/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /* A type/length-parametrized vector class. */ #ifndef mozilla_Vector_h #define mozilla_Vector_h #include "mozilla/Alignment.h" #include "mozilla/AllocPolicy.h" #include "mozilla/ArrayUtils.h" // for PointerRangeSize #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/MathAlgorithms.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Move.h" #include "mozilla/OperatorNewExtensions.h" #include "mozilla/ReentrancyGuard.h" #include "mozilla/TemplateLib.h" #include "mozilla/TypeTraits.h" #include "mozilla/Span.h" #include // for placement new namespace mozilla { template class Vector; namespace detail { /* * Check that the given capacity wastes the minimal amount of space if * allocated on the heap. This means that aCapacity*sizeof(T) is as close to a * power-of-two as possible. growStorageBy() is responsible for ensuring this. */ template static bool CapacityHasExcessSpace(size_t aCapacity) { size_t size = aCapacity * sizeof(T); return RoundUpPow2(size) - size >= sizeof(T); } /* * This template class provides a default implementation for vector operations * when the element type is not known to be a POD, as judged by IsPod. */ template struct VectorImpl { /* * Constructs an object in the uninitialized memory at *aDst with aArgs. */ template MOZ_NONNULL(1) static inline void new_(T* aDst, Args&&... aArgs) { new (KnownNotNull, aDst) T(std::forward(aArgs)...); } /* Destroys constructed objects in the range [aBegin, aEnd). */ static inline void destroy(T* aBegin, T* aEnd) { MOZ_ASSERT(aBegin <= aEnd); for (T* p = aBegin; p < aEnd; ++p) { p->~T(); } } /* Constructs objects in the uninitialized range [aBegin, aEnd). */ static inline void initialize(T* aBegin, T* aEnd) { MOZ_ASSERT(aBegin <= aEnd); for (T* p = aBegin; p < aEnd; ++p) { new_(p); } } /* * Copy-constructs objects in the uninitialized range * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd). */ template static inline void copyConstruct(T* aDst, const U* aSrcStart, const U* aSrcEnd) { MOZ_ASSERT(aSrcStart <= aSrcEnd); for (const U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) { new_(aDst, *p); } } /* * Move-constructs objects in the uninitialized range * [aDst, aDst+(aSrcEnd-aSrcStart)) from the range [aSrcStart, aSrcEnd). */ template static inline void moveConstruct(T* aDst, U* aSrcStart, U* aSrcEnd) { MOZ_ASSERT(aSrcStart <= aSrcEnd); for (U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) { new_(aDst, std::move(*p)); } } /* * Copy-constructs objects in the uninitialized range [aDst, aDst+aN) from * the same object aU. */ template static inline void copyConstructN(T* aDst, size_t aN, const U& aU) { for (T* end = aDst + aN; aDst < end; ++aDst) { new_(aDst, aU); } } /* * Grows the given buffer to have capacity aNewCap, preserving the objects * constructed in the range [begin, end) and updating aV. Assumes that (1) * aNewCap has not overflowed, and (2) multiplying aNewCap by sizeof(T) will * not overflow. */ static inline MOZ_MUST_USE bool growTo(Vector& aV, size_t aNewCap) { MOZ_ASSERT(!aV.usingInlineStorage()); MOZ_ASSERT(!CapacityHasExcessSpace(aNewCap)); T* newbuf = aV.template pod_malloc(aNewCap); if (MOZ_UNLIKELY(!newbuf)) { return false; } T* dst = newbuf; T* src = aV.beginNoCheck(); for (; src < aV.endNoCheck(); ++dst, ++src) { new_(dst, std::move(*src)); } VectorImpl::destroy(aV.beginNoCheck(), aV.endNoCheck()); aV.free_(aV.mBegin, aV.mTail.mCapacity); aV.mBegin = newbuf; /* aV.mLength is unchanged. */ aV.mTail.mCapacity = aNewCap; return true; } }; /* * This partial template specialization provides a default implementation for * vector operations when the element type is known to be a POD, as judged by * IsPod. */ template struct VectorImpl { template MOZ_NONNULL(1) static inline void new_(T* aDst, Args&&... aArgs) { // Explicitly construct a local object instead of using a temporary since // T(args...) will be treated like a C-style cast in the unary case and // allow unsafe conversions. Both forms should be equivalent to an // optimizing compiler. T temp(std::forward(aArgs)...); *aDst = temp; } static inline void destroy(T*, T*) {} static inline void initialize(T* aBegin, T* aEnd) { /* * You would think that memset would be a big win (or even break even) * when we know T is a POD. But currently it's not. This is probably * because |append| tends to be given small ranges and memset requires * a function call that doesn't get inlined. * * memset(aBegin, 0, sizeof(T) * (aEnd - aBegin)); */ MOZ_ASSERT(aBegin <= aEnd); for (T* p = aBegin; p < aEnd; ++p) { new_(p); } } template static inline void copyConstruct(T* aDst, const U* aSrcStart, const U* aSrcEnd) { /* * See above memset comment. Also, notice that copyConstruct is * currently templated (T != U), so memcpy won't work without * requiring T == U. * * memcpy(aDst, aSrcStart, sizeof(T) * (aSrcEnd - aSrcStart)); */ MOZ_ASSERT(aSrcStart <= aSrcEnd); for (const U* p = aSrcStart; p < aSrcEnd; ++p, ++aDst) { new_(aDst, *p); } } template static inline void moveConstruct(T* aDst, const U* aSrcStart, const U* aSrcEnd) { copyConstruct(aDst, aSrcStart, aSrcEnd); } static inline void copyConstructN(T* aDst, size_t aN, const T& aT) { for (T* end = aDst + aN; aDst < end; ++aDst) { new_(aDst, aT); } } static inline MOZ_MUST_USE bool growTo(Vector& aV, size_t aNewCap) { MOZ_ASSERT(!aV.usingInlineStorage()); MOZ_ASSERT(!CapacityHasExcessSpace(aNewCap)); T* newbuf = aV.template pod_realloc(aV.mBegin, aV.mTail.mCapacity, aNewCap); if (MOZ_UNLIKELY(!newbuf)) { return false; } aV.mBegin = newbuf; /* aV.mLength is unchanged. */ aV.mTail.mCapacity = aNewCap; return true; } static inline void podResizeToFit(Vector& aV) { if (aV.usingInlineStorage() || aV.mLength == aV.mTail.mCapacity) { return; } if (!aV.mLength) { aV.free_(aV.mBegin, aV.mTail.mCapacity); aV.mBegin = aV.inlineStorage(); aV.mTail.mCapacity = aV.kInlineCapacity; #ifdef DEBUG aV.mTail.mReserved = 0; #endif return; } T* newbuf = aV.template pod_realloc(aV.mBegin, aV.mTail.mCapacity, aV.mLength); if (MOZ_UNLIKELY(!newbuf)) { return; } aV.mBegin = newbuf; aV.mTail.mCapacity = aV.mLength; #ifdef DEBUG aV.mTail.mReserved = aV.mLength; #endif } }; // A struct for TestVector.cpp to access private internal fields. // DO NOT DEFINE IN YOUR OWN CODE. struct VectorTesting; } // namespace detail /* * STL-like container providing a short-lived, dynamic buffer. Vector calls the * constructors/destructors of all elements stored in its internal buffer, so * non-PODs may be safely used. Additionally, Vector will store the first N * elements in-place before resorting to dynamic allocation. * * T requirements: * - default and copy constructible, assignable, destructible * - operations do not throw * MinInlineCapacity requirements: * - any value, however, MinInlineCapacity is clamped to min/max values * AllocPolicy: * - see "Allocation policies" in AllocPolicy.h (defaults to * mozilla::MallocAllocPolicy) * * Vector is not reentrant: T member functions called during Vector member * functions must not call back into the same object! */ template class MOZ_NON_PARAM Vector final : private AllocPolicy { /* utilities */ static const bool kElemIsPod = IsPod::value; typedef detail::VectorImpl Impl; friend struct detail::VectorImpl; friend struct detail::VectorTesting; MOZ_MUST_USE bool growStorageBy(size_t aIncr); MOZ_MUST_USE bool convertToHeapStorage(size_t aNewCap); MOZ_MUST_USE bool maybeCheckSimulatedOOM(size_t aRequestedSize); /* magic constants */ /** * The maximum space allocated for inline element storage. * * We reduce space by what the AllocPolicy base class and prior Vector member * fields likely consume to attempt to play well with binary size classes. */ static constexpr size_t kMaxInlineBytes = 1024 - (sizeof(AllocPolicy) + sizeof(T*) + sizeof(size_t) + sizeof(size_t)); /** * The number of T elements of inline capacity built into this Vector. This * is usually |MinInlineCapacity|, but it may be less (or zero!) for large T. * * We use a partially-specialized template (not explicit specialization, which * is only allowed at namespace scope) to compute this value. The benefit is * that |sizeof(T)| need not be computed, and |T| doesn't have to be fully * defined at the time |Vector| appears, if no inline storage is requested. */ template struct ComputeCapacity { static constexpr size_t value = tl::Min::value; }; template struct ComputeCapacity<0, Dummy> { static constexpr size_t value = 0; }; /** The actual inline capacity in number of elements T. This may be zero! */ static constexpr size_t kInlineCapacity = ComputeCapacity::value; /* member data */ /* * Pointer to the buffer, be it inline or heap-allocated. Only [mBegin, * mBegin + mLength) hold valid constructed T objects. The range [mBegin + * mLength, mBegin + mCapacity) holds uninitialized memory. The range * [mBegin + mLength, mBegin + mReserved) also holds uninitialized memory * previously allocated by a call to reserve(). */ T* mBegin; /* Number of elements in the vector. */ size_t mLength; /* * Memory used to store capacity, reserved element count (debug builds only), * and inline storage. The simple "answer" is: * * size_t mCapacity; * #ifdef DEBUG * size_t mReserved; * #endif * alignas(T) unsigned char mBytes[kInlineCapacity * sizeof(T)]; * * but there are complications. First, C++ forbids zero-sized arrays that * might result. Second, we don't want zero capacity to affect Vector's size * (even empty classes take up a byte, unless they're base classes). * * Yet again, we eliminate the zero-sized array using partial specialization. * And we eliminate potential size hit by putting capacity/reserved in one * struct, then putting the array (if any) in a derived struct. If no array * is needed, the derived struct won't consume extra space. */ struct CapacityAndReserved { explicit CapacityAndReserved(size_t aCapacity, size_t aReserved) : mCapacity(aCapacity) #ifdef DEBUG , mReserved(aReserved) #endif { } CapacityAndReserved() = default; /* Max number of elements storable in the vector without resizing. */ size_t mCapacity; #ifdef DEBUG /* Max elements of reserved or used space in this vector. */ size_t mReserved; #endif }; // Silence warnings about this struct possibly being padded dued to the // alignas() in it -- there's nothing we can do to avoid it. #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable : 4324) #endif // _MSC_VER template struct CRAndStorage : CapacityAndReserved { explicit CRAndStorage(size_t aCapacity, size_t aReserved) : CapacityAndReserved(aCapacity, aReserved) {} CRAndStorage() = default; alignas(T) unsigned char mBytes[Capacity * sizeof(T)]; // GCC fails due to -Werror=strict-aliasing if |mBytes| is directly cast to // T*. Indirecting through this function addresses the problem. void* data() { return mBytes; } T* storage() { return static_cast(data()); } }; template struct CRAndStorage<0, Dummy> : CapacityAndReserved { explicit CRAndStorage(size_t aCapacity, size_t aReserved) : CapacityAndReserved(aCapacity, aReserved) {} CRAndStorage() = default; T* storage() { // If this returns |nullptr|, functions like |Vector::begin()| would too, // breaking callers that pass a vector's elements as pointer/length to // code that bounds its operation by length but (even just as a sanity // check) always wants a non-null pointer. Fake up an aligned, non-null // pointer to support these callers. return reinterpret_cast(sizeof(T)); } }; CRAndStorage mTail; #ifdef _MSC_VER # pragma warning(pop) #endif // _MSC_VER #ifdef DEBUG friend class ReentrancyGuard; bool mEntered; #endif /* private accessors */ bool usingInlineStorage() const { return mBegin == const_cast(this)->inlineStorage(); } T* inlineStorage() { return mTail.storage(); } T* beginNoCheck() const { return mBegin; } T* endNoCheck() { return mBegin + mLength; } const T* endNoCheck() const { return mBegin + mLength; } #ifdef DEBUG /** * The amount of explicitly allocated space in this vector that is immediately * available to be filled by appending additional elements. This value is * always greater than or equal to |length()| -- the vector's actual elements * are implicitly reserved. This value is always less than or equal to * |capacity()|. It may be explicitly increased using the |reserve()| method. */ size_t reserved() const { MOZ_ASSERT(mLength <= mTail.mReserved); MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity); return mTail.mReserved; } #endif /* Append operations guaranteed to succeed due to pre-reserved space. */ template void internalAppend(U&& aU); template void internalAppendAll(const Vector& aU); void internalAppendN(const T& aT, size_t aN); template void internalAppend(const U* aBegin, size_t aLength); public: static const size_t sMaxInlineStorage = MinInlineCapacity; typedef T ElementType; explicit Vector(AllocPolicy = AllocPolicy()); Vector(Vector&&); /* Move constructor. */ Vector& operator=(Vector&&); /* Move assignment. */ ~Vector(); /* accessors */ const AllocPolicy& allocPolicy() const { return *this; } AllocPolicy& allocPolicy() { return *this; } enum { InlineLength = MinInlineCapacity }; size_t length() const { return mLength; } bool empty() const { return mLength == 0; } size_t capacity() const { return mTail.mCapacity; } T* begin() { MOZ_ASSERT(!mEntered); return mBegin; } const T* begin() const { MOZ_ASSERT(!mEntered); return mBegin; } T* end() { MOZ_ASSERT(!mEntered); return mBegin + mLength; } const T* end() const { MOZ_ASSERT(!mEntered); return mBegin + mLength; } T& operator[](size_t aIndex) { MOZ_ASSERT(!mEntered); MOZ_ASSERT(aIndex < mLength); return begin()[aIndex]; } const T& operator[](size_t aIndex) const { MOZ_ASSERT(!mEntered); MOZ_ASSERT(aIndex < mLength); return begin()[aIndex]; } T& back() { MOZ_ASSERT(!mEntered); MOZ_ASSERT(!empty()); return *(end() - 1); } const T& back() const { MOZ_ASSERT(!mEntered); MOZ_ASSERT(!empty()); return *(end() - 1); } operator mozilla::Span() const { return mozilla::MakeSpan(mBegin, mLength); } operator mozilla::Span() { return mozilla::MakeSpan(mBegin, mLength); } class Range { friend class Vector; T* mCur; T* mEnd; Range(T* aCur, T* aEnd) : mCur(aCur), mEnd(aEnd) { MOZ_ASSERT(aCur <= aEnd); } public: bool empty() const { return mCur == mEnd; } size_t remain() const { return PointerRangeSize(mCur, mEnd); } T& front() const { MOZ_ASSERT(!empty()); return *mCur; } void popFront() { MOZ_ASSERT(!empty()); ++mCur; } T popCopyFront() { MOZ_ASSERT(!empty()); return *mCur++; } }; class ConstRange { friend class Vector; const T* mCur; const T* mEnd; ConstRange(const T* aCur, const T* aEnd) : mCur(aCur), mEnd(aEnd) { MOZ_ASSERT(aCur <= aEnd); } public: bool empty() const { return mCur == mEnd; } size_t remain() const { return PointerRangeSize(mCur, mEnd); } const T& front() const { MOZ_ASSERT(!empty()); return *mCur; } void popFront() { MOZ_ASSERT(!empty()); ++mCur; } T popCopyFront() { MOZ_ASSERT(!empty()); return *mCur++; } }; Range all() { return Range(begin(), end()); } ConstRange all() const { return ConstRange(begin(), end()); } /* mutators */ /** * Reverse the order of the elements in the vector in place. */ void reverse(); /** * Given that the vector is empty, grow the internal capacity to |aRequest|, * keeping the length 0. */ MOZ_MUST_USE bool initCapacity(size_t aRequest); /** * Given that the vector is empty, grow the internal capacity and length to * |aRequest| leaving the elements' memory completely uninitialized (with all * the associated hazards and caveats). This avoids the usual allocation-size * rounding that happens in resize and overhead of initialization for elements * that are about to be overwritten. */ MOZ_MUST_USE bool initLengthUninitialized(size_t aRequest); /** * If reserve(aRequest) succeeds and |aRequest >= length()|, then appending * |aRequest - length()| elements, in any sequence of append/appendAll calls, * is guaranteed to succeed. * * A request to reserve an amount less than the current length does not affect * reserved space. */ MOZ_MUST_USE bool reserve(size_t aRequest); /** * Destroy elements in the range [end() - aIncr, end()). Does not deallocate * or unreserve storage for those elements. */ void shrinkBy(size_t aIncr); /** * Destroy elements in the range [aNewLength, end()). Does not deallocate * or unreserve storage for those elements. */ void shrinkTo(size_t aNewLength); /** Grow the vector by aIncr elements. */ MOZ_MUST_USE bool growBy(size_t aIncr); /** Call shrinkBy or growBy based on whether newSize > length(). */ MOZ_MUST_USE bool resize(size_t aNewLength); /** * Increase the length of the vector, but don't initialize the new elements * -- leave them as uninitialized memory. */ MOZ_MUST_USE bool growByUninitialized(size_t aIncr); void infallibleGrowByUninitialized(size_t aIncr); MOZ_MUST_USE bool resizeUninitialized(size_t aNewLength); /** Shorthand for shrinkBy(length()). */ void clear(); /** Clears and releases any heap-allocated storage. */ void clearAndFree(); /** * Calls the AllocPolicy's pod_realloc to release excess capacity. Since * realloc is only safe on PODs, this method fails to compile if IsPod * is false. */ void podResizeToFit(); /** * If true, appending |aNeeded| elements won't reallocate elements storage. * This *doesn't* mean that infallibleAppend may be used! You still must * reserve the extra space, even if this method indicates that appends won't * need to reallocate elements storage. */ bool canAppendWithoutRealloc(size_t aNeeded) const; /** Potentially fallible append operations. */ /** * This can take either a T& or a T&&. Given a T&&, it moves |aU| into the * vector, instead of copying it. If it fails, |aU| is left unmoved. ("We are * not amused.") */ template MOZ_MUST_USE bool append(U&& aU); /** * Construct a T in-place as a new entry at the end of this vector. */ template MOZ_MUST_USE bool emplaceBack(Args&&... aArgs) { if (!growByUninitialized(1)) return false; Impl::new_(&back(), std::forward(aArgs)...); return true; } template MOZ_MUST_USE bool appendAll(const Vector& aU); MOZ_MUST_USE bool appendN(const T& aT, size_t aN); template MOZ_MUST_USE bool append(const U* aBegin, const U* aEnd); template MOZ_MUST_USE bool append(const U* aBegin, size_t aLength); /* * Guaranteed-infallible append operations for use upon vectors whose * memory has been pre-reserved. Don't use this if you haven't reserved the * memory! */ template void infallibleAppend(U&& aU) { internalAppend(std::forward(aU)); } void infallibleAppendN(const T& aT, size_t aN) { internalAppendN(aT, aN); } template void infallibleAppend(const U* aBegin, const U* aEnd) { internalAppend(aBegin, PointerRangeSize(aBegin, aEnd)); } template void infallibleAppend(const U* aBegin, size_t aLength) { internalAppend(aBegin, aLength); } template void infallibleEmplaceBack(Args&&... aArgs) { infallibleGrowByUninitialized(1); Impl::new_(&back(), std::forward(aArgs)...); } void popBack(); T popCopy(); /** * If elements are stored in-place, return nullptr and leave this vector * unmodified. * * Otherwise return this vector's elements buffer, and clear this vector as if * by clearAndFree(). The caller now owns the buffer and is responsible for * deallocating it consistent with this vector's AllocPolicy. * * N.B. Although a T*, only the range [0, length()) is constructed. */ MOZ_MUST_USE T* extractRawBuffer(); /** * If elements are stored in-place, allocate a new buffer, move this vector's * elements into it, and return that buffer. * * Otherwise return this vector's elements buffer. The caller now owns the * buffer and is responsible for deallocating it consistent with this vector's * AllocPolicy. * * This vector is cleared, as if by clearAndFree(), when this method * succeeds. This method fails and returns nullptr only if new elements buffer * allocation fails. * * N.B. Only the range [0, length()) of the returned buffer is constructed. * If any of these elements are uninitialized (as growByUninitialized * enables), behavior is undefined. */ MOZ_MUST_USE T* extractOrCopyRawBuffer(); /** * Transfer ownership of an array of objects into the vector. The caller * must have allocated the array in accordance with this vector's * AllocPolicy. * * N.B. This call assumes that there are no uninitialized elements in the * passed range [aP, aP + aLength). The range [aP + aLength, aP + * aCapacity) must be allocated uninitialized memory. */ void replaceRawBuffer(T* aP, size_t aLength, size_t aCapacity); /** * Transfer ownership of an array of objects into the vector. The caller * must have allocated the array in accordance with this vector's * AllocPolicy. * * N.B. This call assumes that there are no uninitialized elements in the * passed array. */ void replaceRawBuffer(T* aP, size_t aLength); /** * Places |aVal| at position |aP|, shifting existing elements from |aP| onward * one position higher. On success, |aP| should not be reused because it'll * be a dangling pointer if reallocation of the vector storage occurred; the * return value should be used instead. On failure, nullptr is returned. * * Example usage: * * if (!(p = vec.insert(p, val))) { * * } * * * This is inherently a linear-time operation. Be careful! */ template MOZ_MUST_USE T* insert(T* aP, U&& aVal); /** * Removes the element |aT|, which must fall in the bounds [begin, end), * shifting existing elements from |aT + 1| onward one position lower. */ void erase(T* aT); /** * Removes the elements [|aBegin|, |aEnd|), which must fall in the bounds * [begin, end), shifting existing elements from |aEnd| onward to aBegin's old * position. */ void erase(T* aBegin, T* aEnd); /** * Removes all elements that satisfy the predicate, shifting existing elements * lower to fill erased gaps. */ template void eraseIf(Pred aPred); /** * Removes all elements that compare equal to |aU|, shifting existing elements * lower to fill erased gaps. */ template void eraseIfEqual(const U& aU); /** * Measure the size of the vector's heap-allocated storage. */ size_t sizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const; /** * Like sizeOfExcludingThis, but also measures the size of the vector * object (which must be heap-allocated) itself. */ size_t sizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const; void swap(Vector& aOther); private: Vector(const Vector&) = delete; void operator=(const Vector&) = delete; }; /* This does the re-entrancy check plus several other sanity checks. */ #define MOZ_REENTRANCY_GUARD_ET_AL \ ReentrancyGuard g(*this); \ MOZ_ASSERT_IF(usingInlineStorage(), mTail.mCapacity == kInlineCapacity); \ MOZ_ASSERT(reserved() <= mTail.mCapacity); \ MOZ_ASSERT(mLength <= reserved()); \ MOZ_ASSERT(mLength <= mTail.mCapacity) /* Vector Implementation */ template MOZ_ALWAYS_INLINE Vector::Vector(AP aAP) : AP(std::move(aAP)), mLength(0), mTail(kInlineCapacity, 0) #ifdef DEBUG , mEntered(false) #endif { mBegin = inlineStorage(); } /* Move constructor. */ template MOZ_ALWAYS_INLINE Vector::Vector(Vector&& aRhs) : AllocPolicy(std::move(aRhs)) #ifdef DEBUG , mEntered(false) #endif { mLength = aRhs.mLength; mTail.mCapacity = aRhs.mTail.mCapacity; #ifdef DEBUG mTail.mReserved = aRhs.mTail.mReserved; #endif if (aRhs.usingInlineStorage()) { /* We can't move the buffer over in this case, so copy elements. */ mBegin = inlineStorage(); Impl::moveConstruct(mBegin, aRhs.beginNoCheck(), aRhs.endNoCheck()); /* * Leave aRhs's mLength, mBegin, mCapacity, and mReserved as they are. * The elements in its in-line storage still need to be destroyed. */ } else { /* * Take src's buffer, and turn src into an empty vector using * in-line storage. */ mBegin = aRhs.mBegin; aRhs.mBegin = aRhs.inlineStorage(); aRhs.mTail.mCapacity = kInlineCapacity; aRhs.mLength = 0; #ifdef DEBUG aRhs.mTail.mReserved = 0; #endif } } /* Move assignment. */ template MOZ_ALWAYS_INLINE Vector& Vector::operator=(Vector&& aRhs) { MOZ_ASSERT(this != &aRhs, "self-move assignment is prohibited"); this->~Vector(); new (KnownNotNull, this) Vector(std::move(aRhs)); return *this; } template MOZ_ALWAYS_INLINE Vector::~Vector() { MOZ_REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) { this->free_(beginNoCheck(), mTail.mCapacity); } } template MOZ_ALWAYS_INLINE void Vector::reverse() { MOZ_REENTRANCY_GUARD_ET_AL; T* elems = mBegin; size_t len = mLength; size_t mid = len / 2; for (size_t i = 0; i < mid; i++) { Swap(elems[i], elems[len - i - 1]); } } /* * This function will create a new heap buffer with capacity aNewCap, * move all elements in the inline buffer to this new buffer, * and fail on OOM. */ template inline bool Vector::convertToHeapStorage(size_t aNewCap) { MOZ_ASSERT(usingInlineStorage()); /* Allocate buffer. */ MOZ_ASSERT(!detail::CapacityHasExcessSpace(aNewCap)); T* newBuf = this->template pod_malloc(aNewCap); if (MOZ_UNLIKELY(!newBuf)) { return false; } /* Copy inline elements into heap buffer. */ Impl::moveConstruct(newBuf, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); /* Switch in heap buffer. */ mBegin = newBuf; /* mLength is unchanged. */ mTail.mCapacity = aNewCap; return true; } template MOZ_NEVER_INLINE bool Vector::growStorageBy(size_t aIncr) { MOZ_ASSERT(mLength + aIncr > mTail.mCapacity); /* * When choosing a new capacity, its size should is as close to 2**N bytes * as possible. 2**N-sized requests are best because they are unlikely to * be rounded up by the allocator. Asking for a 2**N number of elements * isn't as good, because if sizeof(T) is not a power-of-two that would * result in a non-2**N request size. */ size_t newCap; if (aIncr == 1) { if (usingInlineStorage()) { /* This case occurs in ~70--80% of the calls to this function. */ size_t newSize = tl::RoundUpPow2<(kInlineCapacity + 1) * sizeof(T)>::value; newCap = newSize / sizeof(T); goto convert; } if (mLength == 0) { /* This case occurs in ~0--10% of the calls to this function. */ newCap = 1; goto grow; } /* This case occurs in ~15--20% of the calls to this function. */ /* * Will mLength * 4 *sizeof(T) overflow? This condition limits a vector * to 1GB of memory on a 32-bit system, which is a reasonable limit. It * also ensures that * * static_cast(end()) - static_cast(begin()) * * doesn't overflow ptrdiff_t (see bug 510319). */ if (MOZ_UNLIKELY(mLength & tl::MulOverflowMask<4 * sizeof(T)>::value)) { this->reportAllocOverflow(); return false; } /* * If we reach here, the existing capacity will have a size that is already * as close to 2^N as sizeof(T) will allow. Just double the capacity, and * then there might be space for one more element. */ newCap = mLength * 2; if (detail::CapacityHasExcessSpace(newCap)) { newCap += 1; } } else { /* This case occurs in ~2% of the calls to this function. */ size_t newMinCap = mLength + aIncr; /* Did mLength + aIncr overflow? Will newCap * sizeof(T) overflow? */ if (MOZ_UNLIKELY(newMinCap < mLength || newMinCap & tl::MulOverflowMask<2 * sizeof(T)>::value)) { this->reportAllocOverflow(); return false; } size_t newMinSize = newMinCap * sizeof(T); size_t newSize = RoundUpPow2(newMinSize); newCap = newSize / sizeof(T); } if (usingInlineStorage()) { convert: return convertToHeapStorage(newCap); } grow: return Impl::growTo(*this, newCap); } template inline bool Vector::initCapacity(size_t aRequest) { MOZ_ASSERT(empty()); MOZ_ASSERT(usingInlineStorage()); if (aRequest == 0) { return true; } T* newbuf = this->template pod_malloc(aRequest); if (MOZ_UNLIKELY(!newbuf)) { return false; } mBegin = newbuf; mTail.mCapacity = aRequest; #ifdef DEBUG mTail.mReserved = aRequest; #endif return true; } template inline bool Vector::initLengthUninitialized(size_t aRequest) { if (!initCapacity(aRequest)) { return false; } infallibleGrowByUninitialized(aRequest); return true; } template inline bool Vector::maybeCheckSimulatedOOM(size_t aRequestedSize) { if (aRequestedSize <= N) { return true; } #ifdef DEBUG if (aRequestedSize <= mTail.mReserved) { return true; } #endif return allocPolicy().checkSimulatedOOM(); } template inline bool Vector::reserve(size_t aRequest) { MOZ_REENTRANCY_GUARD_ET_AL; if (aRequest > mTail.mCapacity) { if (MOZ_UNLIKELY(!growStorageBy(aRequest - mLength))) { return false; } } else if (!maybeCheckSimulatedOOM(aRequest)) { return false; } #ifdef DEBUG if (aRequest > mTail.mReserved) { mTail.mReserved = aRequest; } MOZ_ASSERT(mLength <= mTail.mReserved); MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity); #endif return true; } template inline void Vector::shrinkBy(size_t aIncr) { MOZ_REENTRANCY_GUARD_ET_AL; MOZ_ASSERT(aIncr <= mLength); Impl::destroy(endNoCheck() - aIncr, endNoCheck()); mLength -= aIncr; } template MOZ_ALWAYS_INLINE void Vector::shrinkTo(size_t aNewLength) { MOZ_ASSERT(aNewLength <= mLength); shrinkBy(mLength - aNewLength); } template MOZ_ALWAYS_INLINE bool Vector::growBy(size_t aIncr) { MOZ_REENTRANCY_GUARD_ET_AL; if (aIncr > mTail.mCapacity - mLength) { if (MOZ_UNLIKELY(!growStorageBy(aIncr))) { return false; } } else if (!maybeCheckSimulatedOOM(mLength + aIncr)) { return false; } MOZ_ASSERT(mLength + aIncr <= mTail.mCapacity); T* newend = endNoCheck() + aIncr; Impl::initialize(endNoCheck(), newend); mLength += aIncr; #ifdef DEBUG if (mLength > mTail.mReserved) { mTail.mReserved = mLength; } #endif return true; } template MOZ_ALWAYS_INLINE bool Vector::growByUninitialized(size_t aIncr) { MOZ_REENTRANCY_GUARD_ET_AL; if (aIncr > mTail.mCapacity - mLength) { if (MOZ_UNLIKELY(!growStorageBy(aIncr))) { return false; } } else if (!maybeCheckSimulatedOOM(mLength + aIncr)) { return false; } #ifdef DEBUG if (mLength + aIncr > mTail.mReserved) { mTail.mReserved = mLength + aIncr; } #endif infallibleGrowByUninitialized(aIncr); return true; } template MOZ_ALWAYS_INLINE void Vector::infallibleGrowByUninitialized( size_t aIncr) { MOZ_ASSERT(mLength + aIncr <= reserved()); mLength += aIncr; } template inline bool Vector::resize(size_t aNewLength) { size_t curLength = mLength; if (aNewLength > curLength) { return growBy(aNewLength - curLength); } shrinkBy(curLength - aNewLength); return true; } template MOZ_ALWAYS_INLINE bool Vector::resizeUninitialized( size_t aNewLength) { size_t curLength = mLength; if (aNewLength > curLength) { return growByUninitialized(aNewLength - curLength); } shrinkBy(curLength - aNewLength); return true; } template inline void Vector::clear() { MOZ_REENTRANCY_GUARD_ET_AL; Impl::destroy(beginNoCheck(), endNoCheck()); mLength = 0; } template inline void Vector::clearAndFree() { clear(); if (usingInlineStorage()) { return; } this->free_(beginNoCheck(), mTail.mCapacity); mBegin = inlineStorage(); mTail.mCapacity = kInlineCapacity; #ifdef DEBUG mTail.mReserved = 0; #endif } template inline void Vector::podResizeToFit() { // This function is only defined if IsPod is true and will fail to compile // otherwise. Impl::podResizeToFit(*this); } template inline bool Vector::canAppendWithoutRealloc(size_t aNeeded) const { return mLength + aNeeded <= mTail.mCapacity; } template template MOZ_ALWAYS_INLINE void Vector::internalAppendAll( const Vector& aOther) { internalAppend(aOther.begin(), aOther.length()); } template template MOZ_ALWAYS_INLINE void Vector::internalAppend(U&& aU) { MOZ_ASSERT(mLength + 1 <= mTail.mReserved); MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity); Impl::new_(endNoCheck(), std::forward(aU)); ++mLength; } template MOZ_ALWAYS_INLINE bool Vector::appendN(const T& aT, size_t aNeeded) { MOZ_REENTRANCY_GUARD_ET_AL; if (mLength + aNeeded > mTail.mCapacity) { if (MOZ_UNLIKELY(!growStorageBy(aNeeded))) { return false; } } else if (!maybeCheckSimulatedOOM(mLength + aNeeded)) { return false; } #ifdef DEBUG if (mLength + aNeeded > mTail.mReserved) { mTail.mReserved = mLength + aNeeded; } #endif internalAppendN(aT, aNeeded); return true; } template MOZ_ALWAYS_INLINE void Vector::internalAppendN(const T& aT, size_t aNeeded) { MOZ_ASSERT(mLength + aNeeded <= mTail.mReserved); MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity); Impl::copyConstructN(endNoCheck(), aNeeded, aT); mLength += aNeeded; } template template inline T* Vector::insert(T* aP, U&& aVal) { MOZ_ASSERT(begin() <= aP); MOZ_ASSERT(aP <= end()); size_t pos = aP - begin(); MOZ_ASSERT(pos <= mLength); size_t oldLength = mLength; if (pos == oldLength) { if (!append(std::forward(aVal))) { return nullptr; } } else { T oldBack = std::move(back()); if (!append(std::move(oldBack))) { return nullptr; } for (size_t i = oldLength - 1; i > pos; --i) { (*this)[i] = std::move((*this)[i - 1]); } (*this)[pos] = std::forward(aVal); } return begin() + pos; } template inline void Vector::erase(T* aIt) { MOZ_ASSERT(begin() <= aIt); MOZ_ASSERT(aIt < end()); while (aIt + 1 < end()) { *aIt = std::move(*(aIt + 1)); ++aIt; } popBack(); } template inline void Vector::erase(T* aBegin, T* aEnd) { MOZ_ASSERT(begin() <= aBegin); MOZ_ASSERT(aBegin <= aEnd); MOZ_ASSERT(aEnd <= end()); while (aEnd < end()) { *aBegin++ = std::move(*aEnd++); } shrinkBy(aEnd - aBegin); } template template void Vector::eraseIf(Pred aPred) { // remove_if finds the first element to be erased, and then efficiently move- // assigns elements to effectively overwrite elements that satisfy the // predicate. It returns the new end pointer, after which there are only // moved-from elements ready to be destroyed, so we just need to shrink the // vector accordingly. T* newEnd = std::remove_if(begin(), end(), [&aPred](const T& aT) { return aPred(aT); }); MOZ_ASSERT(newEnd <= end()); shrinkBy(end() - newEnd); } template template void Vector::eraseIfEqual(const U& aU) { return eraseIf([&aU](const T& aT) { return aT == aU; }); } template template MOZ_ALWAYS_INLINE bool Vector::append(const U* aInsBegin, const U* aInsEnd) { MOZ_REENTRANCY_GUARD_ET_AL; size_t aNeeded = PointerRangeSize(aInsBegin, aInsEnd); if (mLength + aNeeded > mTail.mCapacity) { if (MOZ_UNLIKELY(!growStorageBy(aNeeded))) { return false; } } else if (!maybeCheckSimulatedOOM(mLength + aNeeded)) { return false; } #ifdef DEBUG if (mLength + aNeeded > mTail.mReserved) { mTail.mReserved = mLength + aNeeded; } #endif internalAppend(aInsBegin, aNeeded); return true; } template template MOZ_ALWAYS_INLINE void Vector::internalAppend(const U* aInsBegin, size_t aInsLength) { MOZ_ASSERT(mLength + aInsLength <= mTail.mReserved); MOZ_ASSERT(mTail.mReserved <= mTail.mCapacity); Impl::copyConstruct(endNoCheck(), aInsBegin, aInsBegin + aInsLength); mLength += aInsLength; } template template MOZ_ALWAYS_INLINE bool Vector::append(U&& aU) { MOZ_REENTRANCY_GUARD_ET_AL; if (mLength == mTail.mCapacity) { if (MOZ_UNLIKELY(!growStorageBy(1))) { return false; } } else if (!maybeCheckSimulatedOOM(mLength + 1)) { return false; } #ifdef DEBUG if (mLength + 1 > mTail.mReserved) { mTail.mReserved = mLength + 1; } #endif internalAppend(std::forward(aU)); return true; } template template MOZ_ALWAYS_INLINE bool Vector::appendAll( const Vector& aOther) { return append(aOther.begin(), aOther.length()); } template template MOZ_ALWAYS_INLINE bool Vector::append(const U* aInsBegin, size_t aInsLength) { return append(aInsBegin, aInsBegin + aInsLength); } template MOZ_ALWAYS_INLINE void Vector::popBack() { MOZ_REENTRANCY_GUARD_ET_AL; MOZ_ASSERT(!empty()); --mLength; endNoCheck()->~T(); } template MOZ_ALWAYS_INLINE T Vector::popCopy() { T ret = back(); popBack(); return ret; } template inline T* Vector::extractRawBuffer() { MOZ_REENTRANCY_GUARD_ET_AL; if (usingInlineStorage()) { return nullptr; } T* ret = mBegin; mBegin = inlineStorage(); mLength = 0; mTail.mCapacity = kInlineCapacity; #ifdef DEBUG mTail.mReserved = 0; #endif return ret; } template inline T* Vector::extractOrCopyRawBuffer() { if (T* ret = extractRawBuffer()) { return ret; } MOZ_REENTRANCY_GUARD_ET_AL; T* copy = this->template pod_malloc(mLength); if (!copy) { return nullptr; } Impl::moveConstruct(copy, beginNoCheck(), endNoCheck()); Impl::destroy(beginNoCheck(), endNoCheck()); mBegin = inlineStorage(); mLength = 0; mTail.mCapacity = kInlineCapacity; #ifdef DEBUG mTail.mReserved = 0; #endif return copy; } template inline void Vector::replaceRawBuffer(T* aP, size_t aLength, size_t aCapacity) { MOZ_REENTRANCY_GUARD_ET_AL; /* Destroy what we have. */ Impl::destroy(beginNoCheck(), endNoCheck()); if (!usingInlineStorage()) { this->free_(beginNoCheck(), mTail.mCapacity); } /* Take in the new buffer. */ if (aCapacity <= kInlineCapacity) { /* * We convert to inline storage if possible, even though aP might * otherwise be acceptable. Maybe this behaviour should be * specifiable with an argument to this function. */ mBegin = inlineStorage(); mLength = aLength; mTail.mCapacity = kInlineCapacity; Impl::moveConstruct(mBegin, aP, aP + aLength); Impl::destroy(aP, aP + aLength); this->free_(aP, aCapacity); } else { mBegin = aP; mLength = aLength; mTail.mCapacity = aCapacity; } #ifdef DEBUG mTail.mReserved = aCapacity; #endif } template inline void Vector::replaceRawBuffer(T* aP, size_t aLength) { replaceRawBuffer(aP, aLength, aLength); } template inline size_t Vector::sizeOfExcludingThis( MallocSizeOf aMallocSizeOf) const { return usingInlineStorage() ? 0 : aMallocSizeOf(beginNoCheck()); } template inline size_t Vector::sizeOfIncludingThis( MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + sizeOfExcludingThis(aMallocSizeOf); } template inline void Vector::swap(Vector& aOther) { static_assert(N == 0, "still need to implement this for N != 0"); // This only works when inline storage is always empty. if (!usingInlineStorage() && aOther.usingInlineStorage()) { aOther.mBegin = mBegin; mBegin = inlineStorage(); } else if (usingInlineStorage() && !aOther.usingInlineStorage()) { mBegin = aOther.mBegin; aOther.mBegin = aOther.inlineStorage(); } else if (!usingInlineStorage() && !aOther.usingInlineStorage()) { Swap(mBegin, aOther.mBegin); } else { // This case is a no-op, since we'd set both to use their inline storage. } Swap(mLength, aOther.mLength); Swap(mTail.mCapacity, aOther.mTail.mCapacity); #ifdef DEBUG Swap(mTail.mReserved, aOther.mTail.mReserved); #endif } } // namespace mozilla #endif /* mozilla_Vector_h */