// Copyright (c) 2006-2011 The Chromium Authors. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // * Neither the name of Google, Inc. nor the names of its contributors // may be used to endorse or promote products derived from this // software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS // OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED // AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT // OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF // SUCH DAMAGE. #ifndef SKIA_EXT_IMAGE_OPERATIONS_H_ #define SKIA_EXT_IMAGE_OPERATIONS_H_ #include "skia/SkTypes.h" #include "Types.h" #include "convolver.h" #include "skia/SkRect.h" class SkBitmap; struct SkIRect; namespace skia { class ImageOperations { public: enum ResizeMethod { // // Quality Methods // // Those enumeration values express a desired quality/speed tradeoff. // They are translated into an algorithm-specific method that depends // on the capabilities (CPU, GPU) of the underlying platform. // It is possible for all three methods to be mapped to the same // algorithm on a given platform. // Good quality resizing. Fastest resizing with acceptable visual quality. // This is typically intended for use during interactive layouts // where slower platforms may want to trade image quality for large // increase in resizing performance. // // For example the resizing implementation may devolve to linear // filtering if this enables GPU acceleration to be used. // // Note that the underlying resizing method may be determined // on the fly based on the parameters for a given resize call. // For example an implementation using a GPU-based linear filter // in the common case may still use a higher-quality software-based // filter in cases where using the GPU would actually be slower - due // to too much latency - or impossible - due to image format or size // constraints. RESIZE_GOOD, // Medium quality resizing. Close to high quality resizing (better // than linear interpolation) with potentially some quality being // traded-off for additional speed compared to RESIZE_BEST. // // This is intended, for example, for generation of large thumbnails // (hundreds of pixels in each dimension) from large sources, where // a linear filter would produce too many artifacts but where // a RESIZE_HIGH might be too costly time-wise. RESIZE_BETTER, // High quality resizing. The algorithm is picked to favor image quality. RESIZE_BEST, // // Algorithm-specific enumerations // // Box filter. This is a weighted average of all of the pixels touching // the destination pixel. For enlargement, this is nearest neighbor. // // You probably don't want this, it is here for testing since it is easy to // compute. Use RESIZE_LANCZOS3 instead. RESIZE_BOX, // 1-cycle Hamming filter. This is tall is the middle and falls off towards // the window edges but without going to 0. This is about 40% faster than // a 2-cycle Lanczos. RESIZE_HAMMING1, // 2-cycle Lanczos filter. This is tall in the middle, goes negative on // each side, then returns to zero. Does not provide as good a frequency // response as a 3-cycle Lanczos but is roughly 30% faster. RESIZE_LANCZOS2, // 3-cycle Lanczos filter. This is tall in the middle, goes negative on // each side, then oscillates 2 more times. It gives nice sharp edges. RESIZE_LANCZOS3, // Lanczos filter + subpixel interpolation. If subpixel rendering is not // appropriate we automatically fall back to Lanczos. RESIZE_SUBPIXEL, // enum aliases for first and last methods by algorithm or by quality. RESIZE_FIRST_QUALITY_METHOD = RESIZE_GOOD, RESIZE_LAST_QUALITY_METHOD = RESIZE_BEST, RESIZE_FIRST_ALGORITHM_METHOD = RESIZE_BOX, RESIZE_LAST_ALGORITHM_METHOD = RESIZE_SUBPIXEL, }; // Resizes the given source bitmap using the specified resize method, so that // the entire image is (dest_size) big. The dest_subset is the rectangle in // this destination image that should actually be returned. // // The output image will be (dest_subset.width(), dest_subset.height()). This // will save work if you do not need the entire bitmap. // // The destination subset must be smaller than the destination image. static SkBitmap Resize(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, const SkIRect& dest_subset, void* dest_pixels = nullptr); // Alternate version for resizing and returning the entire bitmap rather than // a subset. static SkBitmap Resize(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, void* dest_pixels = nullptr); private: ImageOperations(); // Class for scoping only. // Supports all methods except RESIZE_SUBPIXEL. static SkBitmap ResizeBasic(const SkBitmap& source, ResizeMethod method, int dest_width, int dest_height, const SkIRect& dest_subset, void* dest_pixels = nullptr); // Subpixel renderer. static SkBitmap ResizeSubpixel(const SkBitmap& source, int dest_width, int dest_height, const SkIRect& dest_subset); }; // Returns the ceiling/floor as an integer. inline int CeilInt(float val) { return static_cast(ceil(val)); } inline int FloorInt(float val) { return static_cast(floor(val)); } // Filter function computation ------------------------------------------------- // Evaluates the box filter, which goes from -0.5 to +0.5. inline float EvalBox(float x) { return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; } // Evaluates the Lanczos filter of the given filter size window for the given // position. // // |filter_size| is the width of the filter (the "window"), outside of which // the value of the function is 0. Inside of the window, the value is the // normalized sinc function: // lanczos(x) = sinc(x) * sinc(x / filter_size); // where // sinc(x) = sin(pi*x) / (pi*x); inline float EvalLanczos(int filter_size, float x) { if (x <= -filter_size || x >= filter_size) return 0.0f; // Outside of the window. if (x > -std::numeric_limits::epsilon() && x < std::numeric_limits::epsilon()) return 1.0f; // Special case the discontinuity at the origin. float xpi = x * static_cast(M_PI); return (sin(xpi) / xpi) * // sinc(x) sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) } // Evaluates the Hamming filter of the given filter size window for the given // position. // // The filter covers [-filter_size, +filter_size]. Outside of this window // the value of the function is 0. Inside of the window, the value is sinus // cardinal multiplied by a recentered Hamming function. The traditional // Hamming formula for a window of size N and n ranging in [0, N-1] is: // hamming(n) = 0.54 - 0.46 * cos(2 * pi * n / (N-1))) // In our case we want the function centered for x == 0 and at its minimum // on both ends of the window (x == +/- filter_size), hence the adjusted // formula: // hamming(x) = (0.54 - // 0.46 * cos(2 * pi * (x - filter_size)/ (2 * filter_size))) // = 0.54 - 0.46 * cos(pi * x / filter_size - pi) // = 0.54 + 0.46 * cos(pi * x / filter_size) inline float EvalHamming(int filter_size, float x) { if (x <= -filter_size || x >= filter_size) return 0.0f; // Outside of the window. if (x > -std::numeric_limits::epsilon() && x < std::numeric_limits::epsilon()) return 1.0f; // Special case the sinc discontinuity at the origin. const float xpi = x * static_cast(M_PI); return ((sin(xpi) / xpi) * // sinc(x) (0.54f + 0.46f * cos(xpi / filter_size))); // hamming(x) } // ResizeFilter ---------------------------------------------------------------- // Encapsulates computation and storage of the filters required for one complete // resize operation. namespace resize { // Returns the number of pixels that the filer spans, in filter space (the // destination image). inline float GetFilterSupport(ImageOperations::ResizeMethod method, float scale) { switch (method) { case ImageOperations::RESIZE_BOX: // The box filter just scales with the image scaling. return 0.5f; // Only want one side of the filter = /2. case ImageOperations::RESIZE_HAMMING1: // The Hamming filter takes as much space in the source image in // each direction as the size of the window = 1 for Hamming1. return 1.0f; case ImageOperations::RESIZE_LANCZOS2: // The Lanczos filter takes as much space in the source image in // each direction as the size of the window = 2 for Lanczos2. return 2.0f; case ImageOperations::RESIZE_LANCZOS3: // The Lanczos filter takes as much space in the source image in // each direction as the size of the window = 3 for Lanczos3. return 3.0f; default: return 1.0f; } } // Computes one set of filters either horizontally or vertically. The caller // will specify the "min" and "max" rather than the bottom/top and // right/bottom so that the same code can be re-used in each dimension. // // |src_depend_lo| and |src_depend_size| gives the range for the source // depend rectangle (horizontally or vertically at the caller's discretion // -- see above for what this means). // // Likewise, the range of destination values to compute and the scale factor // for the transform is also specified. void ComputeFilters(ImageOperations::ResizeMethod method, int src_size, int dst_size, int dest_subset_lo, int dest_subset_size, ConvolutionFilter1D* output); // Computes the filter value given the coordinate in filter space. inline float ComputeFilter(ImageOperations::ResizeMethod method, float pos) { switch (method) { case ImageOperations::RESIZE_BOX: return EvalBox(pos); case ImageOperations::RESIZE_HAMMING1: return EvalHamming(1, pos); case ImageOperations::RESIZE_LANCZOS2: return EvalLanczos(2, pos); case ImageOperations::RESIZE_LANCZOS3: return EvalLanczos(3, pos); default: return 0; } } } } // namespace skia #endif // SKIA_EXT_IMAGE_OPERATIONS_H_