# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import logging import os import copy import attr from taskgraph.util.yaml import load_yaml from . import filter_tasks from .graph import Graph from .taskgraph import TaskGraph from .task import Task from .optimize import optimize_task_graph from .morph import morph from .parameters import Parameters from .util.python_path import find_object from .transforms.base import TransformSequence, TransformConfig from .util.verify import ( verify_docs, verifications, ) from .config import load_graph_config, GraphConfig logger = logging.getLogger(__name__) class KindNotFound(Exception): """ Raised when trying to load kind from a directory without a kind.yml. """ @attr.s(frozen=True) class Kind: name = attr.ib(type=str) path = attr.ib(type=str) config = attr.ib(type=dict) graph_config = attr.ib(type=GraphConfig) def _get_loader(self): try: loader = self.config["loader"] except KeyError: raise KeyError(f"{self.path!r} does not define `loader`") return find_object(loader) def load_tasks(self, parameters, loaded_tasks, write_artifacts): loader = self._get_loader() config = copy.deepcopy(self.config) kind_dependencies = config.get("kind-dependencies", []) kind_dependencies_tasks = { task.label: task for task in loaded_tasks if task.kind in kind_dependencies } inputs = loader(self.name, self.path, config, parameters, loaded_tasks) transforms = TransformSequence() for xform_path in config["transforms"]: transform = find_object(xform_path) transforms.add(transform) # perform the transformations on the loaded inputs trans_config = TransformConfig( self.name, self.path, config, parameters, kind_dependencies_tasks, self.graph_config, write_artifacts=write_artifacts, ) tasks = [ Task( self.name, label=task_dict["label"], description=task_dict["description"], attributes=task_dict["attributes"], task=task_dict["task"], optimization=task_dict.get("optimization"), dependencies=task_dict.get("dependencies"), soft_dependencies=task_dict.get("soft-dependencies"), if_dependencies=task_dict.get("if-dependencies"), release_artifacts=task_dict.get("release-artifacts"), ) for task_dict in transforms(trans_config, inputs) ] return tasks @classmethod def load(cls, root_dir, graph_config, kind_name): path = os.path.join(root_dir, kind_name) kind_yml = os.path.join(path, "kind.yml") if not os.path.exists(kind_yml): raise KindNotFound(kind_yml) logger.debug(f"loading kind `{kind_name}` from `{path}`") config = load_yaml(kind_yml) return cls(kind_name, path, config, graph_config) class TaskGraphGenerator: """ The central controller for taskgraph. This handles all phases of graph generation. The task is generated from all of the kinds defined in subdirectories of the generator's root directory. Access to the results of this generation, as well as intermediate values at various phases of generation, is available via properties. This encourages the provision of all generation inputs at instance construction time. """ # Task-graph generation is implemented as a Python generator that yields # each "phase" of generation. This allows some mach subcommands to short- # circuit generation of the entire graph by never completing the generator. def __init__( self, root_dir, parameters, decision_task_id="DECISION-TASK", write_artifacts=False, ): """ @param root_dir: root directory, with subdirectories for each kind @param paramaters: parameters for this task-graph generation, or callable taking a `GraphConfig` and returning parameters @type parameters: Union[Parameters, Callable[[GraphConfig], Parameters]] """ if root_dir is None: root_dir = "taskcluster/ci" self.root_dir = root_dir self._parameters = parameters self._decision_task_id = decision_task_id self._write_artifacts = write_artifacts # start the generator self._run = self._run() self._run_results = {} @property def parameters(self): """ The properties used for this graph. @type: Properties """ return self._run_until("parameters") @property def full_task_set(self): """ The full task set: all tasks defined by any kind (a graph without edges) @type: TaskGraph """ return self._run_until("full_task_set") @property def full_task_graph(self): """ The full task graph: the full task set, with edges representing dependencies. @type: TaskGraph """ return self._run_until("full_task_graph") @property def target_task_set(self): """ The set of targetted tasks (a graph without edges) @type: TaskGraph """ return self._run_until("target_task_set") @property def target_task_graph(self): """ The set of targetted tasks and all of their dependencies @type: TaskGraph """ return self._run_until("target_task_graph") @property def optimized_task_graph(self): """ The set of targetted tasks and all of their dependencies; tasks that have been optimized out are either omitted or replaced with a Task instance containing only a task_id. @type: TaskGraph """ return self._run_until("optimized_task_graph") @property def label_to_taskid(self): """ A dictionary mapping task label to assigned taskId. This property helps in interpreting `optimized_task_graph`. @type: dictionary """ return self._run_until("label_to_taskid") @property def morphed_task_graph(self): """ The optimized task graph, with any subsequent morphs applied. This graph will have the same meaning as the optimized task graph, but be in a form more palatable to TaskCluster. @type: TaskGraph """ return self._run_until("morphed_task_graph") @property def graph_config(self): """ The configuration for this graph. @type: TaskGraph """ return self._run_until("graph_config") def _load_kinds(self, graph_config, target_kind=None): if target_kind: # docker-image is an implicit dependency that never appears in # kind-dependencies. queue = [target_kind, "docker-image"] seen_kinds = set() while queue: kind_name = queue.pop() if kind_name in seen_kinds: continue seen_kinds.add(kind_name) kind = Kind.load(self.root_dir, graph_config, kind_name) yield kind queue.extend(kind.config.get("kind-dependencies", [])) else: for kind_name in os.listdir(self.root_dir): try: yield Kind.load(self.root_dir, graph_config, kind_name) except KindNotFound: continue def _run(self): logger.info("Loading graph configuration.") graph_config = load_graph_config(self.root_dir) yield ("graph_config", graph_config) graph_config.register() if callable(self._parameters): parameters = self._parameters(graph_config) else: parameters = self._parameters self.verify_parameters(parameters) logger.info("Using {}".format(parameters)) logger.debug("Dumping parameters:\n{}".format(repr(parameters))) filters = parameters.get("filters", []) # Always add legacy target tasks method until we deprecate that API. if "target_tasks_method" not in filters: filters.insert(0, "target_tasks_method") filters = [filter_tasks.filter_task_functions[f] for f in filters] yield ("parameters", parameters) logger.info("Loading kinds") # put the kinds into a graph and sort topologically so that kinds are loaded # in post-order if parameters.get("target-kind"): target_kind = parameters["target-kind"] logger.info( "Limiting kinds to {target_kind} and dependencies".format( target_kind=target_kind ) ) kinds = { kind.name: kind for kind in self._load_kinds(graph_config, parameters.get("target-kind")) } self.verify_kinds(kinds) edges = set() for kind in kinds.values(): for dep in kind.config.get("kind-dependencies", []): edges.add((kind.name, dep, "kind-dependency")) kind_graph = Graph(set(kinds), edges) if parameters.get("target-kind"): kind_graph = kind_graph.transitive_closure({target_kind, "docker-image"}) logger.info("Generating full task set") all_tasks = {} for kind_name in kind_graph.visit_postorder(): logger.debug(f"Loading tasks for kind {kind_name}") kind = kinds[kind_name] try: new_tasks = kind.load_tasks( parameters, list(all_tasks.values()), self._write_artifacts, ) except Exception: logger.exception(f"Error loading tasks for kind {kind_name}:") raise for task in new_tasks: if task.label in all_tasks: raise Exception("duplicate tasks with label " + task.label) all_tasks[task.label] = task logger.info(f"Generated {len(new_tasks)} tasks for kind {kind_name}") full_task_set = TaskGraph(all_tasks, Graph(set(all_tasks), set())) self.verify_attributes(all_tasks) self.verify_run_using() yield verifications("full_task_set", full_task_set, graph_config, parameters) logger.info("Generating full task graph") edges = set() for t in full_task_set: for depname, dep in t.dependencies.items(): edges.add((t.label, dep, depname)) full_task_graph = TaskGraph(all_tasks, Graph(full_task_set.graph.nodes, edges)) logger.info( "Full task graph contains %d tasks and %d dependencies" % (len(full_task_set.graph.nodes), len(edges)) ) yield verifications( "full_task_graph", full_task_graph, graph_config, parameters ) logger.info("Generating target task set") target_task_set = TaskGraph( dict(all_tasks), Graph(set(all_tasks.keys()), set()) ) for fltr in filters: old_len = len(target_task_set.graph.nodes) target_tasks = set(fltr(target_task_set, parameters, graph_config)) target_task_set = TaskGraph( {l: all_tasks[l] for l in target_tasks}, Graph(target_tasks, set()) ) logger.info( "Filter %s pruned %d tasks (%d remain)" % (fltr.__name__, old_len - len(target_tasks), len(target_tasks)) ) yield verifications( "target_task_set", target_task_set, graph_config, parameters ) logger.info("Generating target task graph") # include all docker-image build tasks here, in case they are needed for a graph morph docker_image_tasks = { t.label for t in full_task_graph.tasks.values() if t.attributes["kind"] == "docker-image" } # include all tasks with `always_target` set if parameters["tasks_for"] == "hg-push": always_target_tasks = { t.label for t in full_task_graph.tasks.values() if t.attributes.get("always_target") } else: always_target_tasks = set() logger.info( "Adding %d tasks with `always_target` attribute" % (len(always_target_tasks) - len(always_target_tasks & target_tasks)) ) requested_tasks = target_tasks | docker_image_tasks | always_target_tasks target_graph = full_task_graph.graph.transitive_closure(requested_tasks) target_task_graph = TaskGraph( {l: all_tasks[l] for l in target_graph.nodes}, target_graph ) yield verifications( "target_task_graph", target_task_graph, graph_config, parameters ) logger.info("Generating optimized task graph") existing_tasks = parameters.get("existing_tasks") do_not_optimize = set(parameters.get("do_not_optimize", [])) if not parameters.get("optimize_target_tasks", True): do_not_optimize = set(target_task_set.graph.nodes).union(do_not_optimize) # this is used for testing experimental optimization strategies strategies = os.environ.get( "TASKGRAPH_OPTIMIZE_STRATEGIES", parameters.get("optimize_strategies") ) if strategies: strategies = find_object(strategies) optimized_task_graph, label_to_taskid = optimize_task_graph( target_task_graph, requested_tasks, parameters, do_not_optimize, self._decision_task_id, existing_tasks=existing_tasks, strategy_override=strategies, ) yield verifications( "optimized_task_graph", optimized_task_graph, graph_config, parameters ) morphed_task_graph, label_to_taskid = morph( optimized_task_graph, label_to_taskid, parameters, graph_config, self._decision_task_id, ) yield "label_to_taskid", label_to_taskid yield verifications( "morphed_task_graph", morphed_task_graph, graph_config, parameters ) def _run_until(self, name): while name not in self._run_results: try: k, v = next(self._run) except StopIteration: raise AttributeError(f"No such run result {name}") self._run_results[k] = v return self._run_results[name] def verify_parameters(self, parameters): if not parameters.strict: return parameters_dict = dict(**parameters) verify_docs( filename="parameters.rst", identifiers=list(parameters_dict), appearing_as="inline-literal", ) def verify_kinds(self, kinds): verify_docs( filename="kinds.rst", identifiers=kinds.keys(), appearing_as="heading" ) def verify_attributes(self, all_tasks): attribute_set = set() for label, task in all_tasks.items(): attribute_set.update(task.attributes.keys()) verify_docs( filename="attributes.rst", identifiers=list(attribute_set), appearing_as="heading", ) def verify_run_using(self): from .transforms.job import registry verify_docs( filename="transforms.rst", identifiers=registry.keys(), appearing_as="inline-literal", ) def load_tasks_for_kind(parameters, kind, root_dir=None): """ Get all the tasks of a given kind. This function is designed to be called from outside of taskgraph. """ # make parameters read-write parameters = dict(parameters) parameters["target-kind"] = kind parameters = Parameters(strict=False, **parameters) tgg = TaskGraphGenerator(root_dir=root_dir, parameters=parameters) return { task.task["metadata"]["name"]: task for task in tgg.full_task_set if task.kind == kind }