/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=2 et sw=2 tw=80: */ /* This Source Code is subject to the terms of the Mozilla Public License * version 2.0 (the "License"). You can obtain a copy of the License at * http://mozilla.org/MPL/2.0/. */ /* rendering object for CSS "display: grid | inline-grid" */ #include "nsGridContainerFrame.h" #include // for std::stable_sort #include #include "mozilla/Maybe.h" #include "mozilla/PodOperations.h" // for PodZero #include "nsAbsoluteContainingBlock.h" #include "nsAlgorithm.h" // for clamped() #include "nsAutoPtr.h" #include "nsCSSAnonBoxes.h" #include "nsDataHashtable.h" #include "nsDisplayList.h" #include "nsHashKeys.h" #include "nsIFrameInlines.h" #include "nsPresContext.h" #include "nsRenderingContext.h" #include "nsReadableUtils.h" #include "nsRuleNode.h" #include "nsStyleContext.h" using namespace mozilla; typedef nsAbsoluteContainingBlock::AbsPosReflowFlags AbsPosReflowFlags; typedef nsGridContainerFrame::TrackSize TrackSize; const uint32_t nsGridContainerFrame::kTranslatedMaxLine = uint32_t(nsStyleGridLine::kMaxLine - nsStyleGridLine::kMinLine); const uint32_t nsGridContainerFrame::kAutoLine = kTranslatedMaxLine + 3457U; typedef nsTHashtable< nsPtrHashKey > FrameHashtable; static void ReparentFrame(nsIFrame* aFrame, nsContainerFrame* aOldParent, nsContainerFrame* aNewParent) { NS_ASSERTION(aOldParent == aFrame->GetParent(), "Parent not consistent with expectations"); aFrame->SetParent(aNewParent); // When pushing and pulling frames we need to check for whether any // views need to be reparented nsContainerFrame::ReparentFrameView(aFrame, aOldParent, aNewParent); } static void ReparentFrames(nsFrameList& aFrameList, nsContainerFrame* aOldParent, nsContainerFrame* aNewParent) { for (auto f : aFrameList) { ReparentFrame(f, aOldParent, aNewParent); } } static nscoord ClampToCSSMaxBSize(nscoord aSize, const nsHTMLReflowState* aReflowState) { auto maxSize = aReflowState->ComputedMaxBSize(); if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) { MOZ_ASSERT(aReflowState->ComputedMinBSize() <= maxSize); aSize = std::min(aSize, maxSize); } return aSize; } // Same as above and set aStatus INCOMPLETE if aSize wasn't clamped. // (If we clamp aSize it means our size is less than the break point, // i.e. we're effectively breaking in our overflow, so we should leave // aStatus as is (it will likely be set to OVERFLOW_INCOMPLETE later)). static nscoord ClampToCSSMaxBSize(nscoord aSize, const nsHTMLReflowState* aReflowState, nsReflowStatus* aStatus) { auto maxSize = aReflowState->ComputedMaxBSize(); if (MOZ_UNLIKELY(maxSize != NS_UNCONSTRAINEDSIZE)) { MOZ_ASSERT(aReflowState->ComputedMinBSize() <= maxSize); if (aSize < maxSize) { NS_FRAME_SET_INCOMPLETE(*aStatus); } else { aSize = maxSize; } } else { NS_FRAME_SET_INCOMPLETE(*aStatus); } return aSize; } enum class GridLineSide { eBeforeGridGap, eAfterGridGap, }; struct nsGridContainerFrame::TrackSize { void Initialize(nscoord aPercentageBasis, const nsStyleCoord& aMinCoord, const nsStyleCoord& aMaxCoord); bool IsFrozen() const { return mState & eFrozen; } #ifdef DEBUG void Dump() const; #endif enum StateBits : uint16_t { eAutoMinSizing = 0x1, eMinContentMinSizing = 0x2, eMaxContentMinSizing = 0x4, eMinOrMaxContentMinSizing = eMinContentMinSizing | eMaxContentMinSizing, eIntrinsicMinSizing = eMinOrMaxContentMinSizing | eAutoMinSizing, eFlexMinSizing = 0x8, eAutoMaxSizing = 0x10, eMinContentMaxSizing = 0x20, eMaxContentMaxSizing = 0x40, eAutoOrMaxContentMaxSizing = eAutoMaxSizing | eMaxContentMaxSizing, eIntrinsicMaxSizing = eAutoOrMaxContentMaxSizing | eMinContentMaxSizing, eFlexMaxSizing = 0x80, eFrozen = 0x100, eSkipGrowUnlimited1 = 0x200, eSkipGrowUnlimited2 = 0x400, eSkipGrowUnlimited = eSkipGrowUnlimited1 | eSkipGrowUnlimited2, eBreakBefore = 0x800, }; static bool IsMinContent(const nsStyleCoord& aCoord) { return aCoord.GetUnit() == eStyleUnit_Enumerated && aCoord.GetIntValue() == NS_STYLE_GRID_TRACK_BREADTH_MIN_CONTENT; } nscoord mBase; nscoord mLimit; nscoord mPosition; // zero until we apply 'align/justify-content' StateBits mState; }; MOZ_MAKE_ENUM_CLASS_BITWISE_OPERATORS(TrackSize::StateBits) namespace mozilla { template <> struct IsPod : TrueType {}; } void nsGridContainerFrame::TrackSize::Initialize(nscoord aPercentageBasis, const nsStyleCoord& aMinCoord, const nsStyleCoord& aMaxCoord) { MOZ_ASSERT(mBase == 0 && mLimit == 0 && mState == 0, "track size data is expected to be initialized to zero"); // http://dev.w3.org/csswg/css-grid/#algo-init switch (aMinCoord.GetUnit()) { case eStyleUnit_Auto: mState = eAutoMinSizing; break; case eStyleUnit_Enumerated: mState = IsMinContent(aMinCoord) ? eMinContentMinSizing : eMaxContentMinSizing; break; case eStyleUnit_FlexFraction: mState = eFlexMinSizing; break; default: mBase = nsRuleNode::ComputeCoordPercentCalc(aMinCoord, aPercentageBasis); } switch (aMaxCoord.GetUnit()) { case eStyleUnit_Auto: mState |= eAutoMaxSizing; mLimit = NS_UNCONSTRAINEDSIZE; break; case eStyleUnit_Enumerated: mState |= IsMinContent(aMaxCoord) ? eMinContentMaxSizing : eMaxContentMaxSizing; mLimit = NS_UNCONSTRAINEDSIZE; break; case eStyleUnit_FlexFraction: mState |= eFlexMaxSizing; mLimit = mBase; break; default: mLimit = nsRuleNode::ComputeCoordPercentCalc(aMaxCoord, aPercentageBasis); if (mLimit < mBase) { mLimit = mBase; } } } /** * Is aFrame1 a prev-continuation of aFrame2? */ static bool IsPrevContinuationOf(nsIFrame* aFrame1, nsIFrame* aFrame2) { nsIFrame* prev = aFrame2; while ((prev = prev->GetPrevContinuation())) { if (prev == aFrame1) { return true; } } return false; } /** * Moves all frames from aSrc into aDest such that the resulting aDest * is still sorted in document content order and continuation order. * Precondition: both |aSrc| and |aDest| must be sorted to begin with. * @param aCommonAncestor a hint for nsLayoutUtils::CompareTreePosition */ static void MergeSortedFrameLists(nsFrameList& aDest, nsFrameList& aSrc, nsIContent* aCommonAncestor) { nsIFrame* dest = aDest.FirstChild(); for (nsIFrame* src = aSrc.FirstChild(); src; ) { if (!dest) { aDest.AppendFrames(nullptr, aSrc); break; } int32_t result = nsLayoutUtils::CompareTreePosition(src->GetContent(), dest->GetContent(), aCommonAncestor); if (MOZ_UNLIKELY(result == 0)) { // NOTE: we get here when comparing ::before/::after for the same element. auto srcPseudo = src->GetContent()->NodeInfo()->NameAtom(); if (MOZ_UNLIKELY(srcPseudo == nsGkAtoms::mozgeneratedcontentbefore)) { auto destPseudo = dest->GetContent()->NodeInfo()->NameAtom(); if (MOZ_LIKELY(destPseudo != nsGkAtoms::mozgeneratedcontentbefore) || ::IsPrevContinuationOf(src, dest)) { result = -1; } } else if (MOZ_UNLIKELY(srcPseudo == nsGkAtoms::mozgeneratedcontentafter)) { auto destPseudo = dest->GetContent()->NodeInfo()->NameAtom(); if (MOZ_UNLIKELY(destPseudo == nsGkAtoms::mozgeneratedcontentafter) && ::IsPrevContinuationOf(src, dest)) { result = -1; } } else if (::IsPrevContinuationOf(src, dest)) { result = -1; } } if (result < 0) { // src should come before dest nsIFrame* next = src->GetNextSibling(); aSrc.RemoveFrame(src); aDest.InsertFrame(nullptr, dest->GetPrevSibling(), src); src = next; } else { dest = dest->GetNextSibling(); } } MOZ_ASSERT(aSrc.IsEmpty()); } class nsGridContainerFrame::GridItemCSSOrderIterator { public: enum OrderState { eUnknownOrder, eKnownOrdered, eKnownUnordered }; enum ChildFilter { eSkipPlaceholders, eIncludeAll }; GridItemCSSOrderIterator(nsIFrame* aGridContainer, nsIFrame::ChildListID aListID, ChildFilter aFilter = eSkipPlaceholders, OrderState aState = eUnknownOrder) : mChildren(aGridContainer->GetChildList(aListID)) , mArrayIndex(0) , mGridItemIndex(0) , mSkipPlaceholders(aFilter == eSkipPlaceholders) #ifdef DEBUG , mGridContainer(aGridContainer) , mListID(aListID) #endif { size_t count = 0; bool isOrdered = aState != eKnownUnordered; if (aState == eUnknownOrder) { auto maxOrder = std::numeric_limits::min(); for (nsFrameList::Enumerator e(mChildren); !e.AtEnd(); e.Next()) { ++count; int32_t order = e.get()->StylePosition()->mOrder; if (order < maxOrder) { isOrdered = false; break; } maxOrder = order; } } if (isOrdered) { mEnumerator.emplace(mChildren); } else { count *= 2; // XXX somewhat arbitrary estimate for now... mArray.emplace(count); for (nsFrameList::Enumerator e(mChildren); !e.AtEnd(); e.Next()) { mArray->AppendElement(e.get()); } // XXX replace this with nsTArray::StableSort when bug 1147091 is fixed. std::stable_sort(mArray->begin(), mArray->end(), IsCSSOrderLessThan); } if (mSkipPlaceholders) { SkipPlaceholders(); } } nsIFrame* operator*() const { MOZ_ASSERT(!AtEnd()); if (mEnumerator) { return mEnumerator->get(); } return (*mArray)[mArrayIndex]; } /** * Return the child index of the current item, placeholders not counted. * It's forbidden to call this method when the current frame is placeholder. */ size_t GridItemIndex() const { MOZ_ASSERT(!AtEnd()); MOZ_ASSERT((**this)->GetType() != nsGkAtoms::placeholderFrame, "MUST not call this when at a placeholder"); return mGridItemIndex; } /** * Skip over placeholder children. */ void SkipPlaceholders() { if (mEnumerator) { for (; !mEnumerator->AtEnd(); mEnumerator->Next()) { nsIFrame* child = mEnumerator->get(); if (child->GetType() != nsGkAtoms::placeholderFrame) { return; } } } else { for (; mArrayIndex < mArray->Length(); ++mArrayIndex) { nsIFrame* child = (*mArray)[mArrayIndex]; if (child->GetType() != nsGkAtoms::placeholderFrame) { return; } } } } bool AtEnd() const { MOZ_ASSERT(mEnumerator || mArrayIndex <= mArray->Length()); return mEnumerator ? mEnumerator->AtEnd() : mArrayIndex >= mArray->Length(); } void Next() { #ifdef DEBUG MOZ_ASSERT(!AtEnd()); nsFrameList list = mGridContainer->GetChildList(mListID); MOZ_ASSERT(list.FirstChild() == mChildren.FirstChild() && list.LastChild() == mChildren.LastChild(), "the list of child frames must not change while iterating!"); #endif if (mSkipPlaceholders || (**this)->GetType() != nsGkAtoms::placeholderFrame) { ++mGridItemIndex; } if (mEnumerator) { mEnumerator->Next(); } else { ++mArrayIndex; } if (mSkipPlaceholders) { SkipPlaceholders(); } } void Reset(ChildFilter aFilter = eSkipPlaceholders) { if (mEnumerator) { mEnumerator.reset(); mEnumerator.emplace(mChildren); } else { mArrayIndex = 0; } mGridItemIndex = 0; mSkipPlaceholders = aFilter == eSkipPlaceholders; if (mSkipPlaceholders) { SkipPlaceholders(); } } bool ItemsAreAlreadyInOrder() const { return mEnumerator.isSome(); } private: static bool IsCSSOrderLessThan(nsIFrame* const& a, nsIFrame* const& b) { return a->StylePosition()->mOrder < b->StylePosition()->mOrder; } nsFrameList mChildren; // Used if child list is already in ascending 'order'. Maybe mEnumerator; // Used if child list is *not* in ascending 'order'. Maybe> mArray; size_t mArrayIndex; // The index of the current grid item (placeholders excluded). size_t mGridItemIndex; // Skip placeholder children in the iteration? bool mSkipPlaceholders; #ifdef DEBUG nsIFrame* mGridContainer; nsIFrame::ChildListID mListID; #endif }; /** * A LineRange can be definite or auto - when it's definite it represents * a consecutive set of tracks between a starting line and an ending line. * Before it's definite it can also represent an auto position with a span, * where mStart == kAutoLine and mEnd is the (non-zero positive) span. * For normal-flow items, the invariant mStart < mEnd holds when both * lines are definite. * * For abs.pos. grid items, mStart and mEnd may both be kAutoLine, meaning * "attach this side to the grid container containing block edge". * Additionally, mStart <= mEnd holds when both are definite (non-kAutoLine), * i.e. the invariant is slightly relaxed compared to normal flow items. */ struct nsGridContainerFrame::LineRange { LineRange(int32_t aStart, int32_t aEnd) : mUntranslatedStart(aStart), mUntranslatedEnd(aEnd) { #ifdef DEBUG if (!IsAutoAuto()) { if (IsAuto()) { MOZ_ASSERT(aEnd >= nsStyleGridLine::kMinLine && aEnd <= nsStyleGridLine::kMaxLine, "invalid span"); } else { MOZ_ASSERT(aStart >= nsStyleGridLine::kMinLine && aStart <= nsStyleGridLine::kMaxLine, "invalid start line"); MOZ_ASSERT(aEnd == int32_t(kAutoLine) || (aEnd >= nsStyleGridLine::kMinLine && aEnd <= nsStyleGridLine::kMaxLine), "invalid end line"); } } #endif } bool IsAutoAuto() const { return mStart == kAutoLine && mEnd == kAutoLine; } bool IsAuto() const { return mStart == kAutoLine; } bool IsDefinite() const { return mStart != kAutoLine; } uint32_t Extent() const { MOZ_ASSERT(mEnd != kAutoLine, "Extent is undefined for abs.pos. 'auto'"); if (IsAuto()) { MOZ_ASSERT(mEnd >= 1 && mEnd < uint32_t(nsStyleGridLine::kMaxLine), "invalid span"); return mEnd; } return mEnd - mStart; } /** * Resolve this auto range to start at aStart, making it definite. * Precondition: this range IsAuto() */ void ResolveAutoPosition(uint32_t aStart, uint32_t aExplicitGridOffset) { MOZ_ASSERT(IsAuto(), "Why call me?"); mStart = aStart; mEnd += aStart; // Clamping to where kMaxLine is in the explicit grid, per // http://dev.w3.org/csswg/css-grid/#overlarge-grids : uint32_t translatedMax = aExplicitGridOffset + nsStyleGridLine::kMaxLine; if (MOZ_UNLIKELY(mStart >= translatedMax)) { mEnd = translatedMax; mStart = mEnd - 1; } else if (MOZ_UNLIKELY(mEnd > translatedMax)) { mEnd = translatedMax; } } /** * Translate the lines to account for (empty) removed tracks. This method * is only for grid items and should only be called after placement. * aNumRemovedTracks contains a count for each line in the grid how many * tracks were removed between the start of the grid and that line. */ void AdjustForRemovedTracks(const nsTArray& aNumRemovedTracks) { MOZ_ASSERT(mStart != kAutoLine, "invalid resolved line for a grid item"); MOZ_ASSERT(mEnd != kAutoLine, "invalid resolved line for a grid item"); uint32_t numRemovedTracks = aNumRemovedTracks[mStart]; MOZ_ASSERT(numRemovedTracks == aNumRemovedTracks[mEnd], "tracks that a grid item spans can't be removed"); mStart -= numRemovedTracks; mEnd -= numRemovedTracks; } /** * Translate the lines to account for (empty) removed tracks. This method * is only for abs.pos. children and should only be called after placement. * Same as for in-flow items, but we don't touch 'auto' lines here and we * also need to adjust areas that span into the removed tracks. */ void AdjustAbsPosForRemovedTracks(const nsTArray& aNumRemovedTracks) { if (mStart != nsGridContainerFrame::kAutoLine) { mStart -= aNumRemovedTracks[mStart]; } if (mEnd != nsGridContainerFrame::kAutoLine) { MOZ_ASSERT(mStart == nsGridContainerFrame::kAutoLine || mEnd > mStart, "invalid line range"); mEnd -= aNumRemovedTracks[mEnd]; } if (mStart == mEnd) { mEnd = nsGridContainerFrame::kAutoLine; } } /** * Return the contribution of this line range for step 2 in * http://dev.w3.org/csswg/css-grid/#auto-placement-algo */ uint32_t HypotheticalEnd() const { return mEnd; } /** * Given an array of track sizes, return the starting position and length * of the tracks in this line range. */ void ToPositionAndLength(const nsTArray& aTrackSizes, nscoord* aPos, nscoord* aLength) const; /** * Given an array of track sizes, return the length of the tracks in this * line range. */ nscoord ToLength(const nsTArray& aTrackSizes) const; /** * Given an array of track sizes and a grid origin coordinate, adjust the * abs.pos. containing block along an axis given by aPos and aLength. * aPos and aLength should already be initialized to the grid container * containing block for this axis before calling this method. */ void ToPositionAndLengthForAbsPos(const Tracks& aTracks, nscoord aGridOrigin, nscoord* aPos, nscoord* aLength) const; /** * @note We'll use the signed member while resolving definite positions * to line numbers (1-based), which may become negative for implicit lines * to the top/left of the explicit grid. PlaceGridItems() then translates * the whole grid to a 0,0 origin and we'll use the unsigned member from * there on. */ union { uint32_t mStart; int32_t mUntranslatedStart; }; union { uint32_t mEnd; int32_t mUntranslatedEnd; }; protected: LineRange() {} }; /** * Helper class to construct a LineRange from translated lines. * The ctor only accepts translated definite line numbers. */ struct nsGridContainerFrame::TranslatedLineRange : public LineRange { TranslatedLineRange(uint32_t aStart, uint32_t aEnd) { MOZ_ASSERT(aStart < aEnd && aEnd <= kTranslatedMaxLine); mStart = aStart; mEnd = aEnd; } }; /** * A GridArea is the area in the grid for a grid item. * The area is represented by two LineRanges, both of which can be auto * (@see LineRange) in intermediate steps while the item is being placed. * @see PlaceGridItems */ struct nsGridContainerFrame::GridArea { GridArea(const LineRange& aCols, const LineRange& aRows) : mCols(aCols), mRows(aRows) {} bool IsDefinite() const { return mCols.IsDefinite() && mRows.IsDefinite(); } LineRange mCols; LineRange mRows; }; struct nsGridContainerFrame::GridItemInfo { explicit GridItemInfo(nsIFrame* aFrame, const GridArea& aArea) : mFrame(aFrame) , mArea(aArea) { mIsFlexing[0] = false; mIsFlexing[1] = false; } static bool IsStartRowLessThan(const GridItemInfo* a, const GridItemInfo* b) { return a->mArea.mRows.mStart < b->mArea.mRows.mStart; } nsIFrame* const mFrame; GridArea mArea; bool mIsFlexing[2]; // does the item span a flex track? (LogicalAxis index) static_assert(mozilla::eLogicalAxisBlock == 0, "unexpected index value"); static_assert(mozilla::eLogicalAxisInline == 1, "unexpected index value"); }; /** * Utility class to find line names. It provides an interface to lookup line * names with a dynamic number of repeat(auto-fill/fit) tracks taken into * account. */ class MOZ_STACK_CLASS nsGridContainerFrame::LineNameMap { public: /** * Create a LineNameMap. * @param aGridTemplate is the grid-template-rows/columns data for this axis * @param aNumRepeatTracks the number of actual tracks associated with * a repeat(auto-fill/fit) track (zero or more), or zero if there is no * specified repeat(auto-fill/fit) track */ LineNameMap(const nsStyleGridTemplate& aGridTemplate, uint32_t aNumRepeatTracks) : mLineNameLists(aGridTemplate.mLineNameLists) , mRepeatAutoLineNameListBefore(aGridTemplate.mRepeatAutoLineNameListBefore) , mRepeatAutoLineNameListAfter(aGridTemplate.mRepeatAutoLineNameListAfter) , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ? aGridTemplate.mRepeatAutoIndex : 0) , mRepeatAutoEnd(mRepeatAutoStart + aNumRepeatTracks) , mRepeatEndDelta(aGridTemplate.HasRepeatAuto() ? int32_t(aNumRepeatTracks) - 1 : 0) , mTemplateLinesEnd(mLineNameLists.Length() + mRepeatEndDelta) , mHasRepeatAuto(aGridTemplate.HasRepeatAuto()) { MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0); MOZ_ASSERT(mRepeatAutoStart <= mLineNameLists.Length()); MOZ_ASSERT(!mHasRepeatAuto || mLineNameLists.Length() >= 2); } /** * Find the aNth occurrence of aName, searching forward if aNth is positive, * and in reverse if aNth is negative (aNth == 0 is invalid), starting from * aFromIndex (not inclusive), and return a 1-based line number. * Also take into account there is an unconditional match at aImplicitLine * unless it's zero. * Return zero if aNth occurrences can't be found. In that case, aNth has * been decremented with the number of occurrences that were found (if any). * * E.g. to search for "A 2" forward from the start of the grid: aName is "A" * aNth is 2 and aFromIndex is zero. To search for "A -2", aNth is -2 and * aFromIndex is ExplicitGridEnd + 1 (which is the line "before" the last * line when we're searching in reverse). For "span A 2", aNth is 2 when * used on a grid-[row|column]-end property and -2 for a *-start property, * and aFromIndex is the line (which we should skip) on the opposite property. */ uint32_t FindNamedLine(const nsString& aName, int32_t* aNth, uint32_t aFromIndex, uint32_t aImplicitLine) const { MOZ_ASSERT(aNth && *aNth != 0); if (*aNth > 0) { return FindLine(aName, aNth, aFromIndex, aImplicitLine); } int32_t nth = -*aNth; int32_t line = RFindLine(aName, &nth, aFromIndex, aImplicitLine); *aNth = -nth; return line; } private: /** * @see FindNamedLine, this function searches forward. */ uint32_t FindLine(const nsString& aName, int32_t* aNth, uint32_t aFromIndex, uint32_t aImplicitLine) const { MOZ_ASSERT(aNth && *aNth > 0); int32_t nth = *aNth; const uint32_t end = mTemplateLinesEnd; uint32_t line; uint32_t i = aFromIndex; for (; i < end; i = line) { line = i + 1; if (line == aImplicitLine || Contains(i, aName)) { if (--nth == 0) { return line; } } } if (aImplicitLine > i) { // aImplicitLine is after the lines we searched above so it's last. // (grid-template-areas has more tracks than grid-template-[rows|columns]) if (--nth == 0) { return aImplicitLine; } } MOZ_ASSERT(nth > 0, "should have returned a valid line above already"); *aNth = nth; return 0; } /** * @see FindNamedLine, this function searches in reverse. */ uint32_t RFindLine(const nsString& aName, int32_t* aNth, uint32_t aFromIndex, uint32_t aImplicitLine) const { MOZ_ASSERT(aNth && *aNth > 0); if (MOZ_UNLIKELY(aFromIndex == 0)) { return 0; // There are no named lines beyond the start of the explicit grid. } --aFromIndex; // (shift aFromIndex so we can treat it as inclusive) int32_t nth = *aNth; // The implicit line may be beyond the explicit grid so we match // this line first if it's within the mTemplateLinesEnd..aFromIndex range. const uint32_t end = mTemplateLinesEnd; if (aImplicitLine > end && aImplicitLine < aFromIndex) { if (--nth == 0) { return aImplicitLine; } } for (uint32_t i = std::min(aFromIndex, end); i; --i) { if (i == aImplicitLine || Contains(i - 1, aName)) { if (--nth == 0) { return i; } } } MOZ_ASSERT(nth > 0, "should have returned a valid line above already"); *aNth = nth; return 0; } // Return true if aName exists at aIndex. bool Contains(uint32_t aIndex, const nsString& aName) const { if (!mHasRepeatAuto) { return mLineNameLists[aIndex].Contains(aName); } if (aIndex < mRepeatAutoEnd && aIndex >= mRepeatAutoStart && mRepeatAutoLineNameListBefore.Contains(aName)) { return true; } if (aIndex <= mRepeatAutoEnd && aIndex > mRepeatAutoStart && mRepeatAutoLineNameListAfter.Contains(aName)) { return true; } if (aIndex <= mRepeatAutoStart) { return mLineNameLists[aIndex].Contains(aName) || (aIndex == mRepeatAutoEnd && mLineNameLists[aIndex + 1].Contains(aName)); } return aIndex >= mRepeatAutoEnd && mLineNameLists[aIndex - mRepeatEndDelta].Contains(aName); } // Some style data references, for easy access. const nsTArray>& mLineNameLists; const nsTArray& mRepeatAutoLineNameListBefore; const nsTArray& mRepeatAutoLineNameListAfter; // The index of the repeat(auto-fill/fit) track, or zero if there is none. const uint32_t mRepeatAutoStart; // The (hypothetical) index of the last such repeat() track. const uint32_t mRepeatAutoEnd; // The difference between mTemplateLinesEnd and mLineNameLists.Length(). const int32_t mRepeatEndDelta; // The end of the line name lists with repeat(auto-fill/fit) tracks accounted // for. It is equal to mLineNameLists.Length() when a repeat() track // generates one track (making mRepeatEndDelta == 0). const uint32_t mTemplateLinesEnd; // True if there is a specified repeat(auto-fill/fit) track. const bool mHasRepeatAuto; }; /** * Encapsulates CSS track-sizing functions. */ struct nsGridContainerFrame::TrackSizingFunctions { TrackSizingFunctions(const nsStyleGridTemplate& aGridTemplate, const nsStyleCoord& aAutoMinSizing, const nsStyleCoord& aAutoMaxSizing) : mMinSizingFunctions(aGridTemplate.mMinTrackSizingFunctions) , mMaxSizingFunctions(aGridTemplate.mMaxTrackSizingFunctions) , mAutoMinSizing(aAutoMinSizing) , mAutoMaxSizing(aAutoMaxSizing) , mExplicitGridOffset(0) , mRepeatAutoStart(aGridTemplate.HasRepeatAuto() ? aGridTemplate.mRepeatAutoIndex : 0) , mRepeatAutoEnd(mRepeatAutoStart) , mRepeatEndDelta(0) , mHasRepeatAuto(aGridTemplate.HasRepeatAuto()) { MOZ_ASSERT(mMinSizingFunctions.Length() == mMaxSizingFunctions.Length()); MOZ_ASSERT(!mHasRepeatAuto || (mMinSizingFunctions.Length() >= 1 && mRepeatAutoStart < mMinSizingFunctions.Length())); } /** * Initialize the number of auto-fill/fit tracks to use and return that. * (zero if no auto-fill/fit track was specified) */ uint32_t InitRepeatTracks(nscoord aGridGap, nscoord aMinSize, nscoord aSize, nscoord aMaxSize) { uint32_t repeatTracks = CalculateRepeatFillCount(aGridGap, aMinSize, aSize, aMaxSize); SetNumRepeatTracks(repeatTracks); return repeatTracks; } uint32_t CalculateRepeatFillCount(nscoord aGridGap, nscoord aMinSize, nscoord aSize, nscoord aMaxSize) const { if (!mHasRepeatAuto) { return 0; } // Spec quotes are from https://drafts.csswg.org/css-grid/#repeat-notation const uint32_t numTracks = mMinSizingFunctions.Length(); MOZ_ASSERT(numTracks >= 1, "expected at least the repeat() track"); nscoord maxFill = aSize != NS_UNCONSTRAINEDSIZE ? aSize : aMaxSize; if (maxFill == NS_UNCONSTRAINEDSIZE && aMinSize == NS_UNCONSTRAINEDSIZE) { // "Otherwise, the specified track list repeats only once." return 1; } nscoord repeatTrackSize = 0; // Note that the repeat() track size is included in |sum| in this loop. nscoord sum = 0; for (uint32_t i = 0; i < numTracks; ++i) { // "treating each track as its max track sizing function if that is // definite or as its minimum track sizing function otherwise" // https://drafts.csswg.org/css-grid/#valdef-repeat-auto-fill const auto& maxCoord = mMaxSizingFunctions[i]; const auto* coord = &maxCoord; if (!coord->IsCoordPercentCalcUnit()) { coord = &mMinSizingFunctions[i]; if (!coord->IsCoordPercentCalcUnit()) { return 1; } } nscoord trackSize = nsRuleNode::ComputeCoordPercentCalc(*coord, aSize); if (i == mRepeatAutoStart) { // Use a minimum 1px for the repeat() track-size. if (trackSize < AppUnitsPerCSSPixel()) { trackSize = AppUnitsPerCSSPixel(); } repeatTrackSize = trackSize; } sum += trackSize; } if (numTracks > 1) { // Add grid-gaps for all the tracks including the repeat() track. sum += aGridGap * (numTracks - 1); } nscoord available = maxFill != NS_UNCONSTRAINEDSIZE ? maxFill : aMinSize; nscoord spaceToFill = available - sum; if (spaceToFill <= 0) { // "if any number of repetitions would overflow, then 1 repetition" return 1; } // Calculate the max number of tracks that fits without overflow. uint32_t numRepeatTracks = (spaceToFill / (repeatTrackSize + aGridGap)) + 1; if (maxFill == NS_UNCONSTRAINEDSIZE) { // "Otherwise, if the grid container has a definite min size in // the relevant axis, the number of repetitions is the largest possible // positive integer that fulfills that minimum requirement." ++numRepeatTracks; // one more to ensure the grid is at least min-size } // Clamp the number of repeat tracks so that the last line <= kMaxLine. // (note that |numTracks| already includes one repeat() track) const uint32_t maxRepeatTracks = nsStyleGridLine::kMaxLine - numTracks; return std::min(numRepeatTracks, maxRepeatTracks); } /** * Compute the explicit grid end line number (in a zero-based grid). * @param aGridTemplateAreasEnd 'grid-template-areas' end line in this axis */ uint32_t ComputeExplicitGridEnd(uint32_t aGridTemplateAreasEnd) { uint32_t end = NumExplicitTracks() + 1; end = std::max(end, aGridTemplateAreasEnd); end = std::min(end, uint32_t(nsStyleGridLine::kMaxLine)); return end; } const nsStyleCoord& MinSizingFor(uint32_t aTrackIndex) const { if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) { return mAutoMinSizing; } uint32_t index = aTrackIndex - mExplicitGridOffset; if (index >= mRepeatAutoStart) { if (index < mRepeatAutoEnd) { return mMinSizingFunctions[mRepeatAutoStart]; } index -= mRepeatEndDelta; } return index < mMinSizingFunctions.Length() ? mMinSizingFunctions[index] : mAutoMinSizing; } const nsStyleCoord& MaxSizingFor(uint32_t aTrackIndex) const { if (MOZ_UNLIKELY(aTrackIndex < mExplicitGridOffset)) { return mAutoMaxSizing; } uint32_t index = aTrackIndex - mExplicitGridOffset; if (index >= mRepeatAutoStart) { if (index < mRepeatAutoEnd) { return mMaxSizingFunctions[mRepeatAutoStart]; } index -= mRepeatEndDelta; } return index < mMaxSizingFunctions.Length() ? mMaxSizingFunctions[index] : mAutoMaxSizing; } uint32_t NumExplicitTracks() const { return mMinSizingFunctions.Length() + mRepeatEndDelta; } uint32_t NumRepeatTracks() const { return mRepeatAutoEnd - mRepeatAutoStart; } void SetNumRepeatTracks(uint32_t aNumRepeatTracks) { MOZ_ASSERT(mHasRepeatAuto || aNumRepeatTracks == 0); mRepeatAutoEnd = mRepeatAutoStart + aNumRepeatTracks; mRepeatEndDelta = mHasRepeatAuto ? int32_t(aNumRepeatTracks) - 1 : 0; } // Some style data references, for easy access. const nsTArray& mMinSizingFunctions; const nsTArray& mMaxSizingFunctions; const nsStyleCoord& mAutoMinSizing; const nsStyleCoord& mAutoMaxSizing; // Offset from the start of the implicit grid to the first explicit track. uint32_t mExplicitGridOffset; // The index of the repeat(auto-fill/fit) track, or zero if there is none. const uint32_t mRepeatAutoStart; // The (hypothetical) index of the last such repeat() track. uint32_t mRepeatAutoEnd; // The difference between mExplicitGridEnd and mMinSizingFunctions.Length(). int32_t mRepeatEndDelta; // True if there is a specified repeat(auto-fill/fit) track. const bool mHasRepeatAuto; }; /** * State for the tracks in one dimension. */ struct nsGridContainerFrame::Tracks { explicit Tracks(LogicalAxis aAxis) : mAxis(aAxis) {} void Initialize(const TrackSizingFunctions& aFunctions, nscoord aGridGap, uint32_t aNumTracks, nscoord aContentBoxSize); /** * Return true if aRange spans at least one track with an intrinsic sizing * function and does not span any tracks with a max-sizing function. * @param aRange the span of tracks to check * @param aConstraint if MIN_ISIZE, treat a min-sizing as 'min-content' * @param aState will be set to the union of the state bits of all the spanned * tracks, unless a flex track is found - then it only contains * the union of the tracks up to and including the flex track. */ bool HasIntrinsicButNoFlexSizingInRange(const LineRange& aRange, IntrinsicISizeType aConstraint, TrackSize::StateBits* aState) const; /** * Resolve Intrinsic Track Sizes. * http://dev.w3.org/csswg/css-grid/#algo-content */ void ResolveIntrinsicSize(GridReflowState& aState, nsTArray& aGridItems, const TrackSizingFunctions& aFunctions, LineRange GridArea::* aRange, nscoord aPercentageBasis, IntrinsicISizeType aConstraint); /** * Helper for ResolveIntrinsicSize. It implements step 1 "size tracks to fit * non-spanning items" in the spec. Return true if the track has a * max-sizing function, false otherwise. */ bool ResolveIntrinsicSizeStep1(GridReflowState& aState, const TrackSizingFunctions& aFunctions, nscoord aPercentageBasis, IntrinsicISizeType aConstraint, const LineRange& aRange, nsIFrame* aGridItem); /** * Collect the tracks which are growable (matching aSelector) into * aGrowableTracks, and return the amount of space that can be used * to grow those tracks. Specifically, we return aAvailableSpace minus * the sum of mBase's in aPlan (clamped to 0) for the tracks in aRange, * or zero when there are no growable tracks. * @note aPlan[*].mBase represents a planned new base or limit. */ static nscoord CollectGrowable(nscoord aAvailableSpace, const nsTArray& aPlan, const LineRange& aRange, TrackSize::StateBits aSelector, nsTArray& aGrowableTracks) { MOZ_ASSERT(aAvailableSpace > 0, "why call me?"); nscoord space = aAvailableSpace; const uint32_t start = aRange.mStart; const uint32_t end = aRange.mEnd; for (uint32_t i = start; i < end; ++i) { const TrackSize& sz = aPlan[i]; space -= sz.mBase; if (space <= 0) { return 0; } if ((sz.mState & aSelector) && !sz.IsFrozen()) { aGrowableTracks.AppendElement(i); } } return aGrowableTracks.IsEmpty() ? 0 : space; } void SetupGrowthPlan(nsTArray& aPlan, const nsTArray& aTracks) const { for (uint32_t track : aTracks) { aPlan[track] = mSizes[track]; } } void CopyPlanToBase(const nsTArray& aPlan, const nsTArray& aTracks) { for (uint32_t track : aTracks) { MOZ_ASSERT(mSizes[track].mBase <= aPlan[track].mBase); mSizes[track].mBase = aPlan[track].mBase; } } void CopyPlanToLimit(const nsTArray& aPlan, const nsTArray& aTracks) { for (uint32_t track : aTracks) { MOZ_ASSERT(mSizes[track].mLimit == NS_UNCONSTRAINEDSIZE || mSizes[track].mLimit <= aPlan[track].mBase); mSizes[track].mLimit = aPlan[track].mBase; } } /** * Grow the planned size for tracks in aGrowableTracks up to their limit * and then freeze them (all aGrowableTracks must be unfrozen on entry). * Subtract the space added from aAvailableSpace and return that. */ nscoord GrowTracksToLimit(nscoord aAvailableSpace, nsTArray& aPlan, const nsTArray& aGrowableTracks) const { MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0); nscoord space = aAvailableSpace; uint32_t numGrowable = aGrowableTracks.Length(); while (true) { nscoord spacePerTrack = std::max(space / numGrowable, 1); for (uint32_t track : aGrowableTracks) { TrackSize& sz = aPlan[track]; if (sz.IsFrozen()) { continue; } nscoord newBase = sz.mBase + spacePerTrack; if (newBase > sz.mLimit) { nscoord consumed = sz.mLimit - sz.mBase; if (consumed > 0) { space -= consumed; sz.mBase = sz.mLimit; } sz.mState |= TrackSize::eFrozen; if (--numGrowable == 0) { return space; } } else { sz.mBase = newBase; space -= spacePerTrack; } MOZ_ASSERT(space >= 0); if (space == 0) { return 0; } } } MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return"); return 0; } /** * Helper for GrowSelectedTracksUnlimited. For the set of tracks (S) that * match aMinSizingSelector: if a track in S doesn't match aMaxSizingSelector * then mark it with aSkipFlag. If all tracks in S were marked then unmark * them. Return aNumGrowable minus the number of tracks marked. It is * assumed that aPlan have no aSkipFlag set for tracks in aGrowableTracks * on entry to this method. */ uint32_t MarkExcludedTracks(nsTArray& aPlan, uint32_t aNumGrowable, const nsTArray& aGrowableTracks, TrackSize::StateBits aMinSizingSelector, TrackSize::StateBits aMaxSizingSelector, TrackSize::StateBits aSkipFlag) const { bool foundOneSelected = false; bool foundOneGrowable = false; uint32_t numGrowable = aNumGrowable; for (uint32_t track : aGrowableTracks) { TrackSize& sz = aPlan[track]; const auto state = sz.mState; if (state & aMinSizingSelector) { foundOneSelected = true; if (state & aMaxSizingSelector) { foundOneGrowable = true; continue; } sz.mState |= aSkipFlag; MOZ_ASSERT(numGrowable != 0); --numGrowable; } } // 12.5 "if there are no such tracks, then all affected tracks" if (foundOneSelected && !foundOneGrowable) { for (uint32_t track : aGrowableTracks) { aPlan[track].mState &= ~aSkipFlag; } numGrowable = aNumGrowable; } return numGrowable; } /** * Increase the planned size for tracks in aGrowableTracks that match * aSelector (or all tracks if aSelector is zero) beyond their limit. * This implements the "Distribute space beyond growth limits" step in * https://drafts.csswg.org/css-grid/#distribute-extra-space */ void GrowSelectedTracksUnlimited(nscoord aAvailableSpace, nsTArray& aPlan, const nsTArray& aGrowableTracks, TrackSize::StateBits aSelector) const { MOZ_ASSERT(aAvailableSpace > 0 && aGrowableTracks.Length() > 0); uint32_t numGrowable = aGrowableTracks.Length(); if (aSelector) { DebugOnly withoutFlexMin = TrackSize::StateBits(aSelector & ~TrackSize::eFlexMinSizing); MOZ_ASSERT(withoutFlexMin == TrackSize::eIntrinsicMinSizing || withoutFlexMin == TrackSize::eMinOrMaxContentMinSizing || withoutFlexMin == TrackSize::eMaxContentMinSizing); // Note that eMaxContentMinSizing is always included. We do those first: numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks, TrackSize::eMaxContentMinSizing, TrackSize::eMaxContentMaxSizing, TrackSize::eSkipGrowUnlimited1); // Now mark min-content/auto/ min-sizing tracks if requested. auto minOrAutoSelector = aSelector & ~TrackSize::eMaxContentMinSizing; if (minOrAutoSelector) { numGrowable = MarkExcludedTracks(aPlan, numGrowable, aGrowableTracks, minOrAutoSelector, TrackSize::eIntrinsicMaxSizing, TrackSize::eSkipGrowUnlimited2); } } nscoord space = aAvailableSpace; while (true) { nscoord spacePerTrack = std::max(space / numGrowable, 1); for (uint32_t track : aGrowableTracks) { TrackSize& sz = aPlan[track]; if (sz.mState & TrackSize::eSkipGrowUnlimited) { continue; // an excluded track } sz.mBase += spacePerTrack; space -= spacePerTrack; MOZ_ASSERT(space >= 0); if (space == 0) { return; } } } MOZ_ASSERT_UNREACHABLE("we don't exit the loop above except by return"); } /** * Distribute aAvailableSpace to the planned base size for aGrowableTracks * up to their limits, then distribute the remaining space beyond the limits. */ void DistributeToTrackBases(nscoord aAvailableSpace, nsTArray& aPlan, nsTArray& aGrowableTracks, TrackSize::StateBits aSelector) { SetupGrowthPlan(aPlan, aGrowableTracks); nscoord space = GrowTracksToLimit(aAvailableSpace, aPlan, aGrowableTracks); if (space > 0) { GrowSelectedTracksUnlimited(space, aPlan, aGrowableTracks, aSelector); } CopyPlanToBase(aPlan, aGrowableTracks); } /** * Distribute aAvailableSpace to the planned limits for aGrowableTracks. */ void DistributeToTrackLimits(nscoord aAvailableSpace, nsTArray& aPlan, nsTArray& aGrowableTracks) { nscoord space = GrowTracksToLimit(aAvailableSpace, aPlan, aGrowableTracks); if (space > 0) { GrowSelectedTracksUnlimited(aAvailableSpace, aPlan, aGrowableTracks, TrackSize::StateBits(0)); } CopyPlanToLimit(aPlan, aGrowableTracks); } /** * Distribute aAvailableSize to the tracks. This implements 12.6 at: * http://dev.w3.org/csswg/css-grid/#algo-grow-tracks */ void DistributeFreeSpace(nscoord aAvailableSize) { const uint32_t numTracks = mSizes.Length(); if (MOZ_UNLIKELY(numTracks == 0 || aAvailableSize <= 0)) { return; } if (aAvailableSize == NS_UNCONSTRAINEDSIZE) { for (TrackSize& sz : mSizes) { sz.mBase = sz.mLimit; } } else { // Compute free space and count growable tracks. nscoord space = aAvailableSize; uint32_t numGrowable = numTracks; for (const TrackSize& sz : mSizes) { space -= sz.mBase; MOZ_ASSERT(sz.mBase <= sz.mLimit); if (sz.mBase == sz.mLimit) { --numGrowable; } } // Distribute the free space evenly to the growable tracks. If not exactly // divisable the remainder is added to the leading tracks. while (space > 0 && numGrowable) { nscoord spacePerTrack = std::max(space / numGrowable, 1); for (uint32_t i = 0; i < numTracks && space > 0; ++i) { TrackSize& sz = mSizes[i]; if (sz.mBase == sz.mLimit) { continue; } nscoord newBase = sz.mBase + spacePerTrack; if (newBase >= sz.mLimit) { space -= sz.mLimit - sz.mBase; sz.mBase = sz.mLimit; --numGrowable; } else { space -= spacePerTrack; sz.mBase = newBase; } } } } } /** * Implements "12.7.1. Find the Size of an 'fr'". * http://dev.w3.org/csswg/css-grid/#algo-find-fr-size * (The returned value is a 'nscoord' divided by a factor - a floating type * is used to avoid intermediary rounding errors.) */ float FindFrUnitSize(const LineRange& aRange, const nsTArray& aFlexTracks, const TrackSizingFunctions& aFunctions, nscoord aSpaceToFill) const; /** * Implements the "find the used flex fraction" part of StretchFlexibleTracks. * (The returned value is a 'nscoord' divided by a factor - a floating type * is used to avoid intermediary rounding errors.) */ float FindUsedFlexFraction(GridReflowState& aState, nsTArray& aGridItems, const nsTArray& aFlexTracks, const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) const; /** * Implements "12.7. Stretch Flexible Tracks" * http://dev.w3.org/csswg/css-grid/#algo-flex-tracks */ void StretchFlexibleTracks(GridReflowState& aState, nsTArray& aGridItems, const TrackSizingFunctions& aFunctions, nscoord aAvailableSize); /** * Implements "12.3. Track Sizing Algorithm" * http://dev.w3.org/csswg/css-grid/#algo-track-sizing */ void CalculateSizes(GridReflowState& aState, nsTArray& aGridItems, const TrackSizingFunctions& aFunctions, nscoord aContentSize, LineRange GridArea::* aRange, IntrinsicISizeType aConstraint); /** * Apply 'align/justify-content', whichever is relevant for this axis. * https://drafts.csswg.org/css-align-3/#propdef-align-content */ void AlignJustifyContent(const nsHTMLReflowState& aReflowState, const LogicalSize& aContainerSize); nscoord GridLineEdge(uint32_t aLine, GridLineSide aSide) const { if (MOZ_UNLIKELY(mSizes.IsEmpty())) { // https://drafts.csswg.org/css-grid/#grid-definition // "... the explicit grid still contains one grid line in each axis." MOZ_ASSERT(aLine == 0, "We should only resolve line 1 in an empty grid"); return nscoord(0); } MOZ_ASSERT(aLine <= mSizes.Length(), "mSizes is too small"); if (aSide == GridLineSide::eBeforeGridGap) { if (aLine == 0) { return nscoord(0); } const TrackSize& sz = mSizes[aLine - 1]; return sz.mPosition + sz.mBase; } if (aLine == mSizes.Length()) { return mContentBoxSize; } return mSizes[aLine].mPosition; } nscoord SumOfGridGaps() const { auto len = mSizes.Length(); return MOZ_LIKELY(len > 1) ? (len - 1) * mGridGap : 0; } /** * Break before aRow, i.e. set the eBreakBefore flag on aRow and set the grid * gap before aRow to zero (and shift all rows after it by the removed gap). */ void BreakBeforeRow(uint32_t aRow) { MOZ_ASSERT(mAxis == eLogicalAxisBlock, "Should only be fragmenting in the block axis (between rows)"); nscoord prevRowEndPos = 0; if (aRow != 0) { auto& prevSz = mSizes[aRow - 1]; prevRowEndPos = prevSz.mPosition + prevSz.mBase; } auto& sz = mSizes[aRow]; const nscoord gap = sz.mPosition - prevRowEndPos; sz.mState |= TrackSize::eBreakBefore; if (gap != 0) { for (uint32_t i = aRow, len = mSizes.Length(); i < len; ++i) { mSizes[i].mPosition -= gap; } } } /** * Set the size of aRow to aSize and adjust the position of all rows after it. */ void ResizeRow(uint32_t aRow, nscoord aNewSize) { MOZ_ASSERT(mAxis == eLogicalAxisBlock, "Should only be fragmenting in the block axis (between rows)"); MOZ_ASSERT(aNewSize >= 0); auto& sz = mSizes[aRow]; nscoord delta = aNewSize - sz.mBase; NS_WARN_IF_FALSE(delta != nscoord(0), "Useless call to ResizeRow"); sz.mBase = aNewSize; const uint32_t numRows = mSizes.Length(); for (uint32_t r = aRow + 1; r < numRows; ++r) { mSizes[r].mPosition += delta; } } #ifdef DEBUG void Dump() const { for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) { printf(" %d: ", i); mSizes[i].Dump(); printf("\n"); } } #endif AutoTArray mSizes; nscoord mContentBoxSize; nscoord mGridGap; LogicalAxis mAxis; }; /** * Grid data shared by all continuations, owned by the first-in-flow. * The data is initialized from the first-in-flow's GridReflowState at * the end of its reflow. Fragmentation will modify mRows.mSizes - * the mPosition to remove the row gap at the break boundary, the mState * by setting the eBreakBefore flag, and mBase is modified when we decide * to grow a row. mOriginalRowData is setup by the first-in-flow and * not modified after that. It's used for undoing the changes to mRows. * mCols, mGridItems, mAbsPosItems are used for initializing the grid * reflow state for continuations, see GridReflowState::Initialize below. */ struct nsGridContainerFrame::SharedGridData { SharedGridData() : mCols(eLogicalAxisInline), mRows(eLogicalAxisBlock) {} Tracks mCols; Tracks mRows; struct RowData { nscoord mBase; // the original track size nscoord mGap; // the original gap before a track }; nsTArray mOriginalRowData; nsTArray mGridItems; nsTArray mAbsPosItems; /** * Only set on the first-in-flow. Continuations will Initialize() their * GridReflowState from it. */ NS_DECLARE_FRAME_PROPERTY_DELETABLE(Prop, SharedGridData) }; struct MOZ_STACK_CLASS nsGridContainerFrame::GridReflowState { GridReflowState(nsGridContainerFrame* aFrame, const nsHTMLReflowState& aRS) : GridReflowState(aFrame, *aRS.rendContext, &aRS, aRS.mStylePosition, aRS.GetWritingMode()) {} GridReflowState(nsGridContainerFrame* aFrame, nsRenderingContext& aRC) : GridReflowState(aFrame, aRC, nullptr, aFrame->StylePosition(), aFrame->GetWritingMode()) {} /** * Initialize our track sizes and grid item info using the shared * state from aGridContainerFrame first-in-flow. */ void InitializeForContinuation(nsGridContainerFrame* aGridContainerFrame, nscoord aConsumedBSize) { MOZ_ASSERT(aGridContainerFrame->GetPrevInFlow(), "don't call this on the first-in-flow"); MOZ_ASSERT(mGridItems.IsEmpty() && mAbsPosItems.IsEmpty(), "shouldn't have any item data yet"); // Get the SharedGridData from the first-in-flow. Also calculate the number // of fragments before this so that we can figure out our start row below. uint32_t fragment = 0; nsIFrame* firstInFlow = aGridContainerFrame; for (auto pif = aGridContainerFrame->GetPrevInFlow(); pif; pif = pif->GetPrevInFlow()) { ++fragment; firstInFlow = pif; } mSharedGridData = firstInFlow->Properties().Get(SharedGridData::Prop()); MOZ_ASSERT(mSharedGridData, "first-in-flow must have SharedGridData"); // Find the start row for this fragment and undo breaks after that row // since the breaks might be different from the last reflow. auto& rowSizes = mSharedGridData->mRows.mSizes; const uint32_t numRows = rowSizes.Length(); mStartRow = numRows; for (uint32_t row = 0, breakCount = 0; row < numRows; ++row) { if (rowSizes[row].mState & TrackSize::eBreakBefore) { if (fragment == ++breakCount) { mStartRow = row; mFragBStart = rowSizes[row].mPosition; // Restore the original size for |row| and grid gaps / state after it. const auto& origRowData = mSharedGridData->mOriginalRowData; rowSizes[row].mBase = origRowData[row].mBase; nscoord prevEndPos = rowSizes[row].mPosition + rowSizes[row].mBase; while (++row < numRows) { auto& sz = rowSizes[row]; const auto& orig = origRowData[row]; sz.mPosition = prevEndPos + orig.mGap; sz.mBase = orig.mBase; sz.mState &= ~TrackSize::eBreakBefore; prevEndPos = sz.mPosition + sz.mBase; } break; } } } if (mStartRow == numRows) { // All of the grid's rows fit inside of previous grid-container fragments. mFragBStart = aConsumedBSize; } // Copy the shared track state. // XXX consider temporarily swapping the array elements instead and swapping // XXX them back after we're done reflowing, for better performance. // XXX (bug 1252002) mCols = mSharedGridData->mCols; mRows = mSharedGridData->mRows; // Copy item data from each child's first-in-flow data in mSharedGridData. // XXX NOTE: This is O(n^2) in the number of items. (bug 1252186) mIter.Reset(); for (; !mIter.AtEnd(); mIter.Next()) { nsIFrame* child = *mIter; nsIFrame* childFirstInFlow = child->FirstInFlow(); DebugOnly len = mGridItems.Length(); for (auto& itemInfo : mSharedGridData->mGridItems) { if (itemInfo.mFrame == childFirstInFlow) { mGridItems.AppendElement(GridItemInfo(child, itemInfo.mArea)); break; } } MOZ_ASSERT(mGridItems.Length() == len + 1, "can't find GridItemInfo"); } // XXX NOTE: This is O(n^2) in the number of abs.pos. items. (bug 1252186) nsFrameList absPosChildren(aGridContainerFrame->GetChildList( aGridContainerFrame->GetAbsoluteListID())); for (auto f : absPosChildren) { nsIFrame* childFirstInFlow = f->FirstInFlow(); DebugOnly len = mAbsPosItems.Length(); for (auto& itemInfo : mSharedGridData->mAbsPosItems) { if (itemInfo.mFrame == childFirstInFlow) { mAbsPosItems.AppendElement(GridItemInfo(f, itemInfo.mArea)); break; } } MOZ_ASSERT(mAbsPosItems.Length() == len + 1, "can't find GridItemInfo"); } } /** * Calculate our track sizes. */ void CalculateTrackSizes(const Grid& aGrid, const LogicalSize& aContentBox, IntrinsicISizeType aConstraint); /** * Return the containing block for a grid item occupying aArea. */ LogicalRect ContainingBlockFor(const GridArea& aArea) const; /** * Return the containing block for an abs.pos. grid item occupying aArea. * Any 'auto' lines in the grid area will be aligned with grid container * containing block on that side. * @param aGridOrigin the origin of the grid * @param aGridCB the grid container containing block (its padding area) */ LogicalRect ContainingBlockForAbsPos(const GridArea& aArea, const LogicalPoint& aGridOrigin, const LogicalRect& aGridCB) const; GridItemCSSOrderIterator mIter; const nsStylePosition* const mGridStyle; Tracks mCols; Tracks mRows; TrackSizingFunctions mColFunctions; TrackSizingFunctions mRowFunctions; /** * Info about each (normal flow) grid item. */ nsTArray mGridItems; /** * Info about each grid-aligned abs.pos. child. */ nsTArray mAbsPosItems; /** * @note mReflowState may be null when using the 2nd ctor above. In this case * we'll construct a dummy parent reflow state if we need it to calculate * min/max-content contributions when sizing tracks. */ const nsHTMLReflowState* const mReflowState; nsRenderingContext& mRenderingContext; nsGridContainerFrame* const mFrame; SharedGridData* mSharedGridData; // [weak] owned by mFrame's first-in-flow. /** Computed border+padding with mSkipSides applied. */ LogicalMargin mBorderPadding; /** * BStart of this fragment in "grid space" (i.e. the concatenation of content * areas of all fragments). Equal to mRows.mSizes[mStartRow].mPosition, * or, if this fragment starts after the last row, the GetConsumedBSize(). */ nscoord mFragBStart; /** The start row for this fragment. */ uint32_t mStartRow; /** Our tentative ApplySkipSides bits. */ LogicalSides mSkipSides; const WritingMode mWM; private: GridReflowState(nsGridContainerFrame* aFrame, nsRenderingContext& aRenderingContext, const nsHTMLReflowState* aReflowState, const nsStylePosition* aGridStyle, const WritingMode& aWM) : mIter(aFrame, kPrincipalList) , mGridStyle(aGridStyle) , mCols(eLogicalAxisInline) , mRows(eLogicalAxisBlock) , mColFunctions(mGridStyle->mGridTemplateColumns, mGridStyle->mGridAutoColumnsMin, mGridStyle->mGridAutoColumnsMax) , mRowFunctions(mGridStyle->mGridTemplateRows, mGridStyle->mGridAutoRowsMin, mGridStyle->mGridAutoRowsMax) , mReflowState(aReflowState) , mRenderingContext(aRenderingContext) , mFrame(aFrame) , mSharedGridData(nullptr) , mBorderPadding(aWM) , mFragBStart(0) , mStartRow(0) , mWM(aWM) { MOZ_ASSERT(!aReflowState || aReflowState->frame == mFrame); if (aReflowState) { mBorderPadding = aReflowState->ComputedLogicalBorderPadding(); mSkipSides = aFrame->PreReflowBlockLevelLogicalSkipSides(); mBorderPadding.ApplySkipSides(mSkipSides); } } }; /** * The Grid implements grid item placement and the state of the grid - * the size of the explicit/implicit grid, which cells are occupied etc. */ struct MOZ_STACK_CLASS nsGridContainerFrame::Grid { /** * Place all child frames into the grid and expand the (implicit) grid as * needed. The allocated GridAreas are stored in the GridAreaProperty * frame property on the child frame. * @param aComputedMinSize the container's min-size - used to determine * the number of repeat(auto-fill/fit) tracks. * @param aComputedSize the container's size - used to determine * the number of repeat(auto-fill/fit) tracks. * @param aComputedMaxSize the container's max-size - used to determine * the number of repeat(auto-fill/fit) tracks. */ void PlaceGridItems(GridReflowState& aState, const LogicalSize& aComputedMinSize, const LogicalSize& aComputedSize, const LogicalSize& aComputedMaxSize); /** * As above but for an abs.pos. child. Any 'auto' lines will be represented * by kAutoLine in the LineRange result. * @param aGridStart the first line in the final, but untranslated grid * @param aGridEnd the last line in the final, but untranslated grid */ LineRange ResolveAbsPosLineRange(const nsStyleGridLine& aStart, const nsStyleGridLine& aEnd, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, int32_t aGridStart, int32_t aGridEnd, const nsStylePosition* aStyle); /** * Return a GridArea for abs.pos. item with non-auto lines placed at * a definite line (1-based) with placement errors resolved. One or both * positions may still be 'auto'. * @param aChild the abs.pos. grid item to place * @param aStyle the StylePosition() for the grid container */ GridArea PlaceAbsPos(nsIFrame* aChild, const LineNameMap& aColLineNameMap, const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle); /** * Find the first column in row aLockedRow starting at aStartCol where aArea * could be placed without overlapping other items. The returned column may * cause aArea to overflow the current implicit grid bounds if placed there. */ uint32_t FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow, const GridArea* aArea) const; /** * Place aArea in the first column (in row aArea->mRows.mStart) starting at * aStartCol without overlapping other items. The resulting aArea may * overflow the current implicit grid bounds. * Pre-condition: aArea->mRows.IsDefinite() is true. * Post-condition: aArea->IsDefinite() is true. */ void PlaceAutoCol(uint32_t aStartCol, GridArea* aArea) const; /** * Find the first row in column aLockedCol starting at aStartRow where aArea * could be placed without overlapping other items. The returned row may * cause aArea to overflow the current implicit grid bounds if placed there. */ uint32_t FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow, const GridArea* aArea) const; /** * Place aArea in the first row (in column aArea->mCols.mStart) starting at * aStartRow without overlapping other items. The resulting aArea may * overflow the current implicit grid bounds. * Pre-condition: aArea->mCols.IsDefinite() is true. * Post-condition: aArea->IsDefinite() is true. */ void PlaceAutoRow(uint32_t aStartRow, GridArea* aArea) const; /** * Place aArea in the first column starting at aStartCol,aStartRow without * causing it to overlap other items or overflow mGridColEnd. * If there's no such column in aStartRow, continue in position 1,aStartRow+1. * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true. * Post-condition: aArea->IsDefinite() is true. */ void PlaceAutoAutoInRowOrder(uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea) const; /** * Place aArea in the first row starting at aStartCol,aStartRow without * causing it to overlap other items or overflow mGridRowEnd. * If there's no such row in aStartCol, continue in position aStartCol+1,1. * Pre-condition: aArea->mCols.IsAuto() && aArea->mRows.IsAuto() is true. * Post-condition: aArea->IsDefinite() is true. */ void PlaceAutoAutoInColOrder(uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea) const; /** * Return aLine if it's inside the aMin..aMax range (inclusive), * otherwise return kAutoLine. */ static int32_t AutoIfOutside(int32_t aLine, int32_t aMin, int32_t aMax) { MOZ_ASSERT(aMin <= aMax); if (aLine < aMin || aLine > aMax) { return kAutoLine; } return aLine; } /** * Inflate the implicit grid to include aArea. * @param aArea may be definite or auto */ void InflateGridFor(const GridArea& aArea) { mGridColEnd = std::max(mGridColEnd, aArea.mCols.HypotheticalEnd()); mGridRowEnd = std::max(mGridRowEnd, aArea.mRows.HypotheticalEnd()); MOZ_ASSERT(mGridColEnd <= kTranslatedMaxLine && mGridRowEnd <= kTranslatedMaxLine); } enum LineRangeSide { eLineRangeSideStart, eLineRangeSideEnd }; /** * Return a line number for (non-auto) aLine, per: * http://dev.w3.org/csswg/css-grid/#line-placement * @param aLine style data for the line (must be non-auto) * @param aNth a number of lines to find from aFromIndex, negative if the * search should be in reverse order. In the case aLine has * a specified line name, it's permitted to pass in zero which * will be treated as one. * @param aFromIndex the zero-based index to start counting from * @param aLineNameList the explicit named lines * @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart * @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd * @param aExplicitGridEnd the last line in the explicit grid * @param aEdge indicates whether we are resolving a start or end line * @param aStyle the StylePosition() for the grid container * @return a definite line (1-based), clamped to the kMinLine..kMaxLine range */ int32_t ResolveLine(const nsStyleGridLine& aLine, int32_t aNth, uint32_t aFromIndex, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, LineRangeSide aSide, const nsStylePosition* aStyle); /** * Helper method for ResolveLineRange. * @see ResolveLineRange * @return a pair (start,end) of lines */ typedef std::pair LinePair; LinePair ResolveLineRangeHelper(const nsStyleGridLine& aStart, const nsStyleGridLine& aEnd, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, const nsStylePosition* aStyle); /** * Return a LineRange based on the given style data. Non-auto lines * are resolved to a definite line number (1-based) per: * http://dev.w3.org/csswg/css-grid/#line-placement * with placement errors corrected per: * http://dev.w3.org/csswg/css-grid/#grid-placement-errors * @param aStyle the StylePosition() for the grid container * @param aStart style data for the start line * @param aEnd style data for the end line * @param aLineNameList the explicit named lines * @param aAreaStart a pointer to GridNamedArea::mColumnStart/mRowStart * @param aAreaEnd a pointer to GridNamedArea::mColumnEnd/mRowEnd * @param aExplicitGridEnd the last line in the explicit grid * @param aStyle the StylePosition() for the grid container */ LineRange ResolveLineRange(const nsStyleGridLine& aStart, const nsStyleGridLine& aEnd, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, const nsStylePosition* aStyle); /** * Return a GridArea with non-auto lines placed at a definite line (1-based) * with placement errors resolved. One or both positions may still * be 'auto'. * @param aChild the grid item * @param aStyle the StylePosition() for the grid container */ GridArea PlaceDefinite(nsIFrame* aChild, const LineNameMap& aColLineNameMap, const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle); bool HasImplicitNamedArea(const nsString& aName) const { return mAreas && mAreas->Contains(aName); } /** * A convenience method to lookup a name in 'grid-template-areas'. * @param aStyle the StylePosition() for the grid container * @return null if not found */ static const css::GridNamedArea* FindNamedArea(const nsSubstring& aName, const nsStylePosition* aStyle) { if (!aStyle->mGridTemplateAreas) { return nullptr; } const nsTArray& areas = aStyle->mGridTemplateAreas->mNamedAreas; size_t len = areas.Length(); for (size_t i = 0; i < len; ++i) { const css::GridNamedArea& area = areas[i]; if (area.mName == aName) { return &area; } } return nullptr; } // Return true if aString ends in aSuffix and has at least one character before // the suffix. Assign aIndex to where the suffix starts. static bool IsNameWithSuffix(const nsString& aString, const nsString& aSuffix, uint32_t* aIndex) { if (StringEndsWith(aString, aSuffix)) { *aIndex = aString.Length() - aSuffix.Length(); return *aIndex != 0; } return false; } static bool IsNameWithEndSuffix(const nsString& aString, uint32_t* aIndex) { return IsNameWithSuffix(aString, NS_LITERAL_STRING("-end"), aIndex); } static bool IsNameWithStartSuffix(const nsString& aString, uint32_t* aIndex) { return IsNameWithSuffix(aString, NS_LITERAL_STRING("-start"), aIndex); } /** * A CellMap holds state for each cell in the grid. * It's row major. It's sparse in the sense that it only has enough rows to * cover the last row that has a grid item. Each row only has enough entries * to cover columns that are occupied *on that row*, i.e. it's not a full * matrix covering the entire implicit grid. An absent Cell means that it's * unoccupied by any grid item. */ struct CellMap { struct Cell { Cell() : mIsOccupied(false) {} bool mIsOccupied : 1; }; void Fill(const GridArea& aGridArea) { MOZ_ASSERT(aGridArea.IsDefinite()); MOZ_ASSERT(aGridArea.mRows.mStart < aGridArea.mRows.mEnd); MOZ_ASSERT(aGridArea.mCols.mStart < aGridArea.mCols.mEnd); const auto numRows = aGridArea.mRows.mEnd; const auto numCols = aGridArea.mCols.mEnd; mCells.EnsureLengthAtLeast(numRows); for (auto i = aGridArea.mRows.mStart; i < numRows; ++i) { nsTArray& cellsInRow = mCells[i]; cellsInRow.EnsureLengthAtLeast(numCols); for (auto j = aGridArea.mCols.mStart; j < numCols; ++j) { cellsInRow[j].mIsOccupied = true; } } } uint32_t IsEmptyCol(uint32_t aCol) const { for (auto& row : mCells) { if (aCol < row.Length() && row[aCol].mIsOccupied) { return false; } } return true; } uint32_t IsEmptyRow(uint32_t aRow) const { if (aRow >= mCells.Length()) { return true; } for (const Cell& cell : mCells[aRow]) { if (cell.mIsOccupied) { return false; } } return true; } #ifdef DEBUG void Dump() const { const size_t numRows = mCells.Length(); for (size_t i = 0; i < numRows; ++i) { const nsTArray& cellsInRow = mCells[i]; const size_t numCols = cellsInRow.Length(); printf("%lu:\t", (unsigned long)i + 1); for (size_t j = 0; j < numCols; ++j) { printf(cellsInRow[j].mIsOccupied ? "X " : ". "); } printf("\n"); } } #endif nsTArray> mCells; }; /** * State for each cell in the grid. */ CellMap mCellMap; /** * @see HasImplicitNamedArea. */ ImplicitNamedAreas* mAreas; /** * The last column grid line (1-based) in the explicit grid. * (i.e. the number of explicit columns + 1) */ uint32_t mExplicitGridColEnd; /** * The last row grid line (1-based) in the explicit grid. * (i.e. the number of explicit rows + 1) */ uint32_t mExplicitGridRowEnd; // Same for the implicit grid, except these become zero-based after // resolving definite lines. uint32_t mGridColEnd; uint32_t mGridRowEnd; /** * Offsets from the start of the implicit grid to the start of the translated * explicit grid. They are zero if there are no implicit lines before 1,1. * e.g. "grid-column: span 3 / 1" makes mExplicitGridOffsetCol = 3 and the * corresponding GridArea::mCols will be 0 / 3 in the zero-based translated * grid. */ uint32_t mExplicitGridOffsetCol; uint32_t mExplicitGridOffsetRow; }; void nsGridContainerFrame::GridReflowState::CalculateTrackSizes( const Grid& aGrid, const LogicalSize& aContentBox, IntrinsicISizeType aConstraint) { mCols.Initialize(mColFunctions, mGridStyle->mGridColumnGap, aGrid.mGridColEnd, aContentBox.ISize(mWM)); mRows.Initialize(mRowFunctions, mGridStyle->mGridRowGap, aGrid.mGridRowEnd, aContentBox.BSize(mWM)); mIter.Reset(); // XXX cleanup this Reset mess! mCols.CalculateSizes(*this, mGridItems, mColFunctions, aContentBox.ISize(mWM), &GridArea::mCols, aConstraint); mIter.Reset(); // XXX cleanup this Reset mess! mRows.CalculateSizes(*this, mGridItems, mRowFunctions, aContentBox.BSize(mWM), &GridArea::mRows, aConstraint); } /** * (XXX share this utility function with nsFlexContainerFrame at some point) * * Helper for BuildDisplayList, to implement this special-case for grid * items from the spec: * The painting order of grid items is exactly the same as inline blocks, * except that [...] 'z-index' values other than 'auto' create a stacking * context even if 'position' is 'static'. * http://dev.w3.org/csswg/css-grid/#z-order */ static uint32_t GetDisplayFlagsForGridItem(nsIFrame* aFrame) { const nsStylePosition* pos = aFrame->StylePosition(); if (pos->mZIndex.GetUnit() == eStyleUnit_Integer) { return nsIFrame::DISPLAY_CHILD_FORCE_STACKING_CONTEXT; } return nsIFrame::DISPLAY_CHILD_FORCE_PSEUDO_STACKING_CONTEXT; } static nscoord SpaceToFill(WritingMode aWM, const LogicalSize& aSize, nscoord aMargin, LogicalAxis aAxis, nscoord aCBSize) { nscoord size = aAxis == eLogicalAxisBlock ? aSize.BSize(aWM) : aSize.ISize(aWM); return aCBSize - (size + aMargin); } // Align (or stretch) an item's margin box in its aAxis inside aCBSize. static bool AlignJustifySelf(uint8_t aAlignment, bool aOverflowSafe, LogicalAxis aAxis, bool aSameSide, nscoord aCBSize, const nsHTMLReflowState& aRS, const LogicalSize& aChildSize, LogicalSize* aContentSize, LogicalPoint* aPos) { MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_AUTO, "unexpected 'auto' " "computed value for normal flow grid item"); MOZ_ASSERT(aAlignment != NS_STYLE_ALIGN_LEFT && aAlignment != NS_STYLE_ALIGN_RIGHT, "caller should map that to the corresponding START/END"); // Map some alignment values to 'start' / 'end'. switch (aAlignment) { case NS_STYLE_ALIGN_SELF_START: // align/justify-self: self-start aAlignment = MOZ_LIKELY(aSameSide) ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END; break; case NS_STYLE_ALIGN_SELF_END: // align/justify-self: self-end aAlignment = MOZ_LIKELY(aSameSide) ? NS_STYLE_ALIGN_END : NS_STYLE_ALIGN_START; break; case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid aAlignment = NS_STYLE_ALIGN_START; break; case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid aAlignment = NS_STYLE_ALIGN_END; break; } // XXX try to condense this code a bit by adding the necessary convenience // methods? (bug 1209710) // Get the item's margin corresponding to the container's start/end side. const LogicalMargin margin = aRS.ComputedLogicalMargin(); WritingMode wm = aRS.GetWritingMode(); nscoord marginStart, marginEnd; if (aAxis == eLogicalAxisBlock) { if (MOZ_LIKELY(aSameSide)) { marginStart = margin.BStart(wm); marginEnd = margin.BEnd(wm); } else { marginStart = margin.BEnd(wm); marginEnd = margin.BStart(wm); } } else { if (MOZ_LIKELY(aSameSide)) { marginStart = margin.IStart(wm); marginEnd = margin.IEnd(wm); } else { marginStart = margin.IEnd(wm); marginEnd = margin.IStart(wm); } } const auto& styleMargin = aRS.mStyleMargin->mMargin; bool hasAutoMarginStart; bool hasAutoMarginEnd; if (aAxis == eLogicalAxisBlock) { hasAutoMarginStart = styleMargin.GetBStartUnit(wm) == eStyleUnit_Auto; hasAutoMarginEnd = styleMargin.GetBEndUnit(wm) == eStyleUnit_Auto; } else { hasAutoMarginStart = styleMargin.GetIStartUnit(wm) == eStyleUnit_Auto; hasAutoMarginEnd = styleMargin.GetIEndUnit(wm) == eStyleUnit_Auto; } // https://drafts.csswg.org/css-align-3/#overflow-values // This implements = 'safe'. // And auto-margins: https://drafts.csswg.org/css-grid/#auto-margins if ((MOZ_UNLIKELY(aOverflowSafe) && aAlignment != NS_STYLE_ALIGN_START) || hasAutoMarginStart || hasAutoMarginEnd) { nscoord space = SpaceToFill(wm, aChildSize, marginStart + marginEnd, aAxis, aCBSize); // XXX we might want to include == 0 here as an optimization - // I need to see what the baseline/last-baseline code looks like first. if (space < 0) { // "Overflowing elements ignore their auto margins and overflow // in the end directions" aAlignment = NS_STYLE_ALIGN_START; } else if (hasAutoMarginEnd) { aAlignment = hasAutoMarginStart ? NS_STYLE_ALIGN_CENTER : (aSameSide ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END); } else if (hasAutoMarginStart) { aAlignment = aSameSide ? NS_STYLE_ALIGN_END : NS_STYLE_ALIGN_START; } } // Set the position and size (aPos/aContentSize) for the requested alignment. bool didResize = false; nscoord offset = 0; // NOTE: this is the resulting frame offset (border box). switch (aAlignment) { case NS_STYLE_ALIGN_BASELINE: case NS_STYLE_ALIGN_LAST_BASELINE: NS_WARNING("NYI: baseline/last-baseline for grid (bug 1151204)"); // XXX MOZ_FALLTHROUGH; case NS_STYLE_ALIGN_START: offset = marginStart; break; case NS_STYLE_ALIGN_END: { nscoord size = aAxis == eLogicalAxisBlock ? aChildSize.BSize(wm) : aChildSize.ISize(wm); offset = aCBSize - (size + marginEnd); break; } case NS_STYLE_ALIGN_CENTER: { nscoord size = aAxis == eLogicalAxisBlock ? aChildSize.BSize(wm) : aChildSize.ISize(wm); offset = (aCBSize - size + marginStart - marginEnd) / 2; break; } case NS_STYLE_ALIGN_STRETCH: { MOZ_ASSERT(!hasAutoMarginStart && !hasAutoMarginEnd); offset = marginStart; if (aAxis == eLogicalAxisBlock ? (aRS.mStylePosition->BSize(wm).GetUnit() == eStyleUnit_Auto) : (aRS.mStylePosition->ISize(wm).GetUnit() == eStyleUnit_Auto)) { nscoord size = aAxis == eLogicalAxisBlock ? aChildSize.BSize(wm) : aChildSize.ISize(wm); nscoord gap = aCBSize - (size + marginStart + marginEnd); if (gap > 0) { // Note: The ComputedMax* values are always content-box max values, // even for box-sizing:border-box. LogicalMargin bp = aRS.ComputedLogicalBorderPadding(); // XXX ApplySkipSides is probably not very useful here since we // might not have created any next-in-flow yet. Use the reflow status // instead? Do all fragments stretch? (bug 1144096). bp.ApplySkipSides(aRS.frame->GetLogicalSkipSides()); nscoord bpInAxis = aAxis == eLogicalAxisBlock ? bp.BStartEnd(wm) : bp.IStartEnd(wm); nscoord contentSize = size - bpInAxis; const nscoord unstretchedContentSize = contentSize; contentSize += gap; nscoord max = aAxis == eLogicalAxisBlock ? aRS.ComputedMaxBSize() : aRS.ComputedMaxISize(); if (MOZ_UNLIKELY(contentSize > max)) { contentSize = max; gap = contentSize - unstretchedContentSize; } // |gap| is now how much the content size is actually allowed to grow. didResize = gap > 0; // (nscoord overflow can make |contentSize| negative, bug 1225118) if (didResize && MOZ_LIKELY(contentSize >= 0)) { (aAxis == eLogicalAxisBlock ? aContentSize->BSize(wm) : aContentSize->ISize(wm)) = contentSize; if (MOZ_UNLIKELY(!aSameSide)) { offset += gap; } } } } break; } default: MOZ_ASSERT_UNREACHABLE("unknown align-/justify-self value"); } if (offset != 0) { nscoord& pos = aAxis == eLogicalAxisBlock ? aPos->B(wm) : aPos->I(wm); pos += MOZ_LIKELY(aSameSide) ? offset : -offset; } return didResize; } static bool SameSide(WritingMode aContainerWM, LogicalSide aContainerSide, WritingMode aChildWM, LogicalSide aChildSide) { MOZ_ASSERT(aContainerWM.PhysicalAxis(GetAxis(aContainerSide)) == aChildWM.PhysicalAxis(GetAxis(aChildSide))); return aContainerWM.PhysicalSide(aContainerSide) == aChildWM.PhysicalSide(aChildSide); } static Maybe AlignSelf(uint8_t aAlignSelf, const LogicalRect& aCB, const WritingMode aCBWM, const nsHTMLReflowState& aRS, const LogicalSize& aSize, LogicalSize* aContentSize, LogicalPoint* aPos) { Maybe resizedAxis; auto alignSelf = aAlignSelf; bool overflowSafe = alignSelf & NS_STYLE_ALIGN_SAFE; alignSelf &= ~NS_STYLE_ALIGN_FLAG_BITS; // Grid's 'align-self' axis is never parallel to the container's inline axis. if (alignSelf == NS_STYLE_ALIGN_LEFT || alignSelf == NS_STYLE_ALIGN_RIGHT) { alignSelf = NS_STYLE_ALIGN_START; } if (MOZ_LIKELY(alignSelf == NS_STYLE_ALIGN_NORMAL)) { alignSelf = NS_STYLE_ALIGN_STRETCH; } WritingMode childWM = aRS.GetWritingMode(); bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM); // |sameSide| is true if the container's start side in this axis is the same // as the child's start side, in the child's parallel axis. bool sameSide = SameSide(aCBWM, eLogicalSideBStart, childWM, isOrthogonal ? eLogicalSideIStart : eLogicalSideBStart); LogicalAxis axis = isOrthogonal ? eLogicalAxisInline : eLogicalAxisBlock; if (AlignJustifySelf(alignSelf, overflowSafe, axis, sameSide, aCB.BSize(aCBWM), aRS, aSize, aContentSize, aPos)) { resizedAxis.emplace(axis); } return resizedAxis; } static Maybe JustifySelf(uint8_t aJustifySelf, const LogicalRect& aCB, const WritingMode aCBWM, const nsHTMLReflowState& aRS, const LogicalSize& aSize, LogicalSize* aContentSize, LogicalPoint* aPos) { Maybe resizedAxis; auto justifySelf = aJustifySelf; bool overflowSafe = justifySelf & NS_STYLE_JUSTIFY_SAFE; justifySelf &= ~NS_STYLE_JUSTIFY_FLAG_BITS; if (MOZ_LIKELY(justifySelf == NS_STYLE_ALIGN_NORMAL)) { justifySelf = NS_STYLE_ALIGN_STRETCH; } WritingMode childWM = aRS.GetWritingMode(); bool isOrthogonal = aCBWM.IsOrthogonalTo(childWM); // |sameSide| is true if the container's start side in this axis is the same // as the child's start side, in the child's parallel axis. bool sameSide = SameSide(aCBWM, eLogicalSideIStart, childWM, isOrthogonal ? eLogicalSideBStart : eLogicalSideIStart); // Grid's 'justify-self' axis is always parallel to the container's inline // axis, so justify-self:left|right always applies. switch (justifySelf) { case NS_STYLE_JUSTIFY_LEFT: justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_START : NS_STYLE_JUSTIFY_END; break; case NS_STYLE_JUSTIFY_RIGHT: justifySelf = aCBWM.IsBidiLTR() ? NS_STYLE_JUSTIFY_END : NS_STYLE_JUSTIFY_START; break; } LogicalAxis axis = isOrthogonal ? eLogicalAxisBlock : eLogicalAxisInline; if (AlignJustifySelf(justifySelf, overflowSafe, axis, sameSide, aCB.ISize(aCBWM), aRS, aSize, aContentSize, aPos)) { resizedAxis.emplace(axis); } return resizedAxis; } static uint16_t GetAlignJustifyValue(uint16_t aAlignment, const WritingMode aWM, const bool aIsAlign, bool* aOverflowSafe) { *aOverflowSafe = aAlignment & NS_STYLE_ALIGN_SAFE; aAlignment &= (NS_STYLE_ALIGN_ALL_BITS & ~NS_STYLE_ALIGN_FLAG_BITS); // Map some alignment values to 'start' / 'end'. switch (aAlignment) { case NS_STYLE_ALIGN_LEFT: case NS_STYLE_ALIGN_RIGHT: { if (aIsAlign) { // Grid's 'align-content' axis is never parallel to the inline axis. return NS_STYLE_ALIGN_START; } bool isStart = aWM.IsBidiLTR() == (aAlignment == NS_STYLE_ALIGN_LEFT); return isStart ? NS_STYLE_ALIGN_START : NS_STYLE_ALIGN_END; } case NS_STYLE_ALIGN_FLEX_START: // same as 'start' for Grid return NS_STYLE_ALIGN_START; case NS_STYLE_ALIGN_FLEX_END: // same as 'end' for Grid return NS_STYLE_ALIGN_END; } return aAlignment; } static uint16_t GetAlignJustifyFallbackIfAny(uint16_t aAlignment, const WritingMode aWM, const bool aIsAlign, bool* aOverflowSafe) { uint16_t fallback = aAlignment >> NS_STYLE_ALIGN_ALL_SHIFT; if (fallback) { return GetAlignJustifyValue(fallback, aWM, aIsAlign, aOverflowSafe); } // https://drafts.csswg.org/css-align-3/#fallback-alignment switch (aAlignment) { case NS_STYLE_ALIGN_STRETCH: case NS_STYLE_ALIGN_SPACE_BETWEEN: return NS_STYLE_ALIGN_START; case NS_STYLE_ALIGN_SPACE_AROUND: case NS_STYLE_ALIGN_SPACE_EVENLY: return NS_STYLE_ALIGN_CENTER; } return 0; } //---------------------------------------------------------------------- // Frame class boilerplate // ======================= NS_QUERYFRAME_HEAD(nsGridContainerFrame) NS_QUERYFRAME_ENTRY(nsGridContainerFrame) NS_QUERYFRAME_TAIL_INHERITING(nsContainerFrame) NS_IMPL_FRAMEARENA_HELPERS(nsGridContainerFrame) nsContainerFrame* NS_NewGridContainerFrame(nsIPresShell* aPresShell, nsStyleContext* aContext) { return new (aPresShell) nsGridContainerFrame(aContext); } //---------------------------------------------------------------------- // nsGridContainerFrame Method Implementations // =========================================== /*static*/ const nsRect& nsGridContainerFrame::GridItemCB(nsIFrame* aChild) { MOZ_ASSERT((aChild->GetStateBits() & NS_FRAME_OUT_OF_FLOW) && aChild->IsAbsolutelyPositioned()); nsRect* cb = static_cast(aChild->Properties().Get( GridItemContainingBlockRect())); MOZ_ASSERT(cb, "this method must only be called on grid items, and the grid " "container should've reflowed this item by now and set up cb"); return *cb; } void nsGridContainerFrame::AddImplicitNamedAreas( const nsTArray>& aLineNameLists) { // http://dev.w3.org/csswg/css-grid/#implicit-named-areas // Note: recording these names for fast lookup later is just an optimization. const uint32_t len = std::min(aLineNameLists.Length(), size_t(nsStyleGridLine::kMaxLine)); nsTHashtable currentStarts; ImplicitNamedAreas* areas = GetImplicitNamedAreas(); for (uint32_t i = 0; i < len; ++i) { for (const nsString& name : aLineNameLists[i]) { uint32_t index; if (Grid::IsNameWithStartSuffix(name, &index) || Grid::IsNameWithEndSuffix(name, &index)) { nsDependentSubstring area(name, 0, index); if (!areas) { areas = new ImplicitNamedAreas; Properties().Set(ImplicitNamedAreasProperty(), areas); } areas->PutEntry(area); } } } } void nsGridContainerFrame::InitImplicitNamedAreas(const nsStylePosition* aStyle) { ImplicitNamedAreas* areas = GetImplicitNamedAreas(); if (areas) { // Clear it, but reuse the hashtable itself for now. We'll remove it // below if it isn't needed anymore. areas->Clear(); } AddImplicitNamedAreas(aStyle->mGridTemplateColumns.mLineNameLists); AddImplicitNamedAreas(aStyle->mGridTemplateRows.mLineNameLists); if (areas && areas->Count() == 0) { Properties().Delete(ImplicitNamedAreasProperty()); } } int32_t nsGridContainerFrame::Grid::ResolveLine(const nsStyleGridLine& aLine, int32_t aNth, uint32_t aFromIndex, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, LineRangeSide aSide, const nsStylePosition* aStyle) { MOZ_ASSERT(!aLine.IsAuto()); int32_t line = 0; if (aLine.mLineName.IsEmpty()) { MOZ_ASSERT(aNth != 0, "css-grid 9.2: must not be zero."); line = int32_t(aFromIndex) + aNth; } else { if (aNth == 0) { // was omitted; treat it as 1. aNth = 1; } bool isNameOnly = !aLine.mHasSpan && aLine.mInteger == 0; if (isNameOnly) { const GridNamedArea* area = FindNamedArea(aLine.mLineName, aStyle); if (area || HasImplicitNamedArea(aLine.mLineName)) { // The given name is a named area - look for explicit lines named // -start/-end depending on which side we're resolving. // http://dev.w3.org/csswg/css-grid/#grid-placement-slot uint32_t implicitLine = 0; nsAutoString lineName(aLine.mLineName); if (aSide == eLineRangeSideStart) { lineName.AppendLiteral("-start"); implicitLine = area ? area->*aAreaStart : 0; } else { lineName.AppendLiteral("-end"); implicitLine = area ? area->*aAreaEnd : 0; } line = aNameMap.FindNamedLine(lineName, &aNth, aFromIndex, implicitLine); } } if (line == 0) { // If mLineName ends in -start/-end, try the prefix as a named area. uint32_t implicitLine = 0; uint32_t index; auto GridNamedArea::* areaEdge = aAreaStart; bool found = IsNameWithStartSuffix(aLine.mLineName, &index); if (!found) { found = IsNameWithEndSuffix(aLine.mLineName, &index); areaEdge = aAreaEnd; } if (found) { const GridNamedArea* area = FindNamedArea(nsDependentSubstring(aLine.mLineName, 0, index), aStyle); if (area) { implicitLine = area->*areaEdge; } } line = aNameMap.FindNamedLine(aLine.mLineName, &aNth, aFromIndex, implicitLine); } if (line == 0) { MOZ_ASSERT(aNth != 0, "we found all N named lines but 'line' is zero!"); int32_t edgeLine; if (aLine.mHasSpan) { // http://dev.w3.org/csswg/css-grid/#grid-placement-span-int // 'span N' edgeLine = aSide == eLineRangeSideStart ? 1 : aExplicitGridEnd; } else { // http://dev.w3.org/csswg/css-grid/#grid-placement-int // ' N' edgeLine = aNth < 0 ? 1 : aExplicitGridEnd; } // "If not enough lines with that name exist, all lines in the implicit // grid are assumed to have that name..." line = edgeLine + aNth; } } return clamped(line, nsStyleGridLine::kMinLine, nsStyleGridLine::kMaxLine); } nsGridContainerFrame::Grid::LinePair nsGridContainerFrame::Grid::ResolveLineRangeHelper( const nsStyleGridLine& aStart, const nsStyleGridLine& aEnd, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, const nsStylePosition* aStyle) { MOZ_ASSERT(int32_t(nsGridContainerFrame::kAutoLine) > nsStyleGridLine::kMaxLine); if (aStart.mHasSpan) { if (aEnd.mHasSpan || aEnd.IsAuto()) { // http://dev.w3.org/csswg/css-grid/#grid-placement-errors if (aStart.mLineName.IsEmpty()) { // span / span * // span / auto return LinePair(kAutoLine, aStart.mInteger); } // span / span * // span / auto return LinePair(kAutoLine, 1); // XXX subgrid explicit size instead of 1? } uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0; auto end = ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle); int32_t span = aStart.mInteger == 0 ? 1 : aStart.mInteger; if (end <= 1) { // The end is at or before the first explicit line, thus all lines before // it match since they're implicit. int32_t start = std::max(end - span, nsStyleGridLine::kMinLine); return LinePair(start, end); } auto start = ResolveLine(aStart, -span, end, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle); return LinePair(start, end); } int32_t start = kAutoLine; if (aStart.IsAuto()) { if (aEnd.IsAuto()) { // auto / auto return LinePair(start, 1); // XXX subgrid explicit size instead of 1? } if (aEnd.mHasSpan) { if (aEnd.mLineName.IsEmpty()) { // auto / span MOZ_ASSERT(aEnd.mInteger != 0); return LinePair(start, aEnd.mInteger); } // http://dev.w3.org/csswg/css-grid/#grid-placement-errors // auto / span return LinePair(start, 1); // XXX subgrid explicit size instead of 1? } } else { uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0; start = ResolveLine(aStart, aStart.mInteger, from, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle); if (aEnd.IsAuto()) { // A "definite line / auto" should resolve the auto to 'span 1'. // The error handling in ResolveLineRange will make that happen and also // clamp the end line correctly if we return "start / start". return LinePair(start, start); } } uint32_t from; int32_t nth = aEnd.mInteger == 0 ? 1 : aEnd.mInteger; if (aEnd.mHasSpan) { if (MOZ_UNLIKELY(start < 0)) { if (aEnd.mLineName.IsEmpty()) { return LinePair(start, start + nth); } from = 0; } else { if (start >= int32_t(aExplicitGridEnd)) { // The start is at or after the last explicit line, thus all lines // after it match since they're implicit. return LinePair(start, std::min(start + nth, nsStyleGridLine::kMaxLine)); } from = start; } } else { from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0; } auto end = ResolveLine(aEnd, nth, from, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle); if (start == int32_t(kAutoLine)) { // auto / definite line start = std::max(nsStyleGridLine::kMinLine, end - 1); } return LinePair(start, end); } nsGridContainerFrame::LineRange nsGridContainerFrame::Grid::ResolveLineRange( const nsStyleGridLine& aStart, const nsStyleGridLine& aEnd, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, const nsStylePosition* aStyle) { LinePair r = ResolveLineRangeHelper(aStart, aEnd, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, aStyle); MOZ_ASSERT(r.second != int32_t(kAutoLine)); if (r.first == int32_t(kAutoLine)) { // r.second is a span, clamp it to kMaxLine - 1 so that the returned // range has a HypotheticalEnd <= kMaxLine. // http://dev.w3.org/csswg/css-grid/#overlarge-grids r.second = std::min(r.second, nsStyleGridLine::kMaxLine - 1); } else { // http://dev.w3.org/csswg/css-grid/#grid-placement-errors if (r.first > r.second) { Swap(r.first, r.second); } else if (r.first == r.second) { if (MOZ_UNLIKELY(r.first == nsStyleGridLine::kMaxLine)) { r.first = nsStyleGridLine::kMaxLine - 1; } r.second = r.first + 1; // XXX subgrid explicit size instead of 1? } } return LineRange(r.first, r.second); } nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceDefinite(nsIFrame* aChild, const LineNameMap& aColLineNameMap, const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) { const nsStylePosition* itemStyle = aChild->StylePosition(); return GridArea( ResolveLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd, aColLineNameMap, &GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd, mExplicitGridColEnd, aStyle), ResolveLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd, aRowLineNameMap, &GridNamedArea::mRowStart, &GridNamedArea::mRowEnd, mExplicitGridRowEnd, aStyle)); } nsGridContainerFrame::LineRange nsGridContainerFrame::Grid::ResolveAbsPosLineRange( const nsStyleGridLine& aStart, const nsStyleGridLine& aEnd, const LineNameMap& aNameMap, uint32_t GridNamedArea::* aAreaStart, uint32_t GridNamedArea::* aAreaEnd, uint32_t aExplicitGridEnd, int32_t aGridStart, int32_t aGridEnd, const nsStylePosition* aStyle) { if (aStart.IsAuto()) { if (aEnd.IsAuto()) { return LineRange(kAutoLine, kAutoLine); } uint32_t from = aEnd.mInteger < 0 ? aExplicitGridEnd + 1: 0; int32_t end = ResolveLine(aEnd, aEnd.mInteger, from, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, eLineRangeSideEnd, aStyle); if (aEnd.mHasSpan) { ++end; } // A line outside the existing grid is treated as 'auto' for abs.pos (10.1). end = AutoIfOutside(end, aGridStart, aGridEnd); return LineRange(kAutoLine, end); } if (aEnd.IsAuto()) { uint32_t from = aStart.mInteger < 0 ? aExplicitGridEnd + 1: 0; int32_t start = ResolveLine(aStart, aStart.mInteger, from, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, eLineRangeSideStart, aStyle); if (aStart.mHasSpan) { start = std::max(aGridEnd - start, aGridStart); } start = AutoIfOutside(start, aGridStart, aGridEnd); return LineRange(start, kAutoLine); } LineRange r = ResolveLineRange(aStart, aEnd, aNameMap, aAreaStart, aAreaEnd, aExplicitGridEnd, aStyle); if (r.IsAuto()) { MOZ_ASSERT(aStart.mHasSpan && aEnd.mHasSpan, "span / span is the only case " "leading to IsAuto here -- we dealt with the other cases above"); // The second span was ignored per 9.2.1. For abs.pos., 10.1 says that this // case should result in "auto / auto" unlike normal flow grid items. return LineRange(kAutoLine, kAutoLine); } return LineRange(AutoIfOutside(r.mUntranslatedStart, aGridStart, aGridEnd), AutoIfOutside(r.mUntranslatedEnd, aGridStart, aGridEnd)); } nsGridContainerFrame::GridArea nsGridContainerFrame::Grid::PlaceAbsPos(nsIFrame* aChild, const LineNameMap& aColLineNameMap, const LineNameMap& aRowLineNameMap, const nsStylePosition* aStyle) { const nsStylePosition* itemStyle = aChild->StylePosition(); int32_t gridColStart = 1 - mExplicitGridOffsetCol; int32_t gridRowStart = 1 - mExplicitGridOffsetRow; return GridArea( ResolveAbsPosLineRange(itemStyle->mGridColumnStart, itemStyle->mGridColumnEnd, aColLineNameMap, &GridNamedArea::mColumnStart, &GridNamedArea::mColumnEnd, mExplicitGridColEnd, gridColStart, mGridColEnd, aStyle), ResolveAbsPosLineRange(itemStyle->mGridRowStart, itemStyle->mGridRowEnd, aRowLineNameMap, &GridNamedArea::mRowStart, &GridNamedArea::mRowEnd, mExplicitGridRowEnd, gridRowStart, mGridRowEnd, aStyle)); } uint32_t nsGridContainerFrame::Grid::FindAutoCol(uint32_t aStartCol, uint32_t aLockedRow, const GridArea* aArea) const { const uint32_t extent = aArea->mCols.Extent(); const uint32_t iStart = aLockedRow; const uint32_t iEnd = iStart + aArea->mRows.Extent(); uint32_t candidate = aStartCol; for (uint32_t i = iStart; i < iEnd; ) { if (i >= mCellMap.mCells.Length()) { break; } const nsTArray& cellsInRow = mCellMap.mCells[i]; const uint32_t len = cellsInRow.Length(); const uint32_t lastCandidate = candidate; // Find the first gap in the current row that's at least 'extent' wide. // ('gap' tracks how wide the current column gap is.) for (uint32_t j = candidate, gap = 0; j < len && gap < extent; ++j) { if (!cellsInRow[j].mIsOccupied) { ++gap; continue; } candidate = j + 1; gap = 0; } if (lastCandidate < candidate && i != iStart) { // Couldn't fit 'extent' tracks at 'lastCandidate' here so we must // restart from the beginning with the new 'candidate'. i = iStart; } else { ++i; } } return candidate; } void nsGridContainerFrame::Grid::PlaceAutoCol(uint32_t aStartCol, GridArea* aArea) const { MOZ_ASSERT(aArea->mRows.IsDefinite() && aArea->mCols.IsAuto()); uint32_t col = FindAutoCol(aStartCol, aArea->mRows.mStart, aArea); aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol); MOZ_ASSERT(aArea->IsDefinite()); } uint32_t nsGridContainerFrame::Grid::FindAutoRow(uint32_t aLockedCol, uint32_t aStartRow, const GridArea* aArea) const { const uint32_t extent = aArea->mRows.Extent(); const uint32_t jStart = aLockedCol; const uint32_t jEnd = jStart + aArea->mCols.Extent(); const uint32_t iEnd = mCellMap.mCells.Length(); uint32_t candidate = aStartRow; // Find the first gap in the rows that's at least 'extent' tall. // ('gap' tracks how tall the current row gap is.) for (uint32_t i = candidate, gap = 0; i < iEnd && gap < extent; ++i) { ++gap; // tentative, but we may reset it below if a column is occupied const nsTArray& cellsInRow = mCellMap.mCells[i]; const uint32_t clampedJEnd = std::min(jEnd, cellsInRow.Length()); // Check if the current row is unoccupied from jStart to jEnd. for (uint32_t j = jStart; j < clampedJEnd; ++j) { if (cellsInRow[j].mIsOccupied) { // Couldn't fit 'extent' rows at 'candidate' here; we hit something // at row 'i'. So, try the row after 'i' as our next candidate. candidate = i + 1; gap = 0; break; } } } return candidate; } void nsGridContainerFrame::Grid::PlaceAutoRow(uint32_t aStartRow, GridArea* aArea) const { MOZ_ASSERT(aArea->mCols.IsDefinite() && aArea->mRows.IsAuto()); uint32_t row = FindAutoRow(aArea->mCols.mStart, aStartRow, aArea); aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow); MOZ_ASSERT(aArea->IsDefinite()); } void nsGridContainerFrame::Grid::PlaceAutoAutoInRowOrder(uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea) const { MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto()); const uint32_t colExtent = aArea->mCols.Extent(); const uint32_t gridRowEnd = mGridRowEnd; const uint32_t gridColEnd = mGridColEnd; uint32_t col = aStartCol; uint32_t row = aStartRow; for (; row < gridRowEnd; ++row) { col = FindAutoCol(col, row, aArea); if (col + colExtent <= gridColEnd) { break; } col = 0; } MOZ_ASSERT(row < gridRowEnd || col == 0, "expected column 0 for placing in a new row"); aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol); aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow); MOZ_ASSERT(aArea->IsDefinite()); } void nsGridContainerFrame::Grid::PlaceAutoAutoInColOrder(uint32_t aStartCol, uint32_t aStartRow, GridArea* aArea) const { MOZ_ASSERT(aArea->mCols.IsAuto() && aArea->mRows.IsAuto()); const uint32_t rowExtent = aArea->mRows.Extent(); const uint32_t gridRowEnd = mGridRowEnd; const uint32_t gridColEnd = mGridColEnd; uint32_t col = aStartCol; uint32_t row = aStartRow; for (; col < gridColEnd; ++col) { row = FindAutoRow(col, row, aArea); if (row + rowExtent <= gridRowEnd) { break; } row = 0; } MOZ_ASSERT(col < gridColEnd || row == 0, "expected row 0 for placing in a new column"); aArea->mCols.ResolveAutoPosition(col, mExplicitGridOffsetCol); aArea->mRows.ResolveAutoPosition(row, mExplicitGridOffsetRow); MOZ_ASSERT(aArea->IsDefinite()); } void nsGridContainerFrame::Grid::PlaceGridItems(GridReflowState& aState, const LogicalSize& aComputedMinSize, const LogicalSize& aComputedSize, const LogicalSize& aComputedMaxSize) { mAreas = aState.mFrame->GetImplicitNamedAreas(); const nsStylePosition* const gridStyle = aState.mGridStyle; MOZ_ASSERT(mCellMap.mCells.IsEmpty(), "unexpected entries in cell map"); // http://dev.w3.org/csswg/css-grid/#grid-definition // Initialize the end lines of the Explicit Grid (mExplicitGridCol[Row]End). // This is determined by the larger of the number of rows/columns defined // by 'grid-template-areas' and the 'grid-template-rows'/'-columns', plus one. // Also initialize the Implicit Grid (mGridCol[Row]End) to the same values. // Note that this is for a grid with a 1,1 origin. We'll change that // to a 0,0 based grid after placing definite lines. auto areas = gridStyle->mGridTemplateAreas.get(); uint32_t numRepeatCols = aState.mColFunctions.InitRepeatTracks( gridStyle->mGridColumnGap, aComputedMinSize.ISize(aState.mWM), aComputedSize.ISize(aState.mWM), aComputedMaxSize.ISize(aState.mWM)); mGridColEnd = mExplicitGridColEnd = aState.mColFunctions.ComputeExplicitGridEnd(areas ? areas->mNColumns + 1 : 1); LineNameMap colLineNameMap(gridStyle->mGridTemplateColumns, numRepeatCols); uint32_t numRepeatRows = aState.mRowFunctions.InitRepeatTracks( gridStyle->mGridRowGap, aComputedMinSize.BSize(aState.mWM), aComputedSize.BSize(aState.mWM), aComputedMaxSize.BSize(aState.mWM)); mGridRowEnd = mExplicitGridRowEnd = aState.mRowFunctions.ComputeExplicitGridEnd(areas ? areas->NRows() + 1 : 1); LineNameMap rowLineNameMap(gridStyle->mGridTemplateRows, numRepeatRows); // http://dev.w3.org/csswg/css-grid/#line-placement // Resolve definite positions per spec chap 9.2. int32_t minCol = 1; int32_t minRow = 1; aState.mGridItems.ClearAndRetainStorage(); for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { nsIFrame* child = *aState.mIter; GridItemInfo* info = aState.mGridItems.AppendElement(GridItemInfo(child, PlaceDefinite(child, colLineNameMap, rowLineNameMap, gridStyle))); MOZ_ASSERT(aState.mIter.GridItemIndex() == aState.mGridItems.Length() - 1, "GridItemIndex() is broken"); GridArea& area = info->mArea; if (area.mCols.IsDefinite()) { minCol = std::min(minCol, area.mCols.mUntranslatedStart); } if (area.mRows.IsDefinite()) { minRow = std::min(minRow, area.mRows.mUntranslatedStart); } } // Translate the whole grid so that the top-/left-most area is at 0,0. mExplicitGridOffsetCol = 1 - minCol; // minCol/Row is always <= 1, see above mExplicitGridOffsetRow = 1 - minRow; aState.mColFunctions.mExplicitGridOffset = mExplicitGridOffsetCol; aState.mRowFunctions.mExplicitGridOffset = mExplicitGridOffsetRow; const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1; const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1; mGridColEnd += offsetToColZero; mGridRowEnd += offsetToRowZero; aState.mIter.Reset(); for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { GridArea& area = aState.mGridItems[aState.mIter.GridItemIndex()].mArea; if (area.mCols.IsDefinite()) { area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero; area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero; } if (area.mRows.IsDefinite()) { area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero; area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero; } if (area.IsDefinite()) { mCellMap.Fill(area); InflateGridFor(area); } } // http://dev.w3.org/csswg/css-grid/#auto-placement-algo // Step 1, place 'auto' items that have one definite position - // definite row (column) for grid-auto-flow:row (column). auto flowStyle = gridStyle->mGridAutoFlow; const bool isRowOrder = (flowStyle & NS_STYLE_GRID_AUTO_FLOW_ROW); const bool isSparse = !(flowStyle & NS_STYLE_GRID_AUTO_FLOW_DENSE); // We need 1 cursor per row (or column) if placement is sparse. { Maybe> cursors; if (isSparse) { cursors.emplace(); } auto placeAutoMinorFunc = isRowOrder ? &Grid::PlaceAutoCol : &Grid::PlaceAutoRow; aState.mIter.Reset(); for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { GridArea& area = aState.mGridItems[aState.mIter.GridItemIndex()].mArea; LineRange& major = isRowOrder ? area.mRows : area.mCols; LineRange& minor = isRowOrder ? area.mCols : area.mRows; if (major.IsDefinite() && minor.IsAuto()) { // Items with 'auto' in the minor dimension only. uint32_t cursor = 0; if (isSparse) { cursors->Get(major.mStart, &cursor); } (this->*placeAutoMinorFunc)(cursor, &area); mCellMap.Fill(area); if (isSparse) { cursors->Put(major.mStart, minor.mEnd); } } InflateGridFor(area); // Step 2, inflating for auto items too } } // XXX NOTE possible spec issue. // XXX It's unclear if the remaining major-dimension auto and // XXX auto in both dimensions should use the same cursor or not, // XXX https://www.w3.org/Bugs/Public/show_bug.cgi?id=16044 // XXX seems to indicate it shouldn't. // XXX http://dev.w3.org/csswg/css-grid/#auto-placement-cursor // XXX now says it should (but didn't in earlier versions) // Step 3, place the remaining grid items uint32_t cursorMajor = 0; // for 'dense' these two cursors will stay at 0,0 uint32_t cursorMinor = 0; auto placeAutoMajorFunc = isRowOrder ? &Grid::PlaceAutoRow : &Grid::PlaceAutoCol; aState.mIter.Reset(); for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { GridArea& area = aState.mGridItems[aState.mIter.GridItemIndex()].mArea; MOZ_ASSERT(*aState.mIter == aState.mGridItems[aState.mIter.GridItemIndex()].mFrame, "iterator out of sync with aState.mGridItems"); LineRange& major = isRowOrder ? area.mRows : area.mCols; LineRange& minor = isRowOrder ? area.mCols : area.mRows; if (major.IsAuto()) { if (minor.IsDefinite()) { // Items with 'auto' in the major dimension only. if (isSparse) { if (minor.mStart < cursorMinor) { ++cursorMajor; } cursorMinor = minor.mStart; } (this->*placeAutoMajorFunc)(cursorMajor, &area); if (isSparse) { cursorMajor = major.mStart; } } else { // Items with 'auto' in both dimensions. if (isRowOrder) { PlaceAutoAutoInRowOrder(cursorMinor, cursorMajor, &area); } else { PlaceAutoAutoInColOrder(cursorMajor, cursorMinor, &area); } if (isSparse) { cursorMajor = major.mStart; cursorMinor = minor.mEnd; #ifdef DEBUG uint32_t gridMajorEnd = isRowOrder ? mGridRowEnd : mGridColEnd; uint32_t gridMinorEnd = isRowOrder ? mGridColEnd : mGridRowEnd; MOZ_ASSERT(cursorMajor <= gridMajorEnd, "we shouldn't need to place items further than 1 track " "past the current end of the grid, in major dimension"); MOZ_ASSERT(cursorMinor <= gridMinorEnd, "we shouldn't add implicit minor tracks for auto/auto"); #endif } } mCellMap.Fill(area); InflateGridFor(area); } } if (aState.mFrame->IsAbsoluteContainer()) { // 9.4 Absolutely-positioned Grid Items // http://dev.w3.org/csswg/css-grid/#abspos-items // We only resolve definite lines here; we'll align auto positions to the // grid container later during reflow. nsFrameList children(aState.mFrame->GetChildList( aState.mFrame->GetAbsoluteListID())); const int32_t offsetToColZero = int32_t(mExplicitGridOffsetCol) - 1; const int32_t offsetToRowZero = int32_t(mExplicitGridOffsetRow) - 1; // Untranslate the grid again temporarily while resolving abs.pos. lines. AutoRestore save1(mGridColEnd); AutoRestore save2(mGridRowEnd); mGridColEnd -= offsetToColZero; mGridRowEnd -= offsetToRowZero; aState.mAbsPosItems.ClearAndRetainStorage(); size_t i = 0; for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) { nsIFrame* child = e.get(); GridItemInfo* info = aState.mAbsPosItems.AppendElement(GridItemInfo(child, PlaceAbsPos(child, colLineNameMap, rowLineNameMap, gridStyle))); GridArea& area = info->mArea; if (area.mCols.mUntranslatedStart != int32_t(kAutoLine)) { area.mCols.mStart = area.mCols.mUntranslatedStart + offsetToColZero; } if (area.mCols.mUntranslatedEnd != int32_t(kAutoLine)) { area.mCols.mEnd = area.mCols.mUntranslatedEnd + offsetToColZero; } if (area.mRows.mUntranslatedStart != int32_t(kAutoLine)) { area.mRows.mStart = area.mRows.mUntranslatedStart + offsetToRowZero; } if (area.mRows.mUntranslatedEnd != int32_t(kAutoLine)) { area.mRows.mEnd = area.mRows.mUntranslatedEnd + offsetToRowZero; } } } // Count empty 'auto-fit' tracks in the repeat() range. // |colAdjust| will have a count for each line in the grid of how many // tracks were empty between the start of the grid and that line. Maybe> colAdjust; uint32_t numEmptyCols = 0; if (aState.mColFunctions.mHasRepeatAuto && !gridStyle->mGridTemplateColumns.mIsAutoFill && aState.mColFunctions.NumRepeatTracks() > 0) { for (uint32_t col = aState.mColFunctions.mRepeatAutoStart, endRepeat = aState.mColFunctions.mRepeatAutoEnd, numColLines = mGridColEnd + 1; col < numColLines; ++col) { if (numEmptyCols) { (*colAdjust)[col] = numEmptyCols; } if (col < endRepeat && mCellMap.IsEmptyCol(col)) { ++numEmptyCols; if (colAdjust.isNothing()) { colAdjust.emplace(numColLines); colAdjust->SetLength(numColLines); PodZero(colAdjust->Elements(), colAdjust->Length()); } } } } Maybe> rowAdjust; uint32_t numEmptyRows = 0; if (aState.mRowFunctions.mHasRepeatAuto && !gridStyle->mGridTemplateRows.mIsAutoFill && aState.mRowFunctions.NumRepeatTracks() > 0) { for (uint32_t row = aState.mRowFunctions.mRepeatAutoStart, endRepeat = aState.mRowFunctions.mRepeatAutoEnd, numRowLines = mGridRowEnd + 1; row < numRowLines; ++row) { if (numEmptyRows) { (*rowAdjust)[row] = numEmptyRows; } if (row < endRepeat && mCellMap.IsEmptyRow(row)) { ++numEmptyRows; if (rowAdjust.isNothing()) { rowAdjust.emplace(numRowLines); rowAdjust->SetLength(numRowLines); PodZero(rowAdjust->Elements(), rowAdjust->Length()); } } } } // Remove the empty 'auto-fit' tracks we found above, if any. if (numEmptyCols || numEmptyRows) { // Adjust the line numbers in the grid areas. for (auto& item : aState.mGridItems) { GridArea& area = item.mArea; if (numEmptyCols) { area.mCols.AdjustForRemovedTracks(*colAdjust); } if (numEmptyRows) { area.mRows.AdjustForRemovedTracks(*rowAdjust); } } for (auto& item : aState.mAbsPosItems) { GridArea& area = item.mArea; if (numEmptyCols) { area.mCols.AdjustAbsPosForRemovedTracks(*colAdjust); } if (numEmptyRows) { area.mRows.AdjustAbsPosForRemovedTracks(*rowAdjust); } } // Adjust the grid size. mGridColEnd -= numEmptyCols; mExplicitGridColEnd -= numEmptyCols; mGridRowEnd -= numEmptyRows; mExplicitGridRowEnd -= numEmptyRows; // Adjust the track mapping to unmap the removed tracks. auto finalColRepeatCount = aState.mColFunctions.NumRepeatTracks() - numEmptyCols; aState.mColFunctions.SetNumRepeatTracks(finalColRepeatCount); auto finalRowRepeatCount = aState.mRowFunctions.NumRepeatTracks() - numEmptyRows; aState.mRowFunctions.SetNumRepeatTracks(finalRowRepeatCount); } } void nsGridContainerFrame::Tracks::Initialize( const TrackSizingFunctions& aFunctions, nscoord aGridGap, uint32_t aNumTracks, nscoord aContentBoxSize) { MOZ_ASSERT(aNumTracks >= aFunctions.mExplicitGridOffset + aFunctions.NumExplicitTracks()); mSizes.SetLength(aNumTracks); PodZero(mSizes.Elements(), mSizes.Length()); nscoord percentageBasis = aContentBoxSize; if (percentageBasis == NS_UNCONSTRAINEDSIZE) { percentageBasis = 0; } for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) { mSizes[i].Initialize(percentageBasis, aFunctions.MinSizingFor(i), aFunctions.MaxSizingFor(i)); } mGridGap = aGridGap; mContentBoxSize = aContentBoxSize; MOZ_ASSERT(mGridGap >= nscoord(0), "negative grid gap"); } /** * Return the [min|max]-content contribution of aChild to its parent (i.e. * the child's margin-box) in aAxis. */ static nscoord ContentContribution(nsIFrame* aChild, const nsHTMLReflowState* aReflowState, nsRenderingContext* aRC, WritingMode aCBWM, LogicalAxis aAxis, nsLayoutUtils::IntrinsicISizeType aConstraint, uint32_t aFlags = 0) { PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis)); nscoord size = nsLayoutUtils::IntrinsicForAxis(axis, aRC, aChild, aConstraint, aFlags | nsLayoutUtils::BAIL_IF_REFLOW_NEEDED); if (size == NS_INTRINSIC_WIDTH_UNKNOWN) { // We need to reflow the child to find its BSize contribution. WritingMode wm = aChild->GetWritingMode(); nsContainerFrame* parent = aChild->GetParent(); nsPresContext* pc = aChild->PresContext(); Maybe dummyParentState; const nsHTMLReflowState* rs = aReflowState; if (!aReflowState) { MOZ_ASSERT(!parent->HasAnyStateBits(NS_FRAME_IN_REFLOW)); dummyParentState.emplace(pc, parent, aRC, LogicalSize(parent->GetWritingMode(), 0, NS_UNCONSTRAINEDSIZE), nsHTMLReflowState::DUMMY_PARENT_REFLOW_STATE); rs = dummyParentState.ptr(); } #ifdef DEBUG // This will suppress various CRAZY_SIZE warnings for this reflow. parent->Properties().Set( nsContainerFrame::DebugReflowingWithInfiniteISize(), true); #endif // XXX this will give mostly correct results for now (until bug 1174569). LogicalSize availableSize(wm, INFINITE_ISIZE_COORD, NS_UNCONSTRAINEDSIZE); nsHTMLReflowState childRS(pc, *rs, aChild, availableSize, nullptr, nsHTMLReflowState::COMPUTE_SIZE_SHRINK_WRAP); nsHTMLReflowMetrics childSize(childRS); nsReflowStatus childStatus; const uint32_t flags = NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW; parent->ReflowChild(aChild, pc, childSize, childRS, wm, LogicalPoint(wm), nsSize(), flags, childStatus); parent->FinishReflowChild(aChild, pc, childSize, &childRS, wm, LogicalPoint(wm), nsSize(), flags); size = childSize.BSize(wm); nsIFrame::IntrinsicISizeOffsetData offsets = aChild->IntrinsicBSizeOffsets(); size += offsets.hMargin; size = nsLayoutUtils::AddPercents(aConstraint, size, offsets.hPctMargin); #ifdef DEBUG parent->Properties().Delete(nsContainerFrame::DebugReflowingWithInfiniteISize()); #endif } return std::max(size, 0); } static nscoord MinContentContribution(nsIFrame* aChild, const nsHTMLReflowState* aRS, nsRenderingContext* aRC, WritingMode aCBWM, LogicalAxis aAxis) { return ContentContribution(aChild, aRS, aRC, aCBWM, aAxis, nsLayoutUtils::MIN_ISIZE); } static nscoord MaxContentContribution(nsIFrame* aChild, const nsHTMLReflowState* aRS, nsRenderingContext* aRC, WritingMode aCBWM, LogicalAxis aAxis) { return ContentContribution(aChild, aRS, aRC, aCBWM, aAxis, nsLayoutUtils::PREF_ISIZE); } static nscoord MinSize(nsIFrame* aChild, const nsHTMLReflowState* aRS, nsRenderingContext* aRC, WritingMode aCBWM, LogicalAxis aAxis) { PhysicalAxis axis(aCBWM.PhysicalAxis(aAxis)); const nsStylePosition* stylePos = aChild->StylePosition(); const nsStyleCoord& style = axis == eAxisHorizontal ? stylePos->mMinWidth : stylePos->mMinHeight; // https://drafts.csswg.org/css-grid/#min-size-auto // This calculates the min-content contribution from either a definite // min-width (or min-height depending on aAxis), or the "specified / // transferred size" for min-width:auto if overflow == visible (as min-width:0 // otherwise), or NS_UNCONSTRAINEDSIZE for other min-width intrinsic values // (which results in always taking the "content size" part below). nscoord sz = nsLayoutUtils::MinSizeContributionForAxis(axis, aRC, aChild, nsLayoutUtils::MIN_ISIZE); auto unit = style.GetUnit(); if (unit == eStyleUnit_Enumerated || (unit == eStyleUnit_Auto && aChild->StyleDisplay()->mOverflowX == NS_STYLE_OVERFLOW_VISIBLE)) { // Now calculate the "content size" part and return whichever is smaller. MOZ_ASSERT(unit != eStyleUnit_Enumerated || sz == NS_UNCONSTRAINEDSIZE); sz = std::min(sz, ContentContribution(aChild, aRS, aRC, aCBWM, aAxis, nsLayoutUtils::MIN_ISIZE, nsLayoutUtils::MIN_INTRINSIC_ISIZE)); } return sz; } void nsGridContainerFrame::Tracks::CalculateSizes( GridReflowState& aState, nsTArray& aGridItems, const TrackSizingFunctions& aFunctions, nscoord aContentBoxSize, LineRange GridArea::* aRange, IntrinsicISizeType aConstraint) { nscoord percentageBasis = aContentBoxSize; if (percentageBasis == NS_UNCONSTRAINEDSIZE) { percentageBasis = 0; } ResolveIntrinsicSize(aState, aGridItems, aFunctions, aRange, percentageBasis, aConstraint); if (aConstraint != nsLayoutUtils::MIN_ISIZE) { nscoord freeSpace = aContentBoxSize; if (freeSpace != NS_UNCONSTRAINEDSIZE) { freeSpace -= SumOfGridGaps(); } DistributeFreeSpace(freeSpace); StretchFlexibleTracks(aState, aGridItems, aFunctions, freeSpace); } } bool nsGridContainerFrame::Tracks::HasIntrinsicButNoFlexSizingInRange( const LineRange& aRange, IntrinsicISizeType aConstraint, TrackSize::StateBits* aState) const { MOZ_ASSERT(!aRange.IsAuto(), "must have a definite range"); const uint32_t start = aRange.mStart; const uint32_t end = aRange.mEnd; const TrackSize::StateBits selector = TrackSize::eIntrinsicMinSizing | TrackSize::eIntrinsicMaxSizing | (aConstraint == nsLayoutUtils::MIN_ISIZE ? TrackSize::eFlexMinSizing : TrackSize::StateBits(0)); bool foundIntrinsic = false; for (uint32_t i = start; i < end; ++i) { TrackSize::StateBits state = mSizes[i].mState; *aState |= state; if (state & TrackSize::eFlexMaxSizing) { return false; } if (state & selector) { foundIntrinsic = true; } } return foundIntrinsic; } bool nsGridContainerFrame::Tracks::ResolveIntrinsicSizeStep1( GridReflowState& aState, const TrackSizingFunctions& aFunctions, nscoord aPercentageBasis, IntrinsicISizeType aConstraint, const LineRange& aRange, nsIFrame* aGridItem) { Maybe minContentContribution; Maybe maxContentContribution; // min sizing TrackSize& sz = mSizes[aRange.mStart]; WritingMode wm = aState.mWM; const nsHTMLReflowState* rs = aState.mReflowState; nsRenderingContext* rc = &aState.mRenderingContext; if (sz.mState & TrackSize::eAutoMinSizing) { nscoord s = MinSize(aGridItem, rs, rc, wm, mAxis); sz.mBase = std::max(sz.mBase, s); } else if ((sz.mState & TrackSize::eMinContentMinSizing) || (aConstraint == nsLayoutUtils::MIN_ISIZE && (sz.mState & TrackSize::eFlexMinSizing))) { nscoord s = MinContentContribution(aGridItem, rs, rc, wm, mAxis); minContentContribution.emplace(s); sz.mBase = std::max(sz.mBase, minContentContribution.value()); } else if (sz.mState & TrackSize::eMaxContentMinSizing) { nscoord s = MaxContentContribution(aGridItem, rs, rc, wm, mAxis); maxContentContribution.emplace(s); sz.mBase = std::max(sz.mBase, maxContentContribution.value()); } // max sizing if (sz.mState & TrackSize::eMinContentMaxSizing) { if (minContentContribution.isNothing()) { nscoord s = MinContentContribution(aGridItem, rs, rc, wm, mAxis); minContentContribution.emplace(s); } if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { sz.mLimit = minContentContribution.value(); } else { sz.mLimit = std::max(sz.mLimit, minContentContribution.value()); } } else if (sz.mState & (TrackSize::eAutoMaxSizing | TrackSize::eMaxContentMaxSizing)) { if (maxContentContribution.isNothing()) { nscoord s = MaxContentContribution(aGridItem, rs, rc, wm, mAxis); maxContentContribution.emplace(s); } if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { sz.mLimit = maxContentContribution.value(); } else { sz.mLimit = std::max(sz.mLimit, maxContentContribution.value()); } } if (sz.mLimit < sz.mBase) { sz.mLimit = sz.mBase; } return sz.mState & TrackSize::eFlexMaxSizing; } void nsGridContainerFrame::Tracks::ResolveIntrinsicSize( GridReflowState& aState, nsTArray& aGridItems, const TrackSizingFunctions& aFunctions, LineRange GridArea::* aRange, nscoord aPercentageBasis, IntrinsicISizeType aConstraint) { // Some data we collect on each item for Step 2 of the algorithm below. struct Step2ItemData { uint32_t mSpan; TrackSize::StateBits mState; LineRange mLineRange; nscoord mMinSize; nscoord mMinContentContribution; nscoord mMaxContentContribution; nsIFrame* mFrame; static bool IsSpanLessThan(const Step2ItemData& a, const Step2ItemData& b) { return a.mSpan < b.mSpan; } }; // Resolve Intrinsic Track Sizes // http://dev.w3.org/csswg/css-grid/#algo-content // We're also setting mIsFlexing on the item here to speed up // FindUsedFlexFraction later. AutoTArray stateBitsPerSpan; nsTArray step2Items; GridItemCSSOrderIterator& iter = aState.mIter; nsRenderingContext* rc = &aState.mRenderingContext; WritingMode wm = aState.mWM; uint32_t maxSpan = 0; // max span of the step2Items items const TrackSize::StateBits flexMin = aConstraint == nsLayoutUtils::MIN_ISIZE ? TrackSize::eFlexMinSizing : TrackSize::StateBits(0); for (; !iter.AtEnd(); iter.Next()) { nsIFrame* child = *iter; const GridArea& area = aGridItems[iter.GridItemIndex()].mArea; const LineRange& lineRange = area.*aRange; uint32_t span = lineRange.Extent(); if (span == 1) { // Step 1. Size tracks to fit non-spanning items. aGridItems[iter.GridItemIndex()].mIsFlexing[mAxis] = ResolveIntrinsicSizeStep1(aState, aFunctions, aPercentageBasis, aConstraint, lineRange, child); } else { TrackSize::StateBits state = TrackSize::StateBits(0); if (HasIntrinsicButNoFlexSizingInRange(lineRange, aConstraint, &state)) { // Collect data for Step 2. maxSpan = std::max(maxSpan, span); if (span >= stateBitsPerSpan.Length()) { uint32_t len = 2 * span; stateBitsPerSpan.SetCapacity(len); for (uint32_t i = stateBitsPerSpan.Length(); i < len; ++i) { stateBitsPerSpan.AppendElement(TrackSize::StateBits(0)); } } stateBitsPerSpan[span] |= state; nscoord minSize = 0; if (state & (flexMin | TrackSize::eIntrinsicMinSizing)) { // for 2.1 minSize = MinSize(child, aState.mReflowState, rc, wm, mAxis); } nscoord minContent = 0; if (state & (flexMin | TrackSize::eMinOrMaxContentMinSizing | // for 2.2 TrackSize::eIntrinsicMaxSizing)) { // for 2.5 minContent = MinContentContribution(child, aState.mReflowState, rc, wm, mAxis); } nscoord maxContent = 0; if (state & (TrackSize::eMaxContentMinSizing | // for 2.3 TrackSize::eAutoOrMaxContentMaxSizing)) { // for 2.6 maxContent = MaxContentContribution(child, aState.mReflowState, rc, wm, mAxis); } step2Items.AppendElement( Step2ItemData({span, state, lineRange, minSize, minContent, maxContent, child})); } else { aGridItems[iter.GridItemIndex()].mIsFlexing[mAxis] = !!(state & TrackSize::eFlexMaxSizing); } } } // Step 2. if (maxSpan) { // Sort the collected items on span length, shortest first. std::stable_sort(step2Items.begin(), step2Items.end(), Step2ItemData::IsSpanLessThan); nsTArray tracks(maxSpan); nsTArray plan(mSizes.Length()); plan.SetLength(mSizes.Length()); for (uint32_t i = 0, len = step2Items.Length(); i < len; ) { // Start / end index for items of the same span length: const uint32_t spanGroupStartIndex = i; uint32_t spanGroupEndIndex = len; const uint32_t span = step2Items[i].mSpan; for (++i; i < len; ++i) { if (step2Items[i].mSpan != span) { spanGroupEndIndex = i; break; } } bool updatedBase = false; // Did we update any mBase in step 2.1 - 2.3? TrackSize::StateBits selector(flexMin | TrackSize::eIntrinsicMinSizing); if (stateBitsPerSpan[span] & selector) { // Step 2.1 MinSize to intrinsic min-sizing. for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) { Step2ItemData& item = step2Items[i]; if (!(item.mState & selector)) { continue; } nscoord space = item.mMinSize; if (space <= 0) { continue; } tracks.ClearAndRetainStorage(); space = CollectGrowable(space, mSizes, item.mLineRange, selector, tracks); if (space > 0) { DistributeToTrackBases(space, plan, tracks, selector); updatedBase = true; } } } selector = flexMin | TrackSize::eMinOrMaxContentMinSizing; if (stateBitsPerSpan[span] & selector) { // Step 2.2 MinContentContribution to min-/max-content min-sizing. for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) { Step2ItemData& item = step2Items[i]; if (!(item.mState & selector)) { continue; } nscoord space = item.mMinContentContribution; if (space <= 0) { continue; } tracks.ClearAndRetainStorage(); space = CollectGrowable(space, mSizes, item.mLineRange, selector, tracks); if (space > 0) { DistributeToTrackBases(space, plan, tracks, selector); updatedBase = true; } } } if (stateBitsPerSpan[span] & TrackSize::eMaxContentMinSizing) { // Step 2.3 MaxContentContribution to max-content min-sizing. for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) { Step2ItemData& item = step2Items[i]; if (!(item.mState & TrackSize::eMaxContentMinSizing)) { continue; } nscoord space = item.mMaxContentContribution; if (space <= 0) { continue; } tracks.ClearAndRetainStorage(); space = CollectGrowable(space, mSizes, item.mLineRange, TrackSize::eMaxContentMinSizing, tracks); if (space > 0) { DistributeToTrackBases(space, plan, tracks, TrackSize::eMaxContentMinSizing); updatedBase = true; } } } if (updatedBase) { // Step 2.4 for (TrackSize& sz : mSizes) { if (sz.mBase > sz.mLimit) { sz.mLimit = sz.mBase; } } } if (stateBitsPerSpan[span] & TrackSize::eIntrinsicMaxSizing) { plan = mSizes; for (TrackSize& sz : plan) { if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { // use mBase as the planned limit } else { sz.mBase = sz.mLimit; } } // Step 2.5 MinContentContribution to intrinsic max-sizing. for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) { Step2ItemData& item = step2Items[i]; if (!(item.mState & TrackSize::eIntrinsicMaxSizing)) { continue; } nscoord space = item.mMinContentContribution; if (space <= 0) { continue; } tracks.ClearAndRetainStorage(); space = CollectGrowable(space, plan, item.mLineRange, TrackSize::eIntrinsicMaxSizing, tracks); if (space > 0) { DistributeToTrackLimits(space, plan, tracks); } } for (size_t j = 0, len = mSizes.Length(); j < len; ++j) { TrackSize& sz = plan[j]; sz.mState &= ~(TrackSize::eFrozen | TrackSize::eSkipGrowUnlimited); if (sz.mLimit != NS_UNCONSTRAINEDSIZE) { sz.mLimit = sz.mBase; // collect the results from 2.5 } } if (stateBitsPerSpan[span] & TrackSize::eAutoOrMaxContentMaxSizing) { // Step 2.6 MaxContentContribution to max-content max-sizing. for (i = spanGroupStartIndex; i < spanGroupEndIndex; ++i) { Step2ItemData& item = step2Items[i]; if (!(item.mState & TrackSize::eAutoOrMaxContentMaxSizing)) { continue; } nscoord space = item.mMaxContentContribution; if (space <= 0) { continue; } tracks.ClearAndRetainStorage(); space = CollectGrowable(space, plan, item.mLineRange, TrackSize::eAutoOrMaxContentMaxSizing, tracks); if (space > 0) { DistributeToTrackLimits(space, plan, tracks); } } } } } } // Step 3. for (TrackSize& sz : mSizes) { if (sz.mLimit == NS_UNCONSTRAINEDSIZE) { sz.mLimit = sz.mBase; } } } float nsGridContainerFrame::Tracks::FindFrUnitSize( const LineRange& aRange, const nsTArray& aFlexTracks, const TrackSizingFunctions& aFunctions, nscoord aSpaceToFill) const { MOZ_ASSERT(aSpaceToFill > 0 && !aFlexTracks.IsEmpty()); float flexFactorSum = 0.0f; nscoord leftOverSpace = aSpaceToFill; for (uint32_t i = aRange.mStart, end = aRange.mEnd; i < end; ++i) { const TrackSize& sz = mSizes[i]; if (sz.mState & TrackSize::eFlexMaxSizing) { flexFactorSum += aFunctions.MaxSizingFor(i).GetFlexFractionValue(); } else { leftOverSpace -= sz.mBase; if (leftOverSpace <= 0) { return 0.0f; } } } bool restart; float hypotheticalFrSize; nsTArray flexTracks(aFlexTracks); uint32_t numFlexTracks = flexTracks.Length(); do { restart = false; hypotheticalFrSize = leftOverSpace / std::max(flexFactorSum, 1.0f); for (uint32_t i = 0, len = flexTracks.Length(); i < len; ++i) { uint32_t track = flexTracks[i]; if (track == kAutoLine) { continue; // Track marked as inflexible in a prev. iter of this loop. } float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue(); const nscoord base = mSizes[track].mBase; if (flexFactor * hypotheticalFrSize < base) { // 12.7.1.4: Treat this track as inflexible. flexTracks[i] = kAutoLine; flexFactorSum -= flexFactor; leftOverSpace -= base; --numFlexTracks; if (numFlexTracks == 0 || leftOverSpace <= 0) { return 0.0f; } restart = true; // break; XXX (bug 1176621 comment 16) measure which is more common } } } while (restart); return hypotheticalFrSize; } float nsGridContainerFrame::Tracks::FindUsedFlexFraction( GridReflowState& aState, nsTArray& aGridItems, const nsTArray& aFlexTracks, const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) const { if (aAvailableSize != NS_UNCONSTRAINEDSIZE) { // Use all of the grid tracks and a 'space to fill' of the available space. const TranslatedLineRange range(0, mSizes.Length()); return FindFrUnitSize(range, aFlexTracks, aFunctions, aAvailableSize); } // The used flex fraction is the maximum of: // ... each flexible track's base size divided by its flex factor float fr = 0.0f; for (uint32_t track : aFlexTracks) { float flexFactor = aFunctions.MaxSizingFor(track).GetFlexFractionValue(); if (flexFactor > 0.0f) { fr = std::max(fr, mSizes[track].mBase / flexFactor); } } WritingMode wm = aState.mWM; nsRenderingContext* rc = &aState.mRenderingContext; const nsHTMLReflowState* rs = aState.mReflowState; GridItemCSSOrderIterator& iter = aState.mIter; iter.Reset(); // ... the result of 'finding the size of an fr' for each item that spans // a flex track with its max-content contribution as 'space to fill' for (; !iter.AtEnd(); iter.Next()) { const GridItemInfo& item = aGridItems[iter.GridItemIndex()]; if (item.mIsFlexing[mAxis]) { nscoord spaceToFill = MaxContentContribution(*iter, rs, rc, wm, mAxis); if (spaceToFill <= 0) { continue; } // ... and all its spanned tracks as input. const LineRange& range = mAxis == eLogicalAxisInline ? item.mArea.mCols : item.mArea.mRows; nsTArray itemFlexTracks; for (uint32_t i = range.mStart, end = range.mEnd; i < end; ++i) { if (mSizes[i].mState & TrackSize::eFlexMaxSizing) { itemFlexTracks.AppendElement(i); } } float itemFr = FindFrUnitSize(range, itemFlexTracks, aFunctions, spaceToFill); fr = std::max(fr, itemFr); } } return fr; } void nsGridContainerFrame::Tracks::StretchFlexibleTracks( GridReflowState& aState, nsTArray& aGridItems, const TrackSizingFunctions& aFunctions, nscoord aAvailableSize) { if (aAvailableSize <= 0) { return; } nsTArray flexTracks(mSizes.Length()); for (uint32_t i = 0, len = mSizes.Length(); i < len; ++i) { if (mSizes[i].mState & TrackSize::eFlexMaxSizing) { flexTracks.AppendElement(i); } } if (flexTracks.IsEmpty()) { return; } float fr = FindUsedFlexFraction(aState, aGridItems, flexTracks, aFunctions, aAvailableSize); if (fr != 0.0f) { for (uint32_t i : flexTracks) { float flexFactor = aFunctions.MaxSizingFor(i).GetFlexFractionValue(); nscoord flexLength = NSToCoordRound(flexFactor * fr); nscoord& base = mSizes[i].mBase; if (flexLength > base) { base = flexLength; } } } } void nsGridContainerFrame::Tracks::AlignJustifyContent( const nsHTMLReflowState& aReflowState, const LogicalSize& aContainerSize) { if (mSizes.IsEmpty()) { return; } const bool isAlign = mAxis == eLogicalAxisBlock; auto stylePos = aReflowState.mStylePosition; auto valueAndFallback = isAlign ? stylePos->ComputedAlignContent() : stylePos->ComputedJustifyContent(); WritingMode wm = aReflowState.GetWritingMode(); bool overflowSafe; auto alignment = ::GetAlignJustifyValue(valueAndFallback, wm, isAlign, &overflowSafe); if (alignment == NS_STYLE_ALIGN_NORMAL) { MOZ_ASSERT(valueAndFallback == NS_STYLE_ALIGN_NORMAL, "*-content:normal cannot be specified with explicit fallback"); alignment = NS_STYLE_ALIGN_STRETCH; valueAndFallback = alignment; // we may need a fallback for 'stretch' below } // Compute the free space and count auto-sized tracks. size_t numAutoTracks = 0; nscoord space; if (alignment != NS_STYLE_ALIGN_START) { nscoord trackSizeSum = 0; for (const TrackSize& sz : mSizes) { trackSizeSum += sz.mBase; if (sz.mState & TrackSize::eAutoMaxSizing) { ++numAutoTracks; } } nscoord cbSize = isAlign ? aContainerSize.BSize(wm) : aContainerSize.ISize(wm); space = cbSize - trackSizeSum - SumOfGridGaps(); // Use the fallback value instead when applicable. if (space < 0 || (alignment == NS_STYLE_ALIGN_SPACE_BETWEEN && mSizes.Length() == 1)) { auto fallback = ::GetAlignJustifyFallbackIfAny(valueAndFallback, wm, isAlign, &overflowSafe); if (fallback) { alignment = fallback; } } if (space == 0 || (space < 0 && overflowSafe)) { // XXX check that this makes sense also for [last-]baseline (bug 1151204). alignment = NS_STYLE_ALIGN_START; } } // Optimize the cases where we just need to set each track's position. nscoord pos = 0; bool distribute = true; switch (alignment) { case NS_STYLE_ALIGN_BASELINE: case NS_STYLE_ALIGN_LAST_BASELINE: NS_WARNING("'NYI: baseline/last-baseline' (bug 1151204)"); // XXX MOZ_FALLTHROUGH; case NS_STYLE_ALIGN_START: distribute = false; break; case NS_STYLE_ALIGN_END: pos = space; distribute = false; break; case NS_STYLE_ALIGN_CENTER: pos = space / 2; distribute = false; break; case NS_STYLE_ALIGN_STRETCH: distribute = numAutoTracks != 0; break; } if (!distribute) { for (TrackSize& sz : mSizes) { sz.mPosition = pos; pos += sz.mBase + mGridGap; } return; } // Distribute free space to/between tracks and set their position. MOZ_ASSERT(space > 0, "should've handled that on the fallback path above"); nscoord between, roundingError; switch (alignment) { case NS_STYLE_ALIGN_STRETCH: { MOZ_ASSERT(numAutoTracks > 0, "we handled numAutoTracks == 0 above"); nscoord spacePerTrack; roundingError = NSCoordDivRem(space, numAutoTracks, &spacePerTrack); for (TrackSize& sz : mSizes) { sz.mPosition = pos; if (!(sz.mState & TrackSize::eAutoMaxSizing)) { pos += sz.mBase + mGridGap; continue; } nscoord stretch = spacePerTrack; if (roundingError) { roundingError -= 1; stretch += 1; } nscoord newBase = sz.mBase + stretch; sz.mBase = newBase; pos += newBase + mGridGap; } MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?"); return; } case NS_STYLE_ALIGN_SPACE_BETWEEN: MOZ_ASSERT(mSizes.Length() > 1, "should've used a fallback above"); roundingError = NSCoordDivRem(space, mSizes.Length() - 1, &between); break; case NS_STYLE_ALIGN_SPACE_AROUND: roundingError = NSCoordDivRem(space, mSizes.Length(), &between); pos = between / 2; break; case NS_STYLE_ALIGN_SPACE_EVENLY: roundingError = NSCoordDivRem(space, mSizes.Length() + 1, &between); pos = between; break; default: MOZ_ASSERT_UNREACHABLE("unknown align-/justify-content value"); between = 0; // just to avoid a compiler warning } between += mGridGap; for (TrackSize& sz : mSizes) { sz.mPosition = pos; nscoord spacing = between; if (roundingError) { roundingError -= 1; spacing += 1; } pos += sz.mBase + spacing; } MOZ_ASSERT(!roundingError, "we didn't distribute all rounding error?"); } void nsGridContainerFrame::LineRange::ToPositionAndLength( const nsTArray& aTrackSizes, nscoord* aPos, nscoord* aLength) const { MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine, "expected a definite LineRange"); MOZ_ASSERT(mStart < mEnd); nscoord startPos = aTrackSizes[mStart].mPosition; const TrackSize& sz = aTrackSizes[mEnd - 1]; *aPos = startPos; *aLength = (sz.mPosition + sz.mBase) - startPos; } nscoord nsGridContainerFrame::LineRange::ToLength( const nsTArray& aTrackSizes) const { MOZ_ASSERT(mStart != kAutoLine && mEnd != kAutoLine, "expected a definite LineRange"); MOZ_ASSERT(mStart < mEnd); nscoord startPos = aTrackSizes[mStart].mPosition; const TrackSize& sz = aTrackSizes[mEnd - 1]; return (sz.mPosition + sz.mBase) - startPos; } void nsGridContainerFrame::LineRange::ToPositionAndLengthForAbsPos( const Tracks& aTracks, nscoord aGridOrigin, nscoord* aPos, nscoord* aLength) const { // kAutoLine for abspos children contributes the corresponding edge // of the grid container's padding-box. if (mEnd == kAutoLine) { if (mStart == kAutoLine) { // done } else { const nscoord endPos = *aPos + *aLength; nscoord startPos = aTracks.GridLineEdge(mStart, GridLineSide::eAfterGridGap); *aPos = aGridOrigin + startPos; *aLength = std::max(endPos - *aPos, 0); } } else { if (mStart == kAutoLine) { nscoord endPos = aTracks.GridLineEdge(mEnd, GridLineSide::eBeforeGridGap); *aLength = std::max(aGridOrigin + endPos, 0); } else { nscoord pos; ToPositionAndLength(aTracks.mSizes, &pos, aLength); *aPos = aGridOrigin + pos; } } } LogicalRect nsGridContainerFrame::GridReflowState::ContainingBlockFor(const GridArea& aArea) const { nscoord i, b, iSize, bSize; MOZ_ASSERT(aArea.mCols.Extent() > 0, "grid items cover at least one track"); MOZ_ASSERT(aArea.mRows.Extent() > 0, "grid items cover at least one track"); aArea.mCols.ToPositionAndLength(mCols.mSizes, &i, &iSize); aArea.mRows.ToPositionAndLength(mRows.mSizes, &b, &bSize); return LogicalRect(mWM, i, b, iSize, bSize); } LogicalRect nsGridContainerFrame::GridReflowState::ContainingBlockForAbsPos( const GridArea& aArea, const LogicalPoint& aGridOrigin, const LogicalRect& aGridCB) const { nscoord i = aGridCB.IStart(mWM); nscoord b = aGridCB.BStart(mWM); nscoord iSize = aGridCB.ISize(mWM); nscoord bSize = aGridCB.BSize(mWM); aArea.mCols.ToPositionAndLengthForAbsPos(mCols, aGridOrigin.I(mWM), &i, &iSize); aArea.mRows.ToPositionAndLengthForAbsPos(mRows, aGridOrigin.B(mWM), &b, &bSize); return LogicalRect(mWM, i, b, iSize, bSize); } /** * Return a Fragmentainer object if we have a fragmentainer frame in our * ancestor chain of containing block (CB) reflow states. We'll only * continue traversing the ancestor chain as long as the CBs have * the same writing-mode and have overflow:visible. */ Maybe nsGridContainerFrame::GetNearestFragmentainer(const GridReflowState& aState) const { Maybe data; WritingMode wm = aState.mWM; const nsHTMLReflowState* gridRS = aState.mReflowState; const nsHTMLReflowState* cbRS = gridRS->mCBReflowState; for ( ; cbRS; cbRS = cbRS->mCBReflowState) { nsIScrollableFrame* sf = do_QueryFrame(cbRS->frame); if (sf) { break; } if (wm.IsOrthogonalTo(cbRS->GetWritingMode())) { break; } nsIAtom* frameType = cbRS->frame->GetType(); if ((frameType == nsGkAtoms::canvasFrame && PresContext()->IsPaginated()) || frameType == nsGkAtoms::columnSetFrame) { data.emplace(); data->mIsTopOfPage = gridRS->mFlags.mIsTopOfPage; data->mToFragmentainerEnd = aState.mFragBStart + gridRS->AvailableBSize() - aState.mBorderPadding.BStart(wm); const auto numRows = aState.mRows.mSizes.Length(); data->mCanBreakAtStart = numRows > 0 && aState.mRows.mSizes[0].mPosition > 0; nscoord bSize = gridRS->ComputedBSize(); data->mIsAutoBSize = bSize == NS_AUTOHEIGHT; if (data->mIsAutoBSize) { bSize = gridRS->ComputedMinBSize(); } else { bSize = NS_CSS_MINMAX(bSize, gridRS->ComputedMinBSize(), gridRS->ComputedMaxBSize()); } nscoord gridEnd = aState.mRows.GridLineEdge(numRows, GridLineSide::eBeforeGridGap); data->mCanBreakAtEnd = bSize > gridEnd && bSize > aState.mFragBStart; break; } } return data; } void nsGridContainerFrame::ReflowInFlowChild(nsIFrame* aChild, const GridItemInfo* aGridItemInfo, nsSize aContainerSize, const Fragmentainer* aFragmentainer, const GridReflowState& aState, const LogicalRect& aContentArea, nsHTMLReflowMetrics& aDesiredSize, nsReflowStatus& aStatus) { nsPresContext* pc = PresContext(); nsStyleContext* containerSC = StyleContext(); WritingMode wm = aState.mReflowState->GetWritingMode(); LogicalMargin pad(aState.mReflowState->ComputedLogicalPadding()); const LogicalPoint padStart(wm, pad.IStart(wm), pad.BStart(wm)); const bool isGridItem = !!aGridItemInfo; MOZ_ASSERT(isGridItem == (aChild->GetType() != nsGkAtoms::placeholderFrame)); LogicalRect cb(wm); WritingMode childWM = aChild->GetWritingMode(); bool isConstrainedBSize = false; nscoord toFragmentainerEnd; if (MOZ_LIKELY(isGridItem)) { MOZ_ASSERT(aGridItemInfo->mFrame == aChild); const GridArea& area = aGridItemInfo->mArea; MOZ_ASSERT(area.IsDefinite()); cb = aState.ContainingBlockFor(area); isConstrainedBSize = aFragmentainer && !wm.IsOrthogonalTo(childWM); if (isConstrainedBSize) { nscoord fragCBOffset = cb.BStart(wm) - aState.mFragBStart; if (fragCBOffset < 0) { // Subtract the "consumed" part of the grid area. cb.BSize(wm) = std::max(fragCBOffset + cb.BSize(wm), 0); } cb.BStart(wm) = std::max(fragCBOffset, 0); toFragmentainerEnd = aFragmentainer->mToFragmentainerEnd - aState.mFragBStart - cb.BStart(wm); toFragmentainerEnd = std::max(toFragmentainerEnd, 0); } cb += aContentArea.Origin(wm); } else { cb = aContentArea; } LogicalSize reflowSize(cb.Size(wm)); if (isConstrainedBSize) { reflowSize.BSize(wm) = toFragmentainerEnd; } LogicalSize childCBSize = reflowSize.ConvertTo(childWM, wm); if (!isConstrainedBSize) { childCBSize.BSize(childWM) = NS_UNCONSTRAINEDSIZE; } LogicalSize percentBasis(cb.Size(wm).ConvertTo(childWM, wm)); Maybe childRS; // Maybe<> so we can reuse the space childRS.emplace(pc, *aState.mReflowState, aChild, childCBSize, &percentBasis); childRS->mFlags.mIsTopOfPage = aFragmentainer ? aFragmentainer->mIsTopOfPage : false; // We need the width of the child before we can correctly convert // the writing-mode of its origin, so we reflow at (0, 0) using a dummy // aContainerSize, and then pass the correct position to FinishReflowChild. Maybe childSize; // Maybe<> so we can reuse the space childSize.emplace(*childRS); const nsSize dummyContainerSize; ReflowChild(aChild, pc, *childSize, *childRS, childWM, LogicalPoint(childWM), dummyContainerSize, 0, aStatus); LogicalPoint childPos = cb.Origin(wm).ConvertTo(childWM, wm, aContainerSize - childSize->PhysicalSize()); // Apply align/justify-self and reflow again if that affects the size. if (MOZ_LIKELY(isGridItem)) { LogicalSize oldSize = childSize->Size(childWM); // from the ReflowChild() LogicalSize newContentSize(childWM); auto align = childRS->mStylePosition->ComputedAlignSelf(containerSC); Maybe alignResize; if (NS_FRAME_IS_COMPLETE(aStatus)) { alignResize = AlignSelf(align, cb, wm, *childRS, oldSize, &newContentSize, &childPos); } auto justify = childRS->mStylePosition->ComputedJustifySelf(containerSC); Maybe justifyResize = JustifySelf(justify, cb, wm, *childRS, oldSize, &newContentSize, &childPos); if (alignResize || justifyResize) { FinishReflowChild(aChild, pc, *childSize, childRS.ptr(), childWM, LogicalPoint(childWM), aContainerSize, NS_FRAME_NO_MOVE_FRAME | NS_FRAME_NO_SIZE_VIEW); childSize.reset(); // In reverse declaration order since it runs childRS.reset(); // destructors. childRS.emplace(pc, *aState.mReflowState, aChild, childCBSize, &percentBasis); childRS->mFlags.mIsTopOfPage = aFragmentainer ? aFragmentainer->mIsTopOfPage : false; if ((alignResize && alignResize.value() == eLogicalAxisBlock) || (justifyResize && justifyResize.value() == eLogicalAxisBlock)) { nscoord childConsumedBSize = 0; if (isConstrainedBSize) { // XXX use aChild->GetConsumedBSize() instead after bug 1232194 is fixed for (auto prev = aChild->GetPrevInFlow(); prev; prev = prev->GetPrevInFlow()) { childConsumedBSize += prev->ContentBSize(childWM); } } childRS->SetComputedBSize(childConsumedBSize + newContentSize.BSize(childWM)); childRS->SetBResize(true); } if ((alignResize && alignResize.value() == eLogicalAxisInline) || (justifyResize && justifyResize.value() == eLogicalAxisInline)) { childRS->SetComputedISize(newContentSize.ISize(childWM)); childRS->SetIResize(true); } childSize.emplace(*childRS); ReflowChild(aChild, pc, *childSize, *childRS, childWM, LogicalPoint(childWM), dummyContainerSize, 0, aStatus); } } else { // Put a placeholder at the padding edge, in case an ancestor is its CB. childPos -= padStart; } childRS->ApplyRelativePositioning(&childPos, aContainerSize); FinishReflowChild(aChild, pc, *childSize, childRS.ptr(), childWM, childPos, aContainerSize, 0); ConsiderChildOverflow(aDesiredSize.mOverflowAreas, aChild); } nscoord nsGridContainerFrame::ReflowInFragmentainer(GridReflowState& aState, const LogicalRect& aContentArea, nsHTMLReflowMetrics& aDesiredSize, nsReflowStatus& aStatus, Fragmentainer& aFragmentainer, const nsSize& aContainerSize) { MOZ_ASSERT(aStatus == NS_FRAME_COMPLETE); MOZ_ASSERT(aState.mReflowState); // Collect our grid items and sort them in row order. Collect placeholders // and put them in a separate array. nsTArray sortedItems(aState.mGridItems.Length()); nsTArray placeholders(aState.mAbsPosItems.Length()); aState.mIter.Reset(GridItemCSSOrderIterator::eIncludeAll); for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { nsIFrame* child = *aState.mIter; if (child->GetType() != nsGkAtoms::placeholderFrame) { const GridItemInfo* info = &aState.mGridItems[aState.mIter.GridItemIndex()]; sortedItems.AppendElement(info); } else { placeholders.AppendElement(child); } } // NOTE: no need to use stable_sort here, there are no dependencies on // having content order between items on the same row in the code below. std::sort(sortedItems.begin(), sortedItems.end(), GridItemInfo::IsStartRowLessThan); // Reflow our placeholder children; they must all be complete. for (auto child : placeholders) { nsReflowStatus childStatus; ReflowInFlowChild(child, nullptr, aContainerSize, &aFragmentainer, aState, aContentArea, aDesiredSize, childStatus); MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childStatus), "nsPlaceholderFrame should never need to be fragmented"); } // The available size for children - we'll set this to the edge of the last // row in most cases below, but for now use the full size. nscoord childAvailableSize = aFragmentainer.mToFragmentainerEnd; const uint32_t startRow = aState.mStartRow; const uint32_t numRows = aState.mRows.mSizes.Length(); bool isBDBClone = aState.mReflowState->mStyleBorder->mBoxDecorationBreak == NS_STYLE_BOX_DECORATION_BREAK_CLONE; nscoord bpBEnd = aState.mBorderPadding.BEnd(aState.mWM); // Set |endRow| to the first row that doesn't fit. uint32_t endRow = numRows; for (uint32_t row = startRow; row < numRows; ++row) { auto& sz = aState.mRows.mSizes[row]; const nscoord bEnd = sz.mPosition + sz.mBase; nscoord remainingAvailableSize = childAvailableSize - bEnd; if (remainingAvailableSize < 0 || (isBDBClone && remainingAvailableSize < bpBEnd)) { endRow = row; break; } } // Check for forced breaks on the items. const bool isTopOfPage = aFragmentainer.mIsTopOfPage; bool isForcedBreak = false; const bool avoidBreakInside = ShouldAvoidBreakInside(*aState.mReflowState); for (const GridItemInfo* info : sortedItems) { uint32_t itemStartRow = info->mArea.mRows.mStart; if (itemStartRow == endRow) { break; } auto disp = info->mFrame->StyleDisplay(); if (disp->mBreakBefore) { // Propagate break-before on the first row to the container unless we're // already at top-of-page. if ((itemStartRow == 0 && !isTopOfPage) || avoidBreakInside) { aStatus = NS_INLINE_LINE_BREAK_BEFORE(); return aState.mFragBStart; } if ((itemStartRow > startRow || (itemStartRow == startRow && !isTopOfPage)) && itemStartRow < endRow) { endRow = itemStartRow; isForcedBreak = true; // reset any BREAK_AFTER we found on an earlier item aStatus = NS_FRAME_COMPLETE; break; // we're done since the items are sorted in row order } } uint32_t itemEndRow = info->mArea.mRows.mEnd; if (disp->mBreakAfter) { if (itemEndRow != numRows) { if (itemEndRow > startRow && itemEndRow < endRow) { endRow = itemEndRow; isForcedBreak = true; // No "break;" here since later items with break-after may have // a shorter span. } } else { // Propagate break-after on the last row to the container, we may still // find a break-before on this row though (and reset aStatus). aStatus = NS_INLINE_LINE_BREAK_AFTER(aStatus); // tentative } } } // Consume at least one row in each fragment until we have consumed them all. // Except for the first row if there's a break opportunity before it. if (startRow == endRow && startRow != numRows && (startRow != 0 || !aFragmentainer.mCanBreakAtStart)) { ++endRow; } // Honor break-inside:avoid if we can't fit all rows. if (avoidBreakInside && endRow < numRows) { aStatus = NS_INLINE_LINE_BREAK_BEFORE(); return aState.mFragBStart; } // Calculate the block-size including this fragment. nscoord bEndRow = aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap); nscoord bSize; if (aFragmentainer.mIsAutoBSize) { // We only apply min-bsize once all rows are complete (when bsize is auto). if (endRow < numRows) { bSize = bEndRow; auto clampedBSize = ClampToCSSMaxBSize(bSize, aState.mReflowState); if (MOZ_UNLIKELY(clampedBSize != bSize)) { // We apply max-bsize in all fragments though. bSize = clampedBSize; } else if (!isBDBClone) { // The max-bsize won't make this fragment COMPLETE, so the block-end // border will be in a later fragment. bpBEnd = 0; } } else { bSize = NS_CSS_MINMAX(bEndRow, aState.mReflowState->ComputedMinBSize(), aState.mReflowState->ComputedMaxBSize()); } } else { bSize = NS_CSS_MINMAX(aState.mReflowState->ComputedBSize(), aState.mReflowState->ComputedMinBSize(), aState.mReflowState->ComputedMaxBSize()); } // Check for overflow and set aStatus INCOMPLETE if so. bool overflow = bSize + bpBEnd > childAvailableSize; if (overflow) { if (avoidBreakInside) { aStatus = NS_INLINE_LINE_BREAK_BEFORE(); return aState.mFragBStart; } bool breakAfterLastRow = endRow == numRows && aFragmentainer.mCanBreakAtEnd; if (breakAfterLastRow) { MOZ_ASSERT(bEndRow < bSize, "bogus aFragmentainer.mCanBreakAtEnd"); nscoord availableSize = childAvailableSize; if (isBDBClone) { availableSize -= bpBEnd; } // Pretend we have at least 1px available size, otherwise we'll never make // progress in consuming our bSize. availableSize = std::max(availableSize, aState.mFragBStart + AppUnitsPerCSSPixel()); // Fill the fragmentainer, but not more than our desired block-size and // at least to the size of the last row (even if that overflows). nscoord newBSize = std::min(bSize, availableSize); newBSize = std::max(newBSize, bEndRow); // If it's just the border+padding that is overflowing and we have // box-decoration-break:clone then we are technically COMPLETE. There's // no point in creating another zero-bsize fragment in this case. if (newBSize < bSize || !isBDBClone) { NS_FRAME_SET_INCOMPLETE(aStatus); } bSize = newBSize; } else if (bSize <= bEndRow && startRow + 1 < endRow) { if (endRow == numRows) { // We have more than one row in this fragment, so we can break before // the last row instead. --endRow; bEndRow = aState.mRows.GridLineEdge(endRow, GridLineSide::eBeforeGridGap); bSize = bEndRow; if (aFragmentainer.mIsAutoBSize) { bSize = ClampToCSSMaxBSize(bSize, aState.mReflowState); } } NS_FRAME_SET_INCOMPLETE(aStatus); } else if (endRow < numRows) { bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowState, &aStatus); } // else - no break opportunities. } else { // Even though our block-size fits we need to honor forced breaks, or if // a row doesn't fit in an auto-sized container (unless it's constrained // by a max-bsize which make us overflow-incomplete). if (endRow < numRows && (isForcedBreak || (aFragmentainer.mIsAutoBSize && bEndRow == bSize))) { bSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowState, &aStatus); } } // If we can't fit all rows then we're at least overflow-incomplete. if (endRow < numRows) { childAvailableSize = bEndRow; if (NS_FRAME_IS_COMPLETE(aStatus)) { NS_FRAME_SET_OVERFLOW_INCOMPLETE(aStatus); aStatus |= NS_FRAME_REFLOW_NEXTINFLOW; } } else { // Children always have the full size of the rows in this fragment. childAvailableSize = std::max(childAvailableSize, bEndRow); } return ReflowRowsInFragmentainer(aState, aContentArea, aDesiredSize, aStatus, aFragmentainer, aContainerSize, sortedItems, startRow, endRow, bSize, childAvailableSize); } nscoord nsGridContainerFrame::ReflowRowsInFragmentainer( GridReflowState& aState, const LogicalRect& aContentArea, nsHTMLReflowMetrics& aDesiredSize, nsReflowStatus& aStatus, Fragmentainer& aFragmentainer, const nsSize& aContainerSize, const nsTArray& aSortedItems, uint32_t aStartRow, uint32_t aEndRow, nscoord aBSize, nscoord aAvailableSize) { FrameHashtable pushedItems; FrameHashtable incompleteItems; FrameHashtable overflowIncompleteItems; bool isBDBClone = aState.mReflowState->mStyleBorder->mBoxDecorationBreak == NS_STYLE_BOX_DECORATION_BREAK_CLONE; bool didGrowRow = false; // As we walk across rows, we track whether the current row is at the top // of its grid-fragment, to help decide whether we can break before it. When // this function starts, our row is at the top of the current fragment if: // - we're starting with a nonzero row (i.e. we're a continuation) // OR: // - we're starting with the first row, & we're not allowed to break before // it (which makes it effectively at the top of its grid-fragment). bool isRowTopOfPage = aStartRow != 0 || !aFragmentainer.mCanBreakAtStart; const bool isStartRowTopOfPage = isRowTopOfPage; // Save our full available size for later. const nscoord gridAvailableSize = aFragmentainer.mToFragmentainerEnd; // Propagate the constrained size to our children. aFragmentainer.mToFragmentainerEnd = aAvailableSize; // Reflow the items in row order up to |aEndRow| and push items after that. uint32_t row = 0; // |i| is intentionally signed, so we can set it to -1 to restart the loop. for (int32_t i = 0, len = aSortedItems.Length(); i < len; ++i) { const GridItemInfo* const info = aSortedItems[i]; nsIFrame* child = info->mFrame; row = info->mArea.mRows.mStart; MOZ_ASSERT(child->GetPrevInFlow() ? row < aStartRow : row >= aStartRow, "unexpected child start row"); if (row >= aEndRow) { pushedItems.PutEntry(child); continue; } bool rowCanGrow = false; nscoord maxRowSize = 0; if (row >= aStartRow) { if (row > aStartRow) { isRowTopOfPage = false; } // Can we grow this row? Only consider span=1 items per spec... rowCanGrow = !didGrowRow && info->mArea.mRows.Extent() == 1; if (rowCanGrow) { auto& sz = aState.mRows.mSizes[row]; // and only min-/max-content rows or flex rows in an auto-sized container rowCanGrow = (sz.mState & TrackSize::eMinOrMaxContentMinSizing) || ((sz.mState & TrackSize::eFlexMaxSizing) && aFragmentainer.mIsAutoBSize); if (rowCanGrow) { if (isBDBClone) { maxRowSize = gridAvailableSize - aState.mBorderPadding.BEnd(aState.mWM); } else { maxRowSize = gridAvailableSize; } maxRowSize -= sz.mPosition; // ...and only if there is space for it to grow. rowCanGrow = maxRowSize > sz.mBase; } } } // aFragmentainer.mIsTopOfPage is propagated to the child reflow state. // When it's false the child can request BREAK_BEFORE. We intentionally // set it to false when the row is growable (as determined in CSS Grid // Fragmentation) and there is a non-zero space between it and the // fragmentainer end (that can be used to grow it). If the child reports // a forced break in this case, we grow this row to fill the fragment and // restart the loop. We also restart the loop with |aEndRow = row| // (but without growing any row) for a BREAK_BEFORE child if it spans // beyond the last row in this fragment. This is to avoid fragmenting it. // We only restart the loop once. aFragmentainer.mIsTopOfPage = isRowTopOfPage && !rowCanGrow; nsReflowStatus childStatus; ReflowInFlowChild(child, info, aContainerSize, &aFragmentainer, aState, aContentArea, aDesiredSize, childStatus); MOZ_ASSERT(NS_INLINE_IS_BREAK_BEFORE(childStatus) || !NS_FRAME_IS_FULLY_COMPLETE(childStatus) || !child->GetNextInFlow(), "fully-complete reflow should destroy any NIFs"); if (NS_INLINE_IS_BREAK_BEFORE(childStatus)) { MOZ_ASSERT(!child->GetPrevInFlow(), "continuations should never report BREAK_BEFORE status"); MOZ_ASSERT(!aFragmentainer.mIsTopOfPage, "got NS_INLINE_IS_BREAK_BEFORE at top of page"); if (!didGrowRow) { if (rowCanGrow) { // Grow this row and restart with the next row as |aEndRow|. aState.mRows.ResizeRow(row, maxRowSize); if (aState.mSharedGridData) { aState.mSharedGridData->mRows.ResizeRow(row, maxRowSize); } didGrowRow = true; aEndRow = row + 1; // growing this row makes the next one not fit i = -1; // i == 0 after the next loop increment isRowTopOfPage = isStartRowTopOfPage; overflowIncompleteItems.Clear(); incompleteItems.Clear(); nscoord bEndRow = aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap); aFragmentainer.mToFragmentainerEnd = bEndRow; if (aFragmentainer.mIsAutoBSize) { aBSize = ClampToCSSMaxBSize(bEndRow, aState.mReflowState, &aStatus); } else if (NS_FRAME_IS_NOT_COMPLETE(aStatus)) { aBSize = NS_CSS_MINMAX(aState.mReflowState->ComputedBSize(), aState.mReflowState->ComputedMinBSize(), aState.mReflowState->ComputedMaxBSize()); aBSize = std::min(bEndRow, aBSize); } continue; } if (!isRowTopOfPage) { // We can break before this row - restart with it as the new end row. aEndRow = row; aBSize = aState.mRows.GridLineEdge(aEndRow, GridLineSide::eBeforeGridGap); i = -1; // i == 0 after the next loop increment isRowTopOfPage = isStartRowTopOfPage; overflowIncompleteItems.Clear(); incompleteItems.Clear(); NS_FRAME_SET_INCOMPLETE(aStatus); continue; } NS_ERROR("got BREAK_BEFORE at top-of-page"); childStatus = NS_FRAME_COMPLETE; } else { NS_ERROR("got BREAK_BEFORE again after growing the row?"); NS_FRAME_SET_INCOMPLETE(childStatus); } } else if (NS_INLINE_IS_BREAK_AFTER(childStatus)) { MOZ_ASSERT_UNREACHABLE("unexpected child reflow status"); } if (NS_FRAME_IS_NOT_COMPLETE(childStatus)) { incompleteItems.PutEntry(child); } else if (!NS_FRAME_IS_FULLY_COMPLETE(childStatus)) { overflowIncompleteItems.PutEntry(child); } } // Record a break before |aEndRow|. if (aEndRow < aState.mRows.mSizes.Length()) { aState.mRows.BreakBeforeRow(aEndRow); if (aState.mSharedGridData) { aState.mSharedGridData->mRows.BreakBeforeRow(aEndRow); } } if (!pushedItems.IsEmpty() || !incompleteItems.IsEmpty() || !overflowIncompleteItems.IsEmpty()) { if (NS_FRAME_IS_COMPLETE(aStatus)) { NS_FRAME_SET_OVERFLOW_INCOMPLETE(aStatus); aStatus |= NS_FRAME_REFLOW_NEXTINFLOW; } // Iterate the children in normal document order and append them (or a NIF) // to one of the following frame lists according to their status. nsFrameList pushedList; nsFrameList incompleteList; nsFrameList overflowIncompleteList; auto* pc = PresContext(); auto* fc = pc->PresShell()->FrameConstructor(); for (nsIFrame* child = GetChildList(kPrincipalList).FirstChild(); child; ) { MOZ_ASSERT((pushedItems.Contains(child) ? 1 : 0) + (incompleteItems.Contains(child) ? 1 : 0) + (overflowIncompleteItems.Contains(child) ? 1 : 0) <= 1, "child should only be in one of these sets"); // Save the next-sibling so we can continue the loop if |child| is moved. nsIFrame* next = child->GetNextSibling(); if (pushedItems.Contains(child)) { MOZ_ASSERT(child->GetParent() == this); StealFrame(child); pushedList.AppendFrame(nullptr, child); } else if (incompleteItems.Contains(child)) { nsIFrame* childNIF = child->GetNextInFlow(); if (!childNIF) { childNIF = fc->CreateContinuingFrame(pc, child, this); incompleteList.AppendFrame(nullptr, childNIF); } else { auto parent = static_cast(childNIF->GetParent()); MOZ_ASSERT(parent != this || !mFrames.ContainsFrame(childNIF), "child's NIF shouldn't be in the same principal list"); // If child's existing NIF is an overflow container, convert it to an // actual NIF, since now |child| has non-overflow stuff to give it. // Or, if it's further away then our next-in-flow, then pull it up. if ((childNIF->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) || (parent != this && parent != GetNextInFlow())) { parent->StealFrame(childNIF); childNIF->RemoveStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER); if (parent == this) { incompleteList.AppendFrame(nullptr, childNIF); } else { // If childNIF already lives on the next grid fragment, then we // don't need to reparent it, since we know it's destined to end // up there anyway. Just move it to its parent's overflow list. if (parent == GetNextInFlow()) { nsFrameList toMove(childNIF, childNIF); parent->MergeSortedOverflow(toMove); } else { ReparentFrame(childNIF, parent, this); incompleteList.AppendFrame(nullptr, childNIF); } } } } } else if (overflowIncompleteItems.Contains(child)) { nsIFrame* childNIF = child->GetNextInFlow(); if (!childNIF) { childNIF = fc->CreateContinuingFrame(pc, child, this); childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER); overflowIncompleteList.AppendFrame(nullptr, childNIF); } else { DebugOnly lastParent = this; auto nif = static_cast(GetNextInFlow()); // If child has any non-overflow-container NIFs, convert them to // overflow containers, since that's all |child| needs now. while (childNIF && !childNIF->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) { auto parent = static_cast(childNIF->GetParent()); parent->StealFrame(childNIF); childNIF->AddStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER); if (parent == this) { overflowIncompleteList.AppendFrame(nullptr, childNIF); } else { if (!nif || parent == nif) { nsFrameList toMove(childNIF, childNIF); parent->MergeSortedExcessOverflowContainers(toMove); } else { ReparentFrame(childNIF, parent, nif); nsFrameList toMove(childNIF, childNIF); nif->MergeSortedExcessOverflowContainers(toMove); } // We only need to reparent the first childNIF (or not at all if // its parent is our NIF). nif = nullptr; } lastParent = parent; childNIF = childNIF->GetNextInFlow(); } } } child = next; } // Merge the results into our respective overflow child lists. if (!pushedList.IsEmpty()) { MergeSortedOverflow(pushedList); AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); } if (!incompleteList.IsEmpty()) { MergeSortedOverflow(incompleteList); } if (!overflowIncompleteList.IsEmpty()) { MergeSortedExcessOverflowContainers(overflowIncompleteList); } } return aBSize; } nscoord nsGridContainerFrame::ReflowChildren(GridReflowState& aState, const LogicalRect& aContentArea, nsHTMLReflowMetrics& aDesiredSize, nsReflowStatus& aStatus) { MOZ_ASSERT(aState.mReflowState); aStatus = NS_FRAME_COMPLETE; nsOverflowAreas ocBounds; nsReflowStatus ocStatus = NS_FRAME_COMPLETE; if (GetPrevInFlow()) { ReflowOverflowContainerChildren(PresContext(), *aState.mReflowState, ocBounds, 0, ocStatus); } WritingMode wm = aState.mReflowState->GetWritingMode(); const nsSize containerSize = (aContentArea.Size(wm) + aState.mBorderPadding.Size(wm)).GetPhysicalSize(wm); nscoord bSize = aContentArea.BSize(wm); Maybe fragmentainer = GetNearestFragmentainer(aState); if (MOZ_UNLIKELY(fragmentainer.isSome())) { bSize = ReflowInFragmentainer(aState, aContentArea, aDesiredSize, aStatus, *fragmentainer, containerSize); } else { aState.mIter.Reset(GridItemCSSOrderIterator::eIncludeAll); for (; !aState.mIter.AtEnd(); aState.mIter.Next()) { nsIFrame* child = *aState.mIter; const GridItemInfo* info = nullptr; if (child->GetType() != nsGkAtoms::placeholderFrame) { info = &aState.mGridItems[aState.mIter.GridItemIndex()]; } ReflowInFlowChild(*aState.mIter, info, containerSize, nullptr, aState, aContentArea, aDesiredSize, aStatus); MOZ_ASSERT(NS_FRAME_IS_COMPLETE(aStatus), "child should be complete " "in unconstrained reflow"); } } // Merge overflow container bounds and status. aDesiredSize.mOverflowAreas.UnionWith(ocBounds); NS_MergeReflowStatusInto(&aStatus, ocStatus); if (IsAbsoluteContainer()) { nsFrameList children(GetChildList(GetAbsoluteListID())); if (!children.IsEmpty()) { // 'gridOrigin' is the origin of the grid (the start of the first track), // with respect to the grid container's padding-box (CB). LogicalMargin pad(aState.mReflowState->ComputedLogicalPadding()); const LogicalPoint gridOrigin(wm, pad.IStart(wm), pad.BStart(wm)); const LogicalRect gridCB(wm, 0, 0, aContentArea.ISize(wm) + pad.IStartEnd(wm), bSize + pad.BStartEnd(wm)); const nsSize gridCBPhysicalSize = gridCB.Size(wm).GetPhysicalSize(wm); size_t i = 0; for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next(), ++i) { nsIFrame* child = e.get(); MOZ_ASSERT(i < aState.mAbsPosItems.Length()); MOZ_ASSERT(aState.mAbsPosItems[i].mFrame == child); GridArea& area = aState.mAbsPosItems[i].mArea; LogicalRect itemCB = aState.ContainingBlockForAbsPos(area, gridOrigin, gridCB); // nsAbsoluteContainingBlock::Reflow uses physical coordinates. nsRect* cb = static_cast(child->Properties().Get( GridItemContainingBlockRect())); if (!cb) { cb = new nsRect; child->Properties().Set(GridItemContainingBlockRect(), cb); } *cb = itemCB.GetPhysicalRect(wm, gridCBPhysicalSize); } // We pass a dummy rect as CB because each child has its own CB rect. // The eIsGridContainerCB flag tells nsAbsoluteContainingBlock::Reflow to // use those instead. nsRect dummyRect; AbsPosReflowFlags flags = AbsPosReflowFlags::eCBWidthAndHeightChanged; // XXX could be optimized flags |= AbsPosReflowFlags::eConstrainHeight; flags |= AbsPosReflowFlags::eIsGridContainerCB; GetAbsoluteContainingBlock()->Reflow(this, PresContext(), *aState.mReflowState, aStatus, dummyRect, flags, &aDesiredSize.mOverflowAreas); } } return bSize; } void nsGridContainerFrame::Reflow(nsPresContext* aPresContext, nsHTMLReflowMetrics& aDesiredSize, const nsHTMLReflowState& aReflowState, nsReflowStatus& aStatus) { MarkInReflow(); DO_GLOBAL_REFLOW_COUNT("nsGridContainerFrame"); DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus); if (IsFrameTreeTooDeep(aReflowState, aDesiredSize, aStatus)) { return; } // First we gather child frames we should include in our reflow, // i.e. overflowed children from our prev-in-flow, and pushed first-in-flow // children (that might now fit). It's important to note that these children // can be in arbitrary order vis-a-vis the current children in our lists. // E.g. grid items in the document order: A, B, C may be placed in the rows // 3, 2, 1. Assume each row goes in a separate grid container fragment, // and we reflow the second fragment. Now if C (in fragment 1) overflows, // we can't just prepend it to our mFrames like we usually do because that // would violate the document order invariant that other code depends on. // Similarly if we pull up child A (from fragment 3) we can't just append // that for the same reason. Instead, we must sort these children into // our child lists. (The sorting is trivial given that both lists are // already fully sorted individually - it's just a merge.) // // The invariants that we maintain are that each grid container child list // is sorted in the normal document order at all times, but that children // in different grid container continuations may be in arbitrary order. auto prevInFlow = static_cast(GetPrevInFlow()); // Merge overflow frames from our prev-in-flow into our principal child list. if (prevInFlow) { AutoFrameListPtr overflow(aPresContext, prevInFlow->StealOverflowFrames()); if (overflow) { ReparentFrames(*overflow, prevInFlow, this); ::MergeSortedFrameLists(mFrames, *overflow, GetContent()); // Move trailing next-in-flows into our overflow list. nsFrameList continuations; for (nsIFrame* f = mFrames.FirstChild(); f; ) { nsIFrame* next = f->GetNextSibling(); nsIFrame* pif = f->GetPrevInFlow(); if (pif && pif->GetParent() == this) { mFrames.RemoveFrame(f); continuations.AppendFrame(nullptr, f); } f = next; } MergeSortedOverflow(continuations); // Move trailing OC next-in-flows into our excess overflow containers list. nsFrameList* overflowContainers = GetPropTableFrames(OverflowContainersProperty()); if (overflowContainers) { nsFrameList moveToEOC; for (nsIFrame* f = overflowContainers->FirstChild(); f; ) { nsIFrame* next = f->GetNextSibling(); nsIFrame* pif = f->GetPrevInFlow(); if (pif && pif->GetParent() == this) { overflowContainers->RemoveFrame(f); moveToEOC.AppendFrame(nullptr, f); } f = next; } if (overflowContainers->IsEmpty()) { Properties().Delete(OverflowContainersProperty()); } MergeSortedExcessOverflowContainers(moveToEOC); } } } // Merge our own overflow frames into our principal child list, // except those that are a next-in-flow for one of our items. DebugOnly foundOwnPushedChild = false; { nsFrameList* ourOverflow = GetOverflowFrames(); if (ourOverflow) { nsFrameList items; for (nsIFrame* f = ourOverflow->FirstChild(); f; ) { nsIFrame* next = f->GetNextSibling(); nsIFrame* pif = f->GetPrevInFlow(); if (!pif || pif->GetParent() != this) { MOZ_ASSERT(f->GetParent() == this); ourOverflow->RemoveFrame(f); items.AppendFrame(nullptr, f); if (!pif) { foundOwnPushedChild = true; } } f = next; } ::MergeSortedFrameLists(mFrames, items, GetContent()); if (ourOverflow->IsEmpty()) { DestroyOverflowList(); } } } // Pull up any first-in-flow children we might have pushed. if (HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) { RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); nsFrameList items; auto nif = static_cast(GetNextInFlow()); DebugOnly nifNeedPushedItem = false; while (nif) { nsFrameList nifItems; for (nsIFrame* nifChild = nif->GetChildList(kPrincipalList).FirstChild(); nifChild; ) { nsIFrame* next = nifChild->GetNextSibling(); if (!nifChild->GetPrevInFlow()) { nif->StealFrame(nifChild); ReparentFrame(nifChild, nif, this); nifItems.AppendFrame(nullptr, nifChild); nifNeedPushedItem = false; } nifChild = next; } ::MergeSortedFrameLists(items, nifItems, GetContent()); if (!nif->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS)) { MOZ_ASSERT(!nifNeedPushedItem || mDidPushItemsBitMayLie, "NS_STATE_GRID_DID_PUSH_ITEMS lied"); break; } nifNeedPushedItem = true; for (nsIFrame* nifChild = nif->GetChildList(kOverflowList).FirstChild(); nifChild; ) { nsIFrame* next = nifChild->GetNextSibling(); if (!nifChild->GetPrevInFlow()) { nif->StealFrame(nifChild); ReparentFrame(nifChild, nif, this); nifItems.AppendFrame(nullptr, nifChild); nifNeedPushedItem = false; } nifChild = next; } ::MergeSortedFrameLists(items, nifItems, GetContent()); nif->RemoveStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); nif = static_cast(nif->GetNextInFlow()); MOZ_ASSERT(nif || !nifNeedPushedItem || mDidPushItemsBitMayLie, "NS_STATE_GRID_DID_PUSH_ITEMS lied"); } MOZ_ASSERT(foundOwnPushedChild || !items.IsEmpty() || mDidPushItemsBitMayLie, "NS_STATE_GRID_DID_PUSH_ITEMS lied"); ::MergeSortedFrameLists(mFrames, items, GetContent()); } #ifdef DEBUG mDidPushItemsBitMayLie = false; SanityCheckGridItemsBeforeReflow(); #endif // DEBUG const nsStylePosition* stylePos = aReflowState.mStylePosition; if (!prevInFlow) { InitImplicitNamedAreas(stylePos); } GridReflowState gridReflowState(this, aReflowState); if (gridReflowState.mIter.ItemsAreAlreadyInOrder()) { AddStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER); } else { RemoveStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER); } const nscoord computedBSize = aReflowState.ComputedBSize(); const nscoord computedISize = aReflowState.ComputedISize(); const WritingMode& wm = gridReflowState.mWM; LogicalSize computedSize(wm, computedISize, computedBSize); nscoord consumedBSize = 0; if (!prevInFlow) { // ComputedMinSize is zero rather than NS_UNCONSTRAINEDSIZE when indefinite // (unfortunately) so we have to check the style data and parent reflow state // to determine if it's indefinite. LogicalSize computedMinSize(aReflowState.ComputedMinSize()); const nsHTMLReflowState* cbState = aReflowState.mCBReflowState; if (!stylePos->MinISize(wm).IsCoordPercentCalcUnit() || (stylePos->MinISize(wm).HasPercent() && cbState && cbState->ComputedSize(wm).ISize(wm) == NS_UNCONSTRAINEDSIZE)) { computedMinSize.ISize(wm) = NS_UNCONSTRAINEDSIZE; } if (!stylePos->MinBSize(wm).IsCoordPercentCalcUnit() || (stylePos->MinBSize(wm).HasPercent() && cbState && cbState->ComputedSize(wm).BSize(wm) == NS_UNCONSTRAINEDSIZE)) { computedMinSize.BSize(wm) = NS_UNCONSTRAINEDSIZE; } Grid grid; grid.PlaceGridItems(gridReflowState, computedMinSize, computedSize, aReflowState.ComputedMaxSize()); gridReflowState.mIter.Reset(); gridReflowState.CalculateTrackSizes(grid, computedSize, nsLayoutUtils::PREF_ISIZE); // FIXME bug 1229180: Instead of doing this on every reflow, we should only // set these properties if they are needed. nsTArray colTrackSizes(gridReflowState.mCols.mSizes.Length()); for (const TrackSize& sz : gridReflowState.mCols.mSizes) { colTrackSizes.AppendElement(sz.mBase); } ComputedGridTrackInfo* colInfo = new ComputedGridTrackInfo( gridReflowState.mColFunctions.mExplicitGridOffset, gridReflowState.mColFunctions.NumExplicitTracks(), Move(colTrackSizes)); Properties().Set(GridColTrackInfo(), colInfo); nsTArray rowTrackSizes(gridReflowState.mRows.mSizes.Length()); for (const TrackSize& sz : gridReflowState.mRows.mSizes) { rowTrackSizes.AppendElement(sz.mBase); } ComputedGridTrackInfo* rowInfo = new ComputedGridTrackInfo( gridReflowState.mRowFunctions.mExplicitGridOffset, gridReflowState.mRowFunctions.NumExplicitTracks(), Move(rowTrackSizes)); Properties().Set(GridRowTrackInfo(), rowInfo); } else { consumedBSize = GetConsumedBSize(); gridReflowState.InitializeForContinuation(this, consumedBSize); } nscoord bSize = 0; if (computedBSize == NS_AUTOHEIGHT) { const uint32_t numRows = gridReflowState.mRows.mSizes.Length(); if (!prevInFlow) { // Note: we can't use GridLineEdge here since we haven't calculated // the rows' mPosition yet (happens in AlignJustifyContent below). for (uint32_t i = 0; i < numRows; ++i) { bSize += gridReflowState.mRows.mSizes[i].mBase; } bSize += gridReflowState.mRows.SumOfGridGaps(); } else { bSize = gridReflowState.mRows.GridLineEdge(numRows, GridLineSide::eAfterGridGap); } bSize = NS_CSS_MINMAX(bSize, aReflowState.ComputedMinBSize(), aReflowState.ComputedMaxBSize()); } else { bSize = computedBSize; } bSize = std::max(bSize - consumedBSize, 0); auto& bp = gridReflowState.mBorderPadding; LogicalRect contentArea(wm, bp.IStart(wm), bp.BStart(wm), computedISize, bSize); if (!prevInFlow) { // Apply 'align/justify-content' to the grid. gridReflowState.mCols.AlignJustifyContent(aReflowState, contentArea.Size(wm)); gridReflowState.mRows.AlignJustifyContent(aReflowState, contentArea.Size(wm)); } bSize = ReflowChildren(gridReflowState, contentArea, aDesiredSize, aStatus); bSize = std::max(bSize - consumedBSize, 0); // Skip our block-end border if we're INCOMPLETE. if (!NS_FRAME_IS_COMPLETE(aStatus) && !gridReflowState.mSkipSides.BEnd() && StyleBorder()->mBoxDecorationBreak != NS_STYLE_BOX_DECORATION_BREAK_CLONE) { bp.BEnd(wm) = nscoord(0); } LogicalSize desiredSize(wm, computedISize + bp.IStartEnd(wm), bSize + bp.BStartEnd(wm)); aDesiredSize.SetSize(wm, desiredSize); aDesiredSize.mOverflowAreas.UnionAllWith(nsRect(0, 0, aDesiredSize.Width(), aDesiredSize.Height())); // Convert INCOMPLETE -> OVERFLOW_INCOMPLETE and zero bsize if we're an OC. if (HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER)) { if (!NS_FRAME_IS_COMPLETE(aStatus)) { NS_FRAME_SET_OVERFLOW_INCOMPLETE(aStatus); aStatus |= NS_FRAME_REFLOW_NEXTINFLOW; } bSize = 0; desiredSize.BSize(wm) = bSize + bp.BStartEnd(wm); aDesiredSize.SetSize(wm, desiredSize); } if (!prevInFlow) { auto sharedGridData = static_cast( Properties().Get(SharedGridData::Prop())); if (!NS_FRAME_IS_FULLY_COMPLETE(aStatus)) { if (!sharedGridData) { sharedGridData = new SharedGridData; Properties().Set(SharedGridData::Prop(), sharedGridData); } sharedGridData->mCols.mSizes.Clear(); sharedGridData->mCols.mSizes.SwapElements(gridReflowState.mCols.mSizes); sharedGridData->mCols.mContentBoxSize = gridReflowState.mCols.mContentBoxSize; sharedGridData->mRows.mSizes.Clear(); sharedGridData->mRows.mSizes.SwapElements(gridReflowState.mRows.mSizes); // Save the original row grid sizes and gaps so we can restore them later // in GridReflowState::Initialize for the continuations. auto& origRowData = sharedGridData->mOriginalRowData; origRowData.ClearAndRetainStorage(); origRowData.SetCapacity(sharedGridData->mRows.mSizes.Length()); nscoord prevTrackEnd = 0; for (auto& sz : sharedGridData->mRows.mSizes) { SharedGridData::RowData data = {sz.mBase, sz.mPosition - prevTrackEnd}; origRowData.AppendElement(data); prevTrackEnd = sz.mPosition + sz.mBase; } sharedGridData->mRows.mContentBoxSize = gridReflowState.mRows.mContentBoxSize; sharedGridData->mGridItems.Clear(); sharedGridData->mGridItems.SwapElements(gridReflowState.mGridItems); sharedGridData->mAbsPosItems.Clear(); sharedGridData->mAbsPosItems.SwapElements(gridReflowState.mAbsPosItems); } else if (sharedGridData && !GetNextInFlow()) { Properties().Delete(SharedGridData::Prop()); } } FinishAndStoreOverflow(&aDesiredSize); aStatus = NS_FRAME_COMPLETE; NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize); } nscoord nsGridContainerFrame::IntrinsicISize(nsRenderingContext* aRenderingContext, IntrinsicISizeType aConstraint) { // Calculate the sum of column sizes under aConstraint. // http://dev.w3.org/csswg/css-grid/#intrinsic-sizes GridReflowState state(this, *aRenderingContext); InitImplicitNamedAreas(state.mGridStyle); // XXX optimize LogicalSize indefinite(state.mWM, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); Grid grid; grid.PlaceGridItems(state, indefinite, indefinite, indefinite); // XXX optimize if (grid.mGridColEnd == 0) { return 0; } state.mCols.Initialize(state.mColFunctions, state.mGridStyle->mGridColumnGap, grid.mGridColEnd, NS_UNCONSTRAINEDSIZE); state.mIter.Reset(); state.mCols.CalculateSizes(state, state.mGridItems, state.mColFunctions, NS_UNCONSTRAINEDSIZE, &GridArea::mCols, aConstraint); nscoord length = 0; for (const TrackSize& sz : state.mCols.mSizes) { length += sz.mBase; } return length + state.mCols.SumOfGridGaps(); } nscoord nsGridContainerFrame::GetMinISize(nsRenderingContext* aRC) { DISPLAY_MIN_WIDTH(this, mCachedMinISize); if (mCachedMinISize == NS_INTRINSIC_WIDTH_UNKNOWN) { mCachedMinISize = IntrinsicISize(aRC, nsLayoutUtils::MIN_ISIZE); } return mCachedMinISize; } nscoord nsGridContainerFrame::GetPrefISize(nsRenderingContext* aRC) { DISPLAY_PREF_WIDTH(this, mCachedPrefISize); if (mCachedPrefISize == NS_INTRINSIC_WIDTH_UNKNOWN) { mCachedPrefISize = IntrinsicISize(aRC, nsLayoutUtils::PREF_ISIZE); } return mCachedPrefISize; } void nsGridContainerFrame::MarkIntrinsicISizesDirty() { mCachedMinISize = NS_INTRINSIC_WIDTH_UNKNOWN; mCachedPrefISize = NS_INTRINSIC_WIDTH_UNKNOWN; nsContainerFrame::MarkIntrinsicISizesDirty(); } nsIAtom* nsGridContainerFrame::GetType() const { return nsGkAtoms::gridContainerFrame; } void nsGridContainerFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder, const nsRect& aDirtyRect, const nsDisplayListSet& aLists) { DisplayBorderBackgroundOutline(aBuilder, aLists); if (GetPrevInFlow()) { DisplayOverflowContainers(aBuilder, aDirtyRect, aLists); } // Our children are all grid-level boxes, which behave the same as // inline-blocks in painting, so their borders/backgrounds all go on // the BlockBorderBackgrounds list. // Also, we capture positioned descendants so we can sort them by // CSS 'order'. nsDisplayList positionedDescendants; nsDisplayListSet childLists(aLists.BlockBorderBackgrounds(), aLists.BlockBorderBackgrounds(), aLists.Floats(), aLists.Content(), &positionedDescendants, aLists.Outlines()); typedef GridItemCSSOrderIterator::OrderState OrderState; OrderState order = HasAnyStateBits(NS_STATE_GRID_NORMAL_FLOW_CHILDREN_IN_CSS_ORDER) ? OrderState::eKnownOrdered : OrderState::eKnownUnordered; GridItemCSSOrderIterator iter(this, kPrincipalList, GridItemCSSOrderIterator::eIncludeAll, order); for (; !iter.AtEnd(); iter.Next()) { nsIFrame* child = *iter; BuildDisplayListForChild(aBuilder, child, aDirtyRect, childLists, ::GetDisplayFlagsForGridItem(child)); } positionedDescendants.SortByCSSOrder(); aLists.PositionedDescendants()->AppendToTop(&positionedDescendants); } bool nsGridContainerFrame::DrainSelfOverflowList() { // Unlike nsContainerFrame::DrainSelfOverflowList we need to merge these lists // so that the resulting mFrames is in document content order. // NOTE: nsContainerFrame::AppendFrames/InsertFrames calls this method. AutoFrameListPtr overflowFrames(PresContext(), StealOverflowFrames()); if (overflowFrames) { ::MergeSortedFrameLists(mFrames, *overflowFrames, GetContent()); return true; } return false; } void nsGridContainerFrame::AppendFrames(ChildListID aListID, nsFrameList& aFrameList) { NoteNewChildren(aListID, aFrameList); nsContainerFrame::AppendFrames(aListID, aFrameList); } void nsGridContainerFrame::InsertFrames(ChildListID aListID, nsIFrame* aPrevFrame, nsFrameList& aFrameList) { NoteNewChildren(aListID, aFrameList); nsContainerFrame::InsertFrames(aListID, aPrevFrame, aFrameList); } void nsGridContainerFrame::RemoveFrame(ChildListID aListID, nsIFrame* aOldFrame) { #ifdef DEBUG ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList; MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list"); // Note that kPrincipalList doesn't mean aOldFrame must be on that list. // It can also be on kOverflowList, in which case it might be a pushed // item, and if it's the only pushed item our DID_PUSH_ITEMS bit will lie. mDidPushItemsBitMayLie = mDidPushItemsBitMayLie || (aListID == kPrincipalList && !aOldFrame->GetPrevInFlow()); #endif nsContainerFrame::RemoveFrame(aListID, aOldFrame); } #ifdef DEBUG_FRAME_DUMP nsresult nsGridContainerFrame::GetFrameName(nsAString& aResult) const { return MakeFrameName(NS_LITERAL_STRING("GridContainer"), aResult); } #endif void nsGridContainerFrame::NoteNewChildren(ChildListID aListID, const nsFrameList& aFrameList) { #ifdef DEBUG ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList | kNoReflowPrincipalList; MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list"); #endif nsIPresShell* shell = PresContext()->PresShell(); for (auto pif = GetPrevInFlow(); pif; pif = pif->GetPrevInFlow()) { if (aListID == kPrincipalList) { pif->AddStateBits(NS_STATE_GRID_DID_PUSH_ITEMS); } shell->FrameNeedsReflow(pif, nsIPresShell::eTreeChange, NS_FRAME_IS_DIRTY); } } void nsGridContainerFrame::MergeSortedOverflow(nsFrameList& aList) { if (aList.IsEmpty()) { return; } MOZ_ASSERT(!aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER), "this is the wrong list to put this child frame"); MOZ_ASSERT(aList.FirstChild()->GetParent() == this); nsFrameList* overflow = GetOverflowFrames(); if (overflow) { ::MergeSortedFrameLists(*overflow, aList, GetContent()); } else { SetOverflowFrames(aList); } } void nsGridContainerFrame::MergeSortedExcessOverflowContainers(nsFrameList& aList) { if (aList.IsEmpty()) { return; } MOZ_ASSERT(aList.FirstChild()->HasAnyStateBits(NS_FRAME_IS_OVERFLOW_CONTAINER), "this is the wrong list to put this child frame"); MOZ_ASSERT(aList.FirstChild()->GetParent() == this); nsFrameList* eoc = GetPropTableFrames(ExcessOverflowContainersProperty()); if (eoc) { ::MergeSortedFrameLists(*eoc, aList, GetContent()); } else { SetPropTableFrames(new (PresContext()->PresShell()) nsFrameList(aList), ExcessOverflowContainersProperty()); } } #ifdef DEBUG static bool FrameWantsToBeInAnonymousGridItem(nsIFrame* aFrame) { // Note: This needs to match the logic in // nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexOrGridItem() return aFrame->IsFrameOfType(nsIFrame::eLineParticipant); } // Debug-only override, to let us assert that our anonymous grid items are // set up correctly by the frame constructor -- in particular, we assert: // (1) we don't have any inline non-replaced children // (2) we don't have any consecutive anonymous grid items // (3) we don't have any empty anonymous grid items // (4) all children are on the expected child lists void nsGridContainerFrame::SetInitialChildList(ChildListID aListID, nsFrameList& aChildList) { ChildListIDs supportedLists = kAbsoluteList | kFixedList | kPrincipalList; MOZ_ASSERT(supportedLists.Contains(aListID), "unexpected child list"); if (aListID == kPrincipalList) { bool prevChildWasAnonGridItem = false; for (nsFrameList::Enumerator e(aChildList); !e.AtEnd(); e.Next()) { nsIFrame* child = e.get(); MOZ_ASSERT(!FrameWantsToBeInAnonymousGridItem(child), "frame wants to be inside an anonymous grid item, but it isn't"); if (child->StyleContext()->GetPseudo() == nsCSSAnonBoxes::anonymousGridItem) { MOZ_ASSERT(!prevChildWasAnonGridItem, "two anon grid items in a row"); nsIFrame* firstWrappedChild = child->PrincipalChildList().FirstChild(); MOZ_ASSERT(firstWrappedChild, "anonymous grid item is empty (shouldn't happen)"); prevChildWasAnonGridItem = true; } else { prevChildWasAnonGridItem = false; } } } return nsContainerFrame::SetInitialChildList(aListID, aChildList); } void nsGridContainerFrame::SanityCheckGridItemsBeforeReflow() const { ChildListIDs absLists = kAbsoluteList | kFixedList | kOverflowContainersList | kExcessOverflowContainersList; ChildListIDs itemLists = kPrincipalList | kOverflowList; for (const nsIFrame* f = this; f; f = f->GetNextInFlow()) { MOZ_ASSERT(!f->HasAnyStateBits(NS_STATE_GRID_DID_PUSH_ITEMS), "At start of reflow, we should've pulled items back from all " "NIFs and cleared NS_STATE_GRID_DID_PUSH_ITEMS in the process"); for (nsIFrame::ChildListIterator childLists(f); !childLists.IsDone(); childLists.Next()) { if (!itemLists.Contains(childLists.CurrentID())) { MOZ_ASSERT(absLists.Contains(childLists.CurrentID()), "unexpected non-empty child list"); continue; } for (auto child : childLists.CurrentList()) { MOZ_ASSERT(f == this || child->GetPrevInFlow(), "all pushed items must be pulled up before reflow"); } } } // If we have a prev-in-flow, each of its children's next-in-flow // should be one of our children or be null. const auto pif = static_cast(GetPrevInFlow()); if (pif) { const nsFrameList* oc = GetPropTableFrames(OverflowContainersProperty()); const nsFrameList* eoc = GetPropTableFrames(ExcessOverflowContainersProperty()); const nsFrameList* pifEOC = pif->GetPropTableFrames(ExcessOverflowContainersProperty()); for (const nsIFrame* child : pif->GetChildList(kPrincipalList)) { const nsIFrame* childNIF = child->GetNextInFlow(); MOZ_ASSERT(!childNIF || mFrames.ContainsFrame(childNIF) || (pifEOC && pifEOC->ContainsFrame(childNIF)) || (oc && oc->ContainsFrame(childNIF)) || (eoc && eoc->ContainsFrame(childNIF))); } } } void nsGridContainerFrame::TrackSize::Dump() const { printf("mPosition=%d mBase=%d mLimit=%d", mPosition, mBase, mLimit); printf(" min:"); if (mState & eAutoMinSizing) { printf("auto "); } else if (mState & eMinContentMinSizing) { printf("min-content "); } else if (mState & eMaxContentMinSizing) { printf("max-content "); } else if (mState & eFlexMinSizing) { printf("flex "); } printf(" max:"); if (mState & eAutoMaxSizing) { printf("auto "); } else if (mState & eMinContentMaxSizing) { printf("min-content "); } else if (mState & eMaxContentMaxSizing) { printf("max-content "); } else if (mState & eFlexMaxSizing) { printf("flex "); } if (mState & eFrozen) { printf("frozen "); } if (mState & eBreakBefore) { printf("break-before "); } } #endif // DEBUG