possible --- the visible region. // Bug 599189 if there is a non-integer-translation transform in aTarget, // we might sample pixels outside GetLocalVisibleRegion(), which is wrong // and may cause gray lines. gfxUtils::ClipToRegion(aTarget, aLayer->GetLocalVisibleRegion().ToUnknownRegion()); clipped = true; } DrawBufferWithRotation(aTarget, aOpacity, aOp, aMask, aMaskTransform); if (clipped) { aTarget->PopClip(); } } void RotatedBuffer::UpdateDestinationFrom(const RotatedBuffer& aSource, const gfx::IntRect& aUpdateRect) { DrawIterator iter; while (DrawTarget* destDT = BorrowDrawTargetForQuadrantUpdate(aUpdateRect, &iter)) { bool isClippingCheap = IsClippingCheap(destDT, iter.mDrawRegion); if (isClippingCheap) { gfxUtils::ClipToRegion(destDT, iter.mDrawRegion); } aSource.DrawBufferWithRotation(destDT, 1.0, CompositionOp::OP_SOURCE); if (isClippingCheap) { destDT->PopClip(); } ReturnDrawTarget(destDT); } } static void WrapRotationAxis(int32_t* aRotationPoint, int32_t aSize) { if (*aRotationPoint < 0) { *aRotationPoint += aSize; } else if (*aRotationPoint >= aSize) { *aRotationPoint -= aSize; } } bool RotatedBuffer::Parameters::IsRotated() const { return mBufferRotation != IntPoint(0,0); } bool RotatedBuffer::Parameters::RectWrapsBuffer(const gfx::IntRect& aRect) const { int32_t xBoundary = mBufferRect.XMost() - mBufferRotation.x; int32_t yBoundary = mBufferRect.YMost() - mBufferRotation.y; return (aRect.X() < xBoundary && xBoundary < aRect.XMost()) || (aRect.Y() < yBoundary && yBoundary < aRect.YMost()); } void RotatedBuffer::Parameters::SetUnrotated() { mBufferRotation = IntPoint(0,0); mDidSelfCopy = true; } RotatedBuffer::Parameters RotatedBuffer::AdjustedParameters(const gfx::IntRect& aDestBufferRect) const { IntRect keepArea; if (keepArea.IntersectRect(aDestBufferRect, mBufferRect)) { // Set mBufferRotation so that the pixels currently in mDTBuffer // will still be rendered in the right place when mBufferRect // changes to aDestBufferRect. IntPoint newRotation = mBufferRotation + (aDestBufferRect.TopLeft() - mBufferRect.TopLeft()); WrapRotationAxis(&newRotation.x, mBufferRect.Width()); WrapRotationAxis(&newRotation.y, mBufferRect.Height()); NS_ASSERTION(gfx::IntRect(gfx::IntPoint(0,0), mBufferRect.Size()).Contains(newRotation), "newRotation out of bounds"); return Parameters{aDestBufferRect, newRotation}; } // No pixels are going to be kept. The whole visible region // will be redrawn, so we don't need to copy anything, so we don't // set destBuffer. return Parameters{aDestBufferRect, IntPoint(0,0)}; } bool RotatedBuffer::UnrotateBufferTo(const Parameters& aParameters) { RefPtr drawTarget = GetDrawTarget(); MOZ_ASSERT(drawTarget && drawTarget->IsValid()); if (mBufferRotation == IntPoint(0,0)) { IntRect srcRect(IntPoint(0, 0), mBufferRect.Size()); IntPoint dest = mBufferRect.TopLeft() - aParameters.mBufferRect.TopLeft(); drawTarget->CopyRect(srcRect, dest); return true; } else { return drawTarget->Unrotate(aParameters.mBufferRotation); } } void RotatedBuffer::SetParameters(const RotatedBuffer::Parameters& aParameters) { mBufferRect = aParameters.mBufferRect; mBufferRotation = aParameters.mBufferRotation; mDidSelfCopy = aParameters.mDidSelfCopy; } RotatedBuffer::ContentType RotatedBuffer::GetContentType() const { return ContentForFormat(GetFormat()); } DrawTarget* RotatedBuffer::BorrowDrawTargetForQuadrantUpdate(const IntRect& aBounds, DrawIterator* aIter) { IntRect bounds = aBounds; if (aIter) { // If an iterator was provided, then BeginPaint must have been run with // PAINT_CAN_DRAW_ROTATED, and the draw region might cover multiple quadrants. // Iterate over each of them, and return an appropriate buffer each time we find // one that intersects the draw region. The iterator mCount value tracks which // quadrants we have considered across multiple calls to this function. aIter->mDrawRegion.SetEmpty(); while (aIter->mCount < 4) { IntRect quadrant = GetQuadrantRectangle((aIter->mCount & 1) ? LEFT : RIGHT, (aIter->mCount & 2) ? TOP : BOTTOM); aIter->mDrawRegion.And(aBounds, quadrant); aIter->mCount++; if (!aIter->mDrawRegion.IsEmpty()) { break; } } if (aIter->mDrawRegion.IsEmpty()) { return nullptr; } bounds = aIter->mDrawRegion.GetBounds(); } MOZ_ASSERT(!mLoanedDrawTarget, "draw target has been borrowed and not returned"); mLoanedDrawTarget = GetDrawTarget(); // Figure out which quadrant to draw in int32_t xBoundary = mBufferRect.XMost() - mBufferRotation.x; int32_t yBoundary = mBufferRect.YMost() - mBufferRotation.y; XSide sideX = bounds.XMost() <= xBoundary ? RIGHT : LEFT; YSide sideY = bounds.YMost() <= yBoundary ? BOTTOM : TOP; IntRect quadrantRect = GetQuadrantRectangle(sideX, sideY); NS_ASSERTION(quadrantRect.Contains(bounds), "Messed up quadrants"); mLoanedTransform = mLoanedDrawTarget->GetTransform(); Matrix transform = Matrix(mLoanedTransform) .PreTranslate(-quadrantRect.X(), -quadrantRect.Y()); mLoanedDrawTarget->SetTransform(transform); return mLoanedDrawTarget; } gfx::SurfaceFormat RemoteRotatedBuffer::GetFormat() const { return mClient->GetFormat(); } bool RemoteRotatedBuffer::IsLocked() { return mClient->IsLocked(); } bool RemoteRotatedBuffer::Lock(OpenMode aMode) { MOZ_ASSERT(!mTarget); MOZ_ASSERT(!mTargetOnWhite); bool locked = mClient->Lock(aMode) && (!mClientOnWhite || mClientOnWhite->Lock(aMode)); if (!locked) { Unlock(); return false; } mTarget = mClient->BorrowDrawTarget(); if (!mTarget || !mTarget->IsValid()) { gfxCriticalNote << "Invalid draw target " << hexa(mTarget) << " in RemoteRotatedBuffer::Lock"; Unlock(); return false; } if (mClientOnWhite) { mTargetOnWhite = mClientOnWhite->BorrowDrawTarget(); if (!mTargetOnWhite || !mTargetOnWhite->IsValid()) { gfxCriticalNote << "Invalid draw target(s) " << hexa(mTarget) << " and " << hexa(mTargetOnWhite) << " in RemoteRotatedBuffer::Lock"; Unlock(); return false; } } if (mTargetOnWhite) { mTargetDual = Factory::CreateDualDrawTarget(mTarget, mTargetOnWhite); if (!mTargetDual || !mTargetDual->IsValid()) { gfxCriticalNote << "Invalid dual draw target " << hexa(mTargetDual) << " in RemoteRotatedBuffer::Lock"; Unlock(); return false; } } else { mTargetDual = mTarget; } return true; } void RemoteRotatedBuffer::Unlock() { mTarget = nullptr; mTargetOnWhite = nullptr; mTargetDual = nullptr; if (mClient->IsLocked()) { mClient->Unlock(); } if (mClientOnWhite && mClientOnWhite->IsLocked()) { mClientOnWhite->Unlock(); } } void RemoteRotatedBuffer::SyncWithObject(SyncObjectClient* aSyncObject) { mClient->SyncWithObject(aSyncObject); if (mClientOnWhite) { mClientOnWhite->SyncWithObject(aSyncObject); } } void RemoteRotatedBuffer::Clear() { MOZ_ASSERT(!mTarget && !mTargetOnWhite); mClient = nullptr; mClientOnWhite = nullptr; } gfx::DrawTarget* RemoteRotatedBuffer::GetBufferTarget() const { return mTargetDual; } gfx::SurfaceFormat DrawTargetRotatedBuffer::GetFormat() const { return mTarget->GetFormat(); } gfx::DrawTarget* DrawTargetRotatedBuffer::GetBufferTarget() const { return mTargetDual; } gfx::SurfaceFormat SourceRotatedBuffer::GetFormat() const { return mSource->GetFormat(); } already_AddRefed SourceRotatedBuffer::GetBufferSource() const { RefPtr sourceDual = mSourceDual; return sourceDual.forget(); } } // namespace layers } // namespace mozilla