/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * Copyright 2016 Mozilla Foundation * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "libyuv/scale.h" #include #include #include "libyuv/cpu_id.h" #include "libyuv/row.h" #include "libyuv/scale_row.h" #include "libyuv/video_common.h" #ifdef __cplusplus namespace libyuv { extern "C" { #endif // YUV to RGB conversion and scaling functions were implemented by referencing // scale_argb.cc // // libyuv already has ScaleYUVToARGBBilinearUp(), but its implementation is not // completed yet. Implementations of the functions are based on it. // At first, ScaleYUVToARGBBilinearUp() was implemented by modidying the // libyuv's one. Then all another functions were implemented similarly. // // Function relationship between yuv_convert.cpp abd scale_argb.cc are like // the followings // - ScaleYUVToARGBDown2() <-- ScaleARGBDown2() // - ScaleYUVToARGBDownEven() <-- ScaleARGBDownEven() // - ScaleYUVToARGBBilinearDown() <-- ScaleARGBBilinearDown() // - ScaleYUVToARGBBilinearUp() <-- ScaleARGBBilinearUp() and ScaleYUVToARGBBilinearUp() in libyuv // - ScaleYUVToARGBSimple() <-- ScaleARGBSimple() // - ScaleYUVToARGB() <-- ScaleARGB() // Removed some function calls for simplicity. // - YUVToARGBScale() <-- ARGBScale() // // Callings and selections of InterpolateRow() and ScaleARGBFilterCols() were // kept as same as possible. // // The followings changes were done to each scaling functions. // // -[1] Allocate YUV conversion buffer and use it as source buffer of scaling. // Its usage is borrowed from the libyuv's ScaleYUVToARGBBilinearUp(). // -[2] Conversion from YUV to RGB was abstracted as YUVBuferIter. // It is for handling multiple yuv color formats. // -[3] Modified scaling functions as to handle YUV conversion buffer and // use YUVBuferIter. // -[4] Color conversion function selections in YUVBuferIter were borrowed from // I444ToARGBMatrix(), I422ToARGBMatrix() and I420ToARGBMatrix() static __inline int Abs(int v) { return v >= 0 ? v : -v; } typedef mozilla::gfx::YUVColorSpace YUVColorSpace; struct YUVBuferIter { int src_width; int src_height; int src_stride_y; int src_stride_u; int src_stride_v; const uint8* src_y; const uint8* src_u; const uint8* src_v; uint32 src_fourcc; const struct YuvConstants* yuvconstants; int y_index; const uint8* src_row_y; const uint8* src_row_u; const uint8* src_row_v; void (*YUVToARGBRow)(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, const struct YuvConstants* yuvconstants, int width); void (*MoveTo)(YUVBuferIter& iter, int y_index); void (*MoveToNextRow)(YUVBuferIter& iter); }; void YUVBuferIter_InitI422(YUVBuferIter& iter) { iter.YUVToARGBRow = I422ToARGBRow_C; #if defined(HAS_I422TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { iter.YUVToARGBRow = I422ToARGBRow_Any_SSSE3; if (IS_ALIGNED(iter.src_width, 8)) { iter.YUVToARGBRow = I422ToARGBRow_SSSE3; } } #endif #if defined(HAS_I422TOARGBROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { iter.YUVToARGBRow = I422ToARGBRow_Any_AVX2; if (IS_ALIGNED(iter.src_width, 16)) { iter.YUVToARGBRow = I422ToARGBRow_AVX2; } } #endif #if defined(HAS_I422TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { iter.YUVToARGBRow = I422ToARGBRow_Any_NEON; if (IS_ALIGNED(iter.src_width, 8)) { iter.YUVToARGBRow = I422ToARGBRow_NEON; } } #endif #if defined(HAS_I422TOARGBROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(iter.src_width, 4) && IS_ALIGNED(iter.src_y, 4) && IS_ALIGNED(iter.src_stride_y, 4) && IS_ALIGNED(iter.src_u, 2) && IS_ALIGNED(iter.src_stride_u, 2) && IS_ALIGNED(iter.src_v, 2) && IS_ALIGNED(iter.src_stride_v, 2) { // Always satisfy IS_ALIGNED(argb_cnv_row, 4) && IS_ALIGNED(argb_cnv_rowstride, 4) iter.YUVToARGBRow = I422ToARGBRow_DSPR2; } #endif } void YUVBuferIter_InitI444(YUVBuferIter& iter) { iter.YUVToARGBRow = I444ToARGBRow_C; #if defined(HAS_I444TOARGBROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { iter.YUVToARGBRow = I444ToARGBRow_Any_SSSE3; if (IS_ALIGNED(iter.src_width, 8)) { iter.YUVToARGBRow = I444ToARGBRow_SSSE3; } } #endif #if defined(HAS_I444TOARGBROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { iter.YUVToARGBRow = I444ToARGBRow_Any_AVX2; if (IS_ALIGNED(iter.src_width, 16)) { iter.YUVToARGBRow = I444ToARGBRow_AVX2; } } #endif #if defined(HAS_I444TOARGBROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { iter.YUVToARGBRow = I444ToARGBRow_Any_NEON; if (IS_ALIGNED(iter.src_width, 8)) { iter.YUVToARGBRow = I444ToARGBRow_NEON; } } #endif } static void YUVBuferIter_MoveToForI444(YUVBuferIter& iter, int y_index) { iter.y_index = y_index; iter.src_row_y = iter.src_y + y_index * iter.src_stride_y; iter.src_row_u = iter.src_u + y_index * iter.src_stride_u; iter.src_row_v = iter.src_v + y_index * iter.src_stride_v; } static void YUVBuferIter_MoveToNextRowForI444(YUVBuferIter& iter) { iter.src_row_y += iter.src_stride_y; iter.src_row_u += iter.src_stride_u; iter.src_row_v += iter.src_stride_v; iter.y_index++; } static void YUVBuferIter_MoveToForI422(YUVBuferIter& iter, int y_index) { iter.y_index = y_index; iter.src_row_y = iter.src_y + y_index * iter.src_stride_y; iter.src_row_u = iter.src_u + y_index * iter.src_stride_u; iter.src_row_v = iter.src_v + y_index * iter.src_stride_v; } static void YUVBuferIter_MoveToNextRowForI422(YUVBuferIter& iter) { iter.src_row_y += iter.src_stride_y; iter.src_row_u += iter.src_stride_u; iter.src_row_v += iter.src_stride_v; iter.y_index++; } static void YUVBuferIter_MoveToForI420(YUVBuferIter& iter, int y_index) { const int kYShift = 1; // Shift Y by 1 to convert Y plane to UV coordinate. int uv_y_index = y_index >> kYShift; iter.y_index = y_index; iter.src_row_y = iter.src_y + y_index * iter.src_stride_y; iter.src_row_u = iter.src_u + uv_y_index * iter.src_stride_u; iter.src_row_v = iter.src_v + uv_y_index * iter.src_stride_v; } static void YUVBuferIter_MoveToNextRowForI420(YUVBuferIter& iter) { iter.src_row_y += iter.src_stride_y; if (iter.y_index & 1) { iter.src_row_u += iter.src_stride_u; iter.src_row_v += iter.src_stride_v; } iter.y_index++; } static __inline void YUVBuferIter_ConvertToARGBRow(YUVBuferIter& iter, uint8* argb_row) { iter.YUVToARGBRow(iter.src_row_y, iter.src_row_u, iter.src_row_v, argb_row, iter.yuvconstants, iter.src_width); } void YUVBuferIter_Init(YUVBuferIter& iter, uint32 src_fourcc, YUVColorSpace yuv_color_space) { iter.src_fourcc = src_fourcc; iter.y_index = 0; iter.src_row_y = iter.src_y; iter.src_row_u = iter.src_u; iter.src_row_v = iter.src_v; switch (yuv_color_space) { case YUVColorSpace::BT2020: iter.yuvconstants = &kYuv2020Constants; break; case YUVColorSpace::BT709: iter.yuvconstants = &kYuvH709Constants; break; default: iter.yuvconstants = &kYuvI601Constants; } if (src_fourcc == FOURCC_I444) { YUVBuferIter_InitI444(iter); iter.MoveTo = YUVBuferIter_MoveToForI444; iter.MoveToNextRow = YUVBuferIter_MoveToNextRowForI444; } else if(src_fourcc == FOURCC_I422){ YUVBuferIter_InitI422(iter); iter.MoveTo = YUVBuferIter_MoveToForI422; iter.MoveToNextRow = YUVBuferIter_MoveToNextRowForI422; } else { assert(src_fourcc == FOURCC_I420); // Should be FOURCC_I420 YUVBuferIter_InitI422(iter); iter.MoveTo = YUVBuferIter_MoveToForI420; iter.MoveToNextRow = YUVBuferIter_MoveToNextRowForI420; } } // ScaleARGB ARGB, 1/2 // This is an optimized version for scaling down a ARGB to 1/2 of // its original size. static void ScaleYUVToARGBDown2(int src_width, int src_height, int dst_width, int dst_height, int src_stride_y, int src_stride_u, int src_stride_v, int dst_stride_argb, const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering, uint32 src_fourcc, YUVColorSpace yuv_color_space) { int j; // Allocate 2 rows of ARGB for source conversion. const int kRowSize = (src_width * 4 + 15) & ~15; align_buffer_64(argb_cnv_row, kRowSize * 2); uint8* argb_cnv_rowptr = argb_cnv_row; int argb_cnv_rowstride = kRowSize; YUVBuferIter iter; iter.src_width = src_width; iter.src_height = src_height; iter.src_stride_y = src_stride_y; iter.src_stride_u = src_stride_u; iter.src_stride_v = src_stride_v; iter.src_y = src_y; iter.src_u = src_u; iter.src_v = src_v; YUVBuferIter_Init(iter, src_fourcc, yuv_color_space); void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride, uint8* dst_argb, int dst_width) = filtering == kFilterNone ? ScaleARGBRowDown2_C : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_C : ScaleARGBRowDown2Box_C); assert(dx == 65536 * 2); // Test scale factor of 2. assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2. // Advance to odd row, even column. int yi = y >> 16; iter.MoveTo(iter, yi); ptrdiff_t x_offset; if (filtering == kFilterBilinear) { x_offset = (x >> 16) * 4; } else { x_offset = ((x >> 16) - 1) * 4; } #if defined(HAS_SCALEARGBROWDOWN2_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_Any_SSE2 : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_Any_SSE2 : ScaleARGBRowDown2Box_Any_SSE2); if (IS_ALIGNED(dst_width, 4)) { ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_SSE2 : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_SSE2 : ScaleARGBRowDown2Box_SSE2); } } #endif #if defined(HAS_SCALEARGBROWDOWN2_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_Any_NEON : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_Any_NEON : ScaleARGBRowDown2Box_Any_NEON); if (IS_ALIGNED(dst_width, 8)) { ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_NEON : (filtering == kFilterLinear ? ScaleARGBRowDown2Linear_NEON : ScaleARGBRowDown2Box_NEON); } } #endif const int dyi = dy >> 16; int lastyi = yi; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); // Prepare next row if necessary if (filtering != kFilterLinear) { if ((yi + dyi) < (src_height - 1)) { iter.MoveTo(iter, yi + dyi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr + argb_cnv_rowstride); } else { argb_cnv_rowstride = 0; } } if (filtering == kFilterLinear) { argb_cnv_rowstride = 0; } const int max_yi = src_height - 1; const int max_yi_minus_dyi = max_yi - dyi; for (j = 0; j < dst_height; ++j) { if (yi != lastyi) { if (yi > max_yi) { yi = max_yi; } if (yi != lastyi) { if (filtering == kFilterLinear) { iter.MoveTo(iter, yi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); lastyi = yi; } else { // Prepare current row if (yi == iter.y_index) { argb_cnv_rowptr = argb_cnv_rowptr + argb_cnv_rowstride; argb_cnv_rowstride = - argb_cnv_rowstride; } else { iter.MoveTo(iter, yi); argb_cnv_rowptr = argb_cnv_row; argb_cnv_rowstride = kRowSize; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); } // Prepare next row if necessary if (iter.y_index < max_yi) { int next_yi = yi < max_yi_minus_dyi ? yi + dyi : max_yi; iter.MoveTo(iter, next_yi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr + argb_cnv_rowstride); } else { argb_cnv_rowstride = 0; } lastyi = yi; } } } ScaleARGBRowDown2(argb_cnv_rowptr + x_offset, argb_cnv_rowstride, dst_argb, dst_width); dst_argb += dst_stride_argb; yi += dyi; } free_aligned_buffer_64(argb_cnv_row); } // ScaleARGB ARGB Even // This is an optimized version for scaling down a ARGB to even // multiple of its original size. static void ScaleYUVToARGBDownEven(int src_width, int src_height, int dst_width, int dst_height, int src_stride_y, int src_stride_u, int src_stride_v, int dst_stride_argb, const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering, uint32 src_fourcc, YUVColorSpace yuv_color_space) { int j; // Allocate 2 rows of ARGB for source conversion. const int kRowSize = (src_width * 4 + 15) & ~15; align_buffer_64(argb_cnv_row, kRowSize * 2); uint8* argb_cnv_rowptr = argb_cnv_row; int argb_cnv_rowstride = kRowSize; int col_step = dx >> 16; void (*ScaleARGBRowDownEven)(const uint8* src_argb, ptrdiff_t src_stride, int src_step, uint8* dst_argb, int dst_width) = filtering ? ScaleARGBRowDownEvenBox_C : ScaleARGBRowDownEven_C; assert(IS_ALIGNED(src_width, 2)); assert(IS_ALIGNED(src_height, 2)); int yi = y >> 16; const ptrdiff_t x_offset = (x >> 16) * 4; #if defined(HAS_SCALEARGBROWDOWNEVEN_SSE2) if (TestCpuFlag(kCpuHasSSE2)) { ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_Any_SSE2 : ScaleARGBRowDownEven_Any_SSE2; if (IS_ALIGNED(dst_width, 4)) { ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_SSE2 : ScaleARGBRowDownEven_SSE2; } } #endif #if defined(HAS_SCALEARGBROWDOWNEVEN_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_Any_NEON : ScaleARGBRowDownEven_Any_NEON; if (IS_ALIGNED(dst_width, 4)) { ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_NEON : ScaleARGBRowDownEven_NEON; } } #endif YUVBuferIter iter; iter.src_width = src_width; iter.src_height = src_height; iter.src_stride_y = src_stride_y; iter.src_stride_u = src_stride_u; iter.src_stride_v = src_stride_v; iter.src_y = src_y; iter.src_u = src_u; iter.src_v = src_v; YUVBuferIter_Init(iter, src_fourcc, yuv_color_space); const int dyi = dy >> 16; int lastyi = yi; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); // Prepare next row if necessary if (filtering != kFilterLinear) { if ((yi + dyi) < (src_height - 1)) { iter.MoveTo(iter, yi + dyi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr + argb_cnv_rowstride); } else { argb_cnv_rowstride = 0; } } if (filtering == kFilterLinear) { argb_cnv_rowstride = 0; } const int max_yi = src_height - 1; const int max_yi_minus_dyi = max_yi - dyi; for (j = 0; j < dst_height; ++j) { if (yi != lastyi) { if (yi > max_yi) { yi = max_yi; } if (yi != lastyi) { if (filtering == kFilterLinear) { iter.MoveTo(iter, yi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); lastyi = yi; } else { // Prepare current row if (yi == iter.y_index) { argb_cnv_rowptr = argb_cnv_rowptr + argb_cnv_rowstride; argb_cnv_rowstride = - argb_cnv_rowstride; } else { iter.MoveTo(iter, yi); argb_cnv_rowptr = argb_cnv_row; argb_cnv_rowstride = kRowSize; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); } // Prepare next row if necessary if (iter.y_index < max_yi) { int next_yi = yi < max_yi_minus_dyi ? yi + dyi : max_yi; iter.MoveTo(iter, next_yi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr + argb_cnv_rowstride); } else { argb_cnv_rowstride = 0; } lastyi = yi; } } } ScaleARGBRowDownEven(argb_cnv_rowptr + x_offset, argb_cnv_rowstride, col_step, dst_argb, dst_width); dst_argb += dst_stride_argb; yi += dyi; } free_aligned_buffer_64(argb_cnv_row); } // Scale YUV to ARGB down with bilinear interpolation. static void ScaleYUVToARGBBilinearDown(int src_width, int src_height, int dst_width, int dst_height, int src_stride_y, int src_stride_u, int src_stride_v, int dst_stride_argb, const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering, uint32 src_fourcc, YUVColorSpace yuv_color_space) { int j; void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = (src_width >= 32768) ? ScaleARGBFilterCols64_C : ScaleARGBFilterCols_C; int64 xlast = x + (int64)(dst_width - 1) * dx; int64 xl = (dx >= 0) ? x : xlast; int64 xr = (dx >= 0) ? xlast : x; int clip_src_width; xl = (xl >> 16) & ~3; // Left edge aligned. xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels. xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel. if (xr > src_width) { xr = src_width; } clip_src_width = (int)(xr - xl) * 4; // Width aligned to 4. const ptrdiff_t xl_offset = xl * 4; x -= (int)(xl << 16); // Allocate 2 row of ARGB for source conversion. const int kRowSize = (src_width * 4 + 15) & ~15; align_buffer_64(argb_cnv_row, kRowSize * 2); uint8* argb_cnv_rowptr = argb_cnv_row; int argb_cnv_rowstride = kRowSize; #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(clip_src_width, 16)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(clip_src_width, 32)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(clip_src_width, 16)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(src_argb, 4) && IS_ALIGNED(argb_cnv_rowstride, 4)) { InterpolateRow = InterpolateRow_Any_DSPR2; if (IS_ALIGNED(clip_src_width, 4)) { InterpolateRow = InterpolateRow_DSPR2; } } #endif #if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; } #endif #if defined(HAS_SCALEARGBFILTERCOLS_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleARGBFilterCols = ScaleARGBFilterCols_Any_NEON; if (IS_ALIGNED(dst_width, 4)) { ScaleARGBFilterCols = ScaleARGBFilterCols_NEON; } } #endif int yi = y >> 16; YUVBuferIter iter; iter.src_width = src_width; iter.src_height = src_height; iter.src_stride_y = src_stride_y; iter.src_stride_u = src_stride_u; iter.src_stride_v = src_stride_v; iter.src_y = src_y; iter.src_u = src_u; iter.src_v = src_v; YUVBuferIter_Init(iter, src_fourcc, yuv_color_space); iter.MoveTo(iter, yi); // TODO(fbarchard): Consider not allocating row buffer for kFilterLinear. // Allocate a row of ARGB. align_buffer_64(row, clip_src_width * 4); int lastyi = yi; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); // Prepare next row if necessary if (filtering != kFilterLinear) { if ((yi + 1) < src_height) { iter.MoveToNextRow(iter); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr + argb_cnv_rowstride); } else { argb_cnv_rowstride = 0; } } const int max_y = (src_height - 1) << 16; const int max_yi = src_height - 1; for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lastyi) { if (y > max_y) { y = max_y; yi = y >> 16; } if (yi != lastyi) { if (filtering == kFilterLinear) { iter.MoveTo(iter, yi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); lastyi = yi; } else { // Prepare current row if (yi == iter.y_index) { argb_cnv_rowptr = argb_cnv_rowptr + argb_cnv_rowstride; argb_cnv_rowstride = - argb_cnv_rowstride; } else { iter.MoveTo(iter, yi); argb_cnv_rowptr = argb_cnv_row; argb_cnv_rowstride = kRowSize; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr); } // Prepare next row if necessary if (iter.y_index < max_yi) { iter.MoveToNextRow(iter); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_rowptr + argb_cnv_rowstride); } else { argb_cnv_rowstride = 0; } lastyi = yi; } } } if (filtering == kFilterLinear) { ScaleARGBFilterCols(dst_argb, argb_cnv_rowptr + xl_offset, dst_width, x, dx); } else { int yf = (y >> 8) & 255; InterpolateRow(row, argb_cnv_rowptr + xl_offset, argb_cnv_rowstride, clip_src_width, yf); ScaleARGBFilterCols(dst_argb, row, dst_width, x, dx); } dst_argb += dst_stride_argb; y += dy; } free_aligned_buffer_64(row); free_aligned_buffer_64(argb_cnv_row); } // Scale YUV to ARGB up with bilinear interpolation. static void ScaleYUVToARGBBilinearUp(int src_width, int src_height, int dst_width, int dst_height, int src_stride_y, int src_stride_u, int src_stride_v, int dst_stride_argb, const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_argb, int x, int dx, int y, int dy, enum FilterMode filtering, uint32 src_fourcc, YUVColorSpace yuv_color_space) { int j; void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb, ptrdiff_t src_stride, int dst_width, int source_y_fraction) = InterpolateRow_C; void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C; const int max_y = (src_height - 1) << 16; // Allocate 1 row of ARGB for source conversion. align_buffer_64(argb_cnv_row, src_width * 4); #if defined(HAS_INTERPOLATEROW_SSSE3) if (TestCpuFlag(kCpuHasSSSE3)) { InterpolateRow = InterpolateRow_Any_SSSE3; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_SSSE3; } } #endif #if defined(HAS_INTERPOLATEROW_AVX2) if (TestCpuFlag(kCpuHasAVX2)) { InterpolateRow = InterpolateRow_Any_AVX2; if (IS_ALIGNED(dst_width, 8)) { InterpolateRow = InterpolateRow_AVX2; } } #endif #if defined(HAS_INTERPOLATEROW_NEON) if (TestCpuFlag(kCpuHasNEON)) { InterpolateRow = InterpolateRow_Any_NEON; if (IS_ALIGNED(dst_width, 4)) { InterpolateRow = InterpolateRow_NEON; } } #endif #if defined(HAS_INTERPOLATEROW_DSPR2) if (TestCpuFlag(kCpuHasDSPR2) && IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) { InterpolateRow = InterpolateRow_DSPR2; } #endif if (src_width >= 32768) { ScaleARGBFilterCols = filtering ? ScaleARGBFilterCols64_C : ScaleARGBCols64_C; } #if defined(HAS_SCALEARGBFILTERCOLS_SSSE3) if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3; } #endif #if defined(HAS_SCALEARGBFILTERCOLS_NEON) if (filtering && TestCpuFlag(kCpuHasNEON)) { ScaleARGBFilterCols = ScaleARGBFilterCols_Any_NEON; if (IS_ALIGNED(dst_width, 4)) { ScaleARGBFilterCols = ScaleARGBFilterCols_NEON; } } #endif #if defined(HAS_SCALEARGBCOLS_SSE2) if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { ScaleARGBFilterCols = ScaleARGBCols_SSE2; } #endif #if defined(HAS_SCALEARGBCOLS_NEON) if (!filtering && TestCpuFlag(kCpuHasNEON)) { ScaleARGBFilterCols = ScaleARGBCols_Any_NEON; if (IS_ALIGNED(dst_width, 8)) { ScaleARGBFilterCols = ScaleARGBCols_NEON; } } #endif if (!filtering && src_width * 2 == dst_width && x < 0x8000) { ScaleARGBFilterCols = ScaleARGBColsUp2_C; #if defined(HAS_SCALEARGBCOLSUP2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2; } #endif } if (y > max_y) { y = max_y; } int yi = y >> 16; YUVBuferIter iter; iter.src_width = src_width; iter.src_height = src_height; iter.src_stride_y = src_stride_y; iter.src_stride_u = src_stride_u; iter.src_stride_v = src_stride_v; iter.src_y = src_y; iter.src_u = src_u; iter.src_v = src_v; YUVBuferIter_Init(iter, src_fourcc, yuv_color_space); iter.MoveTo(iter, yi); // Allocate 2 rows of ARGB. const int kRowSize = (dst_width * 4 + 15) & ~15; align_buffer_64(row, kRowSize * 2); uint8* rowptr = row; int rowstride = kRowSize; int lastyi = yi; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_row); ScaleARGBFilterCols(rowptr, argb_cnv_row, dst_width, x, dx); if (filtering == kFilterLinear) { rowstride = 0; } // Prepare next row if necessary if (filtering != kFilterLinear) { if ((yi + 1) < src_height) { iter.MoveToNextRow(iter); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_row); ScaleARGBFilterCols(rowptr + rowstride, argb_cnv_row, dst_width, x, dx); }else { rowstride = 0; } } const int max_yi = src_height - 1; for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lastyi) { if (y > max_y) { y = max_y; yi = y >> 16; } if (yi != lastyi) { if (filtering == kFilterLinear) { iter.MoveToNextRow(iter); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_row); ScaleARGBFilterCols(rowptr, argb_cnv_row, dst_width, x, dx); } else { // Prepare next row if necessary if (yi < max_yi) { iter.MoveToNextRow(iter); rowptr += rowstride; rowstride = -rowstride; // TODO(fbarchard): Convert the clipped region of row. YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_row); ScaleARGBFilterCols(rowptr + rowstride, argb_cnv_row, dst_width, x, dx); } else { rowstride = 0; } } lastyi = yi; } } if (filtering == kFilterLinear) { InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0); } else { int yf = (y >> 8) & 255; InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf); } dst_argb += dst_stride_argb; y += dy; } free_aligned_buffer_64(row); free_aligned_buffer_64(argb_cnv_row); } // Scale ARGB to/from any dimensions, without interpolation. // Fixed point math is used for performance: The upper 16 bits // of x and dx is the integer part of the source position and // the lower 16 bits are the fixed decimal part. static void ScaleYUVToARGBSimple(int src_width, int src_height, int dst_width, int dst_height, int src_stride_y, int src_stride_u, int src_stride_v, int dst_stride_argb, const uint8* src_y, const uint8* src_u, const uint8* src_v, uint8* dst_argb, int x, int dx, int y, int dy, uint32 src_fourcc, YUVColorSpace yuv_color_space) { int j; void (*ScaleARGBCols)(uint8* dst_argb, const uint8* src_argb, int dst_width, int x, int dx) = (src_width >= 32768) ? ScaleARGBCols64_C : ScaleARGBCols_C; // Allocate 1 row of ARGB for source conversion. align_buffer_64(argb_cnv_row, src_width * 4); #if defined(HAS_SCALEARGBCOLS_SSE2) if (TestCpuFlag(kCpuHasSSE2) && src_width < 32768) { ScaleARGBCols = ScaleARGBCols_SSE2; } #endif #if defined(HAS_SCALEARGBCOLS_NEON) if (TestCpuFlag(kCpuHasNEON)) { ScaleARGBCols = ScaleARGBCols_Any_NEON; if (IS_ALIGNED(dst_width, 8)) { ScaleARGBCols = ScaleARGBCols_NEON; } } #endif if (src_width * 2 == dst_width && x < 0x8000) { ScaleARGBCols = ScaleARGBColsUp2_C; #if defined(HAS_SCALEARGBCOLSUP2_SSE2) if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8)) { ScaleARGBCols = ScaleARGBColsUp2_SSE2; } #endif } int yi = y >> 16; YUVBuferIter iter; iter.src_width = src_width; iter.src_height = src_height; iter.src_stride_y = src_stride_y; iter.src_stride_u = src_stride_u; iter.src_stride_v = src_stride_v; iter.src_y = src_y; iter.src_u = src_u; iter.src_v = src_v; YUVBuferIter_Init(iter, src_fourcc, yuv_color_space); iter.MoveTo(iter, yi); int lasty = yi; YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_row); for (j = 0; j < dst_height; ++j) { yi = y >> 16; if (yi != lasty) { iter.MoveTo(iter, yi); YUVBuferIter_ConvertToARGBRow(iter, argb_cnv_row); lasty = yi; } ScaleARGBCols(dst_argb, argb_cnv_row, dst_width, x, dx); dst_argb += dst_stride_argb; y += dy; } free_aligned_buffer_64(argb_cnv_row); } static void YUVToARGBCopy(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, int dst_width, int dst_height, uint32 src_fourcc, YUVColorSpace yuv_color_space) { YUVBuferIter iter; iter.src_width = src_width; iter.src_height = src_height; iter.src_stride_y = src_stride_y; iter.src_stride_u = src_stride_u; iter.src_stride_v = src_stride_v; iter.src_y = src_y; iter.src_u = src_u; iter.src_v = src_v; YUVBuferIter_Init(iter, src_fourcc, yuv_color_space); for (int j = 0; j < dst_height; ++j) { YUVBuferIter_ConvertToARGBRow(iter, dst_argb); iter.MoveToNextRow(iter); dst_argb += dst_stride_argb; } } static void ScaleYUVToARGB(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, int dst_width, int dst_height, enum FilterMode filtering, uint32 src_fourcc, YUVColorSpace yuv_color_space) { // Initial source x/y coordinate and step values as 16.16 fixed point. int x = 0; int y = 0; int dx = 0; int dy = 0; // ARGB does not support box filter yet, but allow the user to pass it. // Simplify filtering when possible. filtering = ScaleFilterReduce(src_width, src_height, dst_width, dst_height, filtering); ScaleSlope(src_width, src_height, dst_width, dst_height, filtering, &x, &y, &dx, &dy); // Special case for integer step values. if (((dx | dy) & 0xffff) == 0) { if (!dx || !dy) { // 1 pixel wide and/or tall. filtering = kFilterNone; } else { // Optimized even scale down. ie 2, 4, 6, 8, 10x. if (!(dx & 0x10000) && !(dy & 0x10000)) { if (dx == 0x20000) { // Optimized 1/2 downsample. ScaleYUVToARGBDown2(src_width, src_height, dst_width, dst_height, src_stride_y, src_stride_u, src_stride_v, dst_stride_argb, src_y, src_u, src_v, dst_argb, x, dx, y, dy, filtering, src_fourcc, yuv_color_space); return; } ScaleYUVToARGBDownEven(src_width, src_height, dst_width, dst_height, src_stride_y, src_stride_u, src_stride_v, dst_stride_argb, src_y, src_u, src_v, dst_argb, x, dx, y, dy, filtering, src_fourcc, yuv_color_space); return; } // Optimized odd scale down. ie 3, 5, 7, 9x. if ((dx & 0x10000) && (dy & 0x10000)) { filtering = kFilterNone; if (dx == 0x10000 && dy == 0x10000) { // Straight conversion and copy. YUVToARGBCopy(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v, src_width, src_height, dst_argb, dst_stride_argb, dst_width, dst_height, src_fourcc, yuv_color_space); return; } } } } if (filtering && dy < 65536) { ScaleYUVToARGBBilinearUp(src_width, src_height, dst_width, dst_height, src_stride_y, src_stride_u, src_stride_v, dst_stride_argb, src_y, src_u, src_v, dst_argb, x, dx, y, dy, filtering, src_fourcc, yuv_color_space); return; } if (filtering) { ScaleYUVToARGBBilinearDown(src_width, src_height, dst_width, dst_height, src_stride_y, src_stride_u, src_stride_v, dst_stride_argb, src_y, src_u, src_v, dst_argb, x, dx, y, dy, filtering, src_fourcc, yuv_color_space); return; } ScaleYUVToARGBSimple(src_width, src_height, dst_width, dst_height, src_stride_y, src_stride_u, src_stride_v, dst_stride_argb, src_y, src_u, src_v, dst_argb, x, dx, y, dy, src_fourcc, yuv_color_space); } bool IsConvertSupported(uint32 src_fourcc) { if (src_fourcc == FOURCC_I444 || src_fourcc == FOURCC_I422 || src_fourcc == FOURCC_I420) { return true; } return false; } LIBYUV_API int YUVToARGBScale(const uint8* src_y, int src_stride_y, const uint8* src_u, int src_stride_u, const uint8* src_v, int src_stride_v, uint32 src_fourcc, YUVColorSpace yuv_color_space, int src_width, int src_height, uint8* dst_argb, int dst_stride_argb, int dst_width, int dst_height, enum FilterMode filtering) { if (!src_y || !src_u || !src_v || src_width == 0 || src_height == 0 || !dst_argb || dst_width <= 0 || dst_height <= 0) { return -1; } if (!IsConvertSupported(src_fourcc)) { return -1; } ScaleYUVToARGB(src_y, src_stride_y, src_u, src_stride_u, src_v, src_stride_v, src_width, src_height, dst_argb, dst_stride_argb, dst_width, dst_height, filtering, src_fourcc, yuv_color_space); return 0; } #ifdef __cplusplus } // extern "C" } // namespace libyuv #endif