/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "ImageScaling.h" #include "mozilla/Attributes.h" #include "SSEHelpers.h" /* The functions below use the following system for averaging 4 pixels: * * The first observation is that a half-adder is implemented as follows: * R = S + 2C or in the case of a and b (a ^ b) + ((a & b) << 1); * * This can be trivially extended to three pixels by observaring that when * doing (a ^ b ^ c) as the sum, the carry is simply the bitwise-or of the * carries of the individual numbers, since the sum of 3 bits can only ever * have a carry of one. * * We then observe that the average is then ((carry << 1) + sum) >> 1, or, * assuming eliminating overflows and underflows, carry + (sum >> 1). * * We now average our existing sum with the fourth number, so we get: * sum2 = (sum + d) >> 1 or (sum >> 1) + (d >> 1). * * We now observe that our sum has been moved into place relative to the * carry, so we can now average with the carry to get the final 4 input * average: avg = (sum2 + carry) >> 1; * * Or to reverse the proof: * avg = ((sum >> 1) + carry + d >> 1) >> 1 * avg = ((a + b + c) >> 1 + d >> 1) >> 1 * avg = ((a + b + c + d) >> 2) * * An additional fact used in the SSE versions is the concept that we can * trivially convert a rounded average to a truncated average: * * We have: * f(a, b) = (a + b + 1) >> 1 * * And want: * g(a, b) = (a + b) >> 1 * * Observe: * ~f(~a, ~b) == ~((~a + ~b + 1) >> 1) * == ~((-a - 1 + -b - 1 + 1) >> 1) * == ~((-a - 1 + -b) >> 1) * == ~((-(a + b) - 1) >> 1) * == ~((~(a + b)) >> 1) * == (a + b) >> 1 * == g(a, b) */ MOZ_ALWAYS_INLINE __m128i _mm_not_si128(__m128i arg) { __m128i minusone = _mm_set1_epi32(0xffffffff); return _mm_xor_si128(arg, minusone); } /* We have to pass pointers here, MSVC does not allow passing more than 3 * __m128i arguments on the stack. And it does not allow 16-byte aligned * stack variables. This inlines properly on MSVC 2010. It does -not- inline * with just the inline directive. */ MOZ_ALWAYS_INLINE __m128i avg_sse2_8x2(__m128i *a, __m128i *b, __m128i *c, __m128i *d) { #define shuf1 _MM_SHUFFLE(2, 0, 2, 0) #define shuf2 _MM_SHUFFLE(3, 1, 3, 1) // This cannot be an inline function as the __Imm argument to _mm_shuffle_ps // needs to be a compile time constant. #define shuffle_si128(arga, argb, imm) \ _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps((arga)), _mm_castsi128_ps((argb)), (imm))); __m128i t = shuffle_si128(*a, *b, shuf1); *b = shuffle_si128(*a, *b, shuf2); *a = t; t = shuffle_si128(*c, *d, shuf1); *d = shuffle_si128(*c, *d, shuf2); *c = t; #undef shuf1 #undef shuf2 #undef shuffle_si128 __m128i sum = _mm_xor_si128(*a, _mm_xor_si128(*b, *c)); __m128i carry = _mm_or_si128(_mm_and_si128(*a, *b), _mm_or_si128(_mm_and_si128(*a, *c), _mm_and_si128(*b, *c))); sum = _mm_avg_epu8(_mm_not_si128(sum), _mm_not_si128(*d)); return _mm_not_si128(_mm_avg_epu8(sum, _mm_not_si128(carry))); } MOZ_ALWAYS_INLINE __m128i avg_sse2_4x2_4x1(__m128i a, __m128i b) { return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b))); } MOZ_ALWAYS_INLINE __m128i avg_sse2_8x1_4x1(__m128i a, __m128i b) { __m128i t = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), _MM_SHUFFLE(3, 1, 3, 1))); b = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), _MM_SHUFFLE(2, 0, 2, 0))); a = t; return _mm_not_si128(_mm_avg_epu8(_mm_not_si128(a), _mm_not_si128(b))); } MOZ_ALWAYS_INLINE uint32_t Avg2x2(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { uint32_t sum = a ^ b ^ c; uint32_t carry = (a & b) | (a & c) | (b & c); uint32_t mask = 0xfefefefe; // Not having a byte based average instruction means we should mask to avoid // underflow. sum = (((sum ^ d) & mask) >> 1) + (sum & d); return (((sum ^ carry) & mask) >> 1) + (sum & carry); } // Simple 2 pixel average version of the function above. MOZ_ALWAYS_INLINE uint32_t Avg2(uint32_t a, uint32_t b) { uint32_t sum = a ^ b; uint32_t carry = (a & b); uint32_t mask = 0xfefefefe; return ((sum & mask) >> 1) + carry; } namespace mozilla { namespace gfx { void ImageHalfScaler::HalfImage2D_SSE2(uint8_t *aSource, int32_t aSourceStride, const IntSize &aSourceSize, uint8_t *aDest, uint32_t aDestStride) { const int Bpp = 4; for (int y = 0; y < aSourceSize.height; y += 2) { __m128i *storage = (__m128i*)(aDest + (y / 2) * aDestStride); int x = 0; // Run a loop depending on alignment. if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) && !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { for (; x < (aSourceSize.width - 7); x += 8) { __m128i *upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); __m128i *lowerRow = (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); __m128i a = _mm_load_si128(upperRow); __m128i b = _mm_load_si128(upperRow + 1); __m128i c = _mm_load_si128(lowerRow); __m128i d = _mm_load_si128(lowerRow + 1); *storage++ = avg_sse2_8x2(&a, &b, &c, &d); } } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) { for (; x < (aSourceSize.width - 7); x += 8) { __m128i *upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); __m128i *lowerRow = (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); __m128i a = _mm_load_si128(upperRow); __m128i b = _mm_load_si128(upperRow + 1); __m128i c = loadUnaligned128(lowerRow); __m128i d = loadUnaligned128(lowerRow + 1); *storage++ = avg_sse2_8x2(&a, &b, &c, &d); } } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { for (; x < (aSourceSize.width - 7); x += 8) { __m128i *upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); __m128i *lowerRow = (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); __m128i a = loadUnaligned128((__m128i*)upperRow); __m128i b = loadUnaligned128((__m128i*)upperRow + 1); __m128i c = _mm_load_si128((__m128i*)lowerRow); __m128i d = _mm_load_si128((__m128i*)lowerRow + 1); *storage++ = avg_sse2_8x2(&a, &b, &c, &d); } } else { for (; x < (aSourceSize.width - 7); x += 8) { __m128i *upperRow = (__m128i*)(aSource + (y * aSourceStride + x * Bpp)); __m128i *lowerRow = (__m128i*)(aSource + ((y + 1) * aSourceStride + x * Bpp)); __m128i a = loadUnaligned128(upperRow); __m128i b = loadUnaligned128(upperRow + 1); __m128i c = loadUnaligned128(lowerRow); __m128i d = loadUnaligned128(lowerRow + 1); *storage++ = avg_sse2_8x2(&a, &b, &c, &d); } } uint32_t *unalignedStorage = (uint32_t*)storage; // Take care of the final pixels, we know there's an even number of pixels // in the source rectangle. We use a 2x2 'simd' implementation for this. // // Potentially we only have to do this in the last row since overflowing // 8 pixels in an earlier row would appear to be harmless as it doesn't // touch invalid memory. Even when reading and writing to the same surface. // in practice we only do this when doing an additional downscale pass, and // in this situation we have unused stride to write into harmlessly. // I do not believe the additional code complexity would be worth it though. for (; x < aSourceSize.width; x += 2) { uint8_t *upperRow = aSource + (y * aSourceStride + x * Bpp); uint8_t *lowerRow = aSource + ((y + 1) * aSourceStride + x * Bpp); *unalignedStorage++ = Avg2x2(*(uint32_t*)upperRow, *((uint32_t*)upperRow + 1), *(uint32_t*)lowerRow, *((uint32_t*)lowerRow + 1)); } } } void ImageHalfScaler::HalfImageVertical_SSE2(uint8_t *aSource, int32_t aSourceStride, const IntSize &aSourceSize, uint8_t *aDest, uint32_t aDestStride) { for (int y = 0; y < aSourceSize.height; y += 2) { __m128i *storage = (__m128i*)(aDest + (y / 2) * aDestStride); int x = 0; // Run a loop depending on alignment. if (!(uintptr_t(aSource + (y * aSourceStride)) % 16) && !(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { for (; x < (aSourceSize.width - 3); x += 4) { uint8_t *upperRow = aSource + (y * aSourceStride + x * 4); uint8_t *lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); __m128i a = _mm_load_si128((__m128i*)upperRow); __m128i b = _mm_load_si128((__m128i*)lowerRow); *storage++ = avg_sse2_4x2_4x1(a, b); } } else if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) { // This line doesn't align well. for (; x < (aSourceSize.width - 3); x += 4) { uint8_t *upperRow = aSource + (y * aSourceStride + x * 4); uint8_t *lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); __m128i a = _mm_load_si128((__m128i*)upperRow); __m128i b = loadUnaligned128((__m128i*)lowerRow); *storage++ = avg_sse2_4x2_4x1(a, b); } } else if (!(uintptr_t(aSource + ((y + 1) * aSourceStride)) % 16)) { for (; x < (aSourceSize.width - 3); x += 4) { uint8_t *upperRow = aSource + (y * aSourceStride + x * 4); uint8_t *lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); __m128i a = loadUnaligned128((__m128i*)upperRow); __m128i b = _mm_load_si128((__m128i*)lowerRow); *storage++ = avg_sse2_4x2_4x1(a, b); } } else { for (; x < (aSourceSize.width - 3); x += 4) { uint8_t *upperRow = aSource + (y * aSourceStride + x * 4); uint8_t *lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); __m128i a = loadUnaligned128((__m128i*)upperRow); __m128i b = loadUnaligned128((__m128i*)lowerRow); *storage++ = avg_sse2_4x2_4x1(a, b); } } uint32_t *unalignedStorage = (uint32_t*)storage; // Take care of the final pixels, we know there's an even number of pixels // in the source rectangle. // // Similar overflow considerations are valid as in the previous function. for (; x < aSourceSize.width; x++) { uint8_t *upperRow = aSource + (y * aSourceStride + x * 4); uint8_t *lowerRow = aSource + ((y + 1) * aSourceStride + x * 4); *unalignedStorage++ = Avg2(*(uint32_t*)upperRow, *(uint32_t*)lowerRow); } } } void ImageHalfScaler::HalfImageHorizontal_SSE2(uint8_t *aSource, int32_t aSourceStride, const IntSize &aSourceSize, uint8_t *aDest, uint32_t aDestStride) { for (int y = 0; y < aSourceSize.height; y++) { __m128i *storage = (__m128i*)(aDest + (y * aDestStride)); int x = 0; // Run a loop depending on alignment. if (!(uintptr_t(aSource + (y * aSourceStride)) % 16)) { for (; x < (aSourceSize.width - 7); x += 8) { __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4)); __m128i a = _mm_load_si128(pixels); __m128i b = _mm_load_si128(pixels + 1); *storage++ = avg_sse2_8x1_4x1(a, b); } } else { for (; x < (aSourceSize.width - 7); x += 8) { __m128i* pixels = (__m128i*)(aSource + (y * aSourceStride + x * 4)); __m128i a = loadUnaligned128(pixels); __m128i b = loadUnaligned128(pixels + 1); *storage++ = avg_sse2_8x1_4x1(a, b); } } uint32_t *unalignedStorage = (uint32_t*)storage; // Take care of the final pixels, we know there's an even number of pixels // in the source rectangle. // // Similar overflow considerations are valid as in the previous function. for (; x < aSourceSize.width; x += 2) { uint32_t *pixels = (uint32_t*)(aSource + (y * aSourceStride + x * 4)); *unalignedStorage++ = Avg2(*pixels, *(pixels + 1)); } } } } }