/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ // vim:cindent:ts=2:et:sw=2: /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is mozilla.org code. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Mats Palmgren * Takeshi Ichimaru * Masayuki Nakano * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ /* utility functions for drawing borders and backgrounds */ #include "nsStyleConsts.h" #include "nsPresContext.h" #include "nsIImage.h" #include "nsIFrame.h" #include "nsPoint.h" #include "nsRect.h" #include "nsIViewManager.h" #include "nsIPresShell.h" #include "nsFrameManager.h" #include "nsStyleContext.h" #include "nsGkAtoms.h" #include "nsTransform2D.h" #include "nsIDeviceContext.h" #include "nsIContent.h" #include "nsIDocument.h" #include "nsIScrollableFrame.h" #include "imgIRequest.h" #include "imgIContainer.h" #include "gfxIImageFrame.h" #include "nsCSSRendering.h" #include "nsCSSColorUtils.h" #include "nsITheme.h" #include "nsThemeConstants.h" #include "nsIServiceManager.h" #include "nsIDOMHTMLBodyElement.h" #include "nsIDOMHTMLDocument.h" #include "nsLayoutUtils.h" #include "nsINameSpaceManager.h" #include "gfxContext.h" #define BORDER_FULL 0 //entire side #define BORDER_INSIDE 1 //inside half #define BORDER_OUTSIDE 2 //outside half //thickness of dashed line relative to dotted line #define DOT_LENGTH 1 //square #define DASH_LENGTH 3 //3 times longer than dot //some shorthand for side bits #define SIDE_BIT_TOP (1 << NS_SIDE_TOP) #define SIDE_BIT_RIGHT (1 << NS_SIDE_RIGHT) #define SIDE_BIT_BOTTOM (1 << NS_SIDE_BOTTOM) #define SIDE_BIT_LEFT (1 << NS_SIDE_LEFT) #define SIDE_BITS_ALL (SIDE_BIT_TOP|SIDE_BIT_RIGHT|SIDE_BIT_BOTTOM|SIDE_BIT_LEFT) /** The following classes are used by CSSRendering for the rounded rect implementation */ #define MAXPATHSIZE 12 #define MAXPOLYPATHSIZE 1000 enum ePathTypes{ eOutside =0, eInside, eCalc, eCalcRev }; // To avoid storing this data on nsInlineFrame (bloat) and to avoid // recalculating this for each frame in a continuation (perf), hold // a cache of various coordinate information that we need in order // to paint inline backgrounds. struct InlineBackgroundData { InlineBackgroundData() : mFrame(nsnull) { } ~InlineBackgroundData() { } void Reset() { mBoundingBox.SetRect(0,0,0,0); mContinuationPoint = mUnbrokenWidth = 0; mFrame = nsnull; } nsRect GetContinuousRect(nsIFrame* aFrame) { SetFrame(aFrame); // Assume background-origin: border and return a rect with offsets // relative to (0,0). If we have a different background-origin, // then our rect should be deflated appropriately by our caller. return nsRect(-mContinuationPoint, 0, mUnbrokenWidth, mFrame->GetSize().height); } nsRect GetBoundingRect(nsIFrame* aFrame) { SetFrame(aFrame); // Move the offsets relative to (0,0) which puts the bounding box into // our coordinate system rather than our parent's. We do this by // moving it the back distance from us to the bounding box. // This also assumes background-origin: border, so our caller will // need to deflate us if needed. nsRect boundingBox(mBoundingBox); nsPoint point = mFrame->GetPosition(); boundingBox.MoveBy(-point.x, -point.y); return boundingBox; } protected: nsIFrame* mFrame; nscoord mContinuationPoint; nscoord mUnbrokenWidth; nsRect mBoundingBox; void SetFrame(nsIFrame* aFrame) { NS_PRECONDITION(aFrame, "Need a frame"); nsIFrame *prevContinuation = aFrame->GetPrevContinuation(); if (!prevContinuation || mFrame != prevContinuation) { // Ok, we've got the wrong frame. We have to start from scratch. Reset(); Init(aFrame); return; } // Get our last frame's size and add its width to our continuation // point before we cache the new frame. mContinuationPoint += mFrame->GetSize().width; mFrame = aFrame; } void Init(nsIFrame* aFrame) { // Start with the previous flow frame as our continuation point // is the total of the widths of the previous frames. nsIFrame* inlineFrame = aFrame->GetPrevContinuation(); while (inlineFrame) { nsRect rect = inlineFrame->GetRect(); mContinuationPoint += rect.width; mUnbrokenWidth += rect.width; mBoundingBox.UnionRect(mBoundingBox, rect); inlineFrame = inlineFrame->GetPrevContinuation(); } // Next add this frame and subsequent frames to the bounding box and // unbroken width. inlineFrame = aFrame; while (inlineFrame) { nsRect rect = inlineFrame->GetRect(); mUnbrokenWidth += rect.width; mBoundingBox.UnionRect(mBoundingBox, rect); inlineFrame = inlineFrame->GetNextContinuation(); } mFrame = aFrame; } }; static InlineBackgroundData* gInlineBGData = nsnull; // FillRect or InvertRect depending on the renderingaInvert parameter static void FillOrInvertRect(nsIRenderingContext& aRC,nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight, PRBool aInvert); static void FillOrInvertRect(nsIRenderingContext& aRC,const nsRect& aRect, PRBool aInvert); // Initialize any static variables used by nsCSSRendering. nsresult nsCSSRendering::Init() { NS_ASSERTION(!gInlineBGData, "Init called twice"); gInlineBGData = new InlineBackgroundData(); if (!gInlineBGData) return NS_ERROR_OUT_OF_MEMORY; return NS_OK; } // Clean up any global variables used by nsCSSRendering. void nsCSSRendering::Shutdown() { delete gInlineBGData; gInlineBGData = nsnull; } // Draw a line, skipping that portion which crosses aGap. aGap defines a rectangle gap // This services fieldset legends and only works for coords defining horizontal lines. void nsCSSRendering::DrawLine (nsIRenderingContext& aContext, nscoord aX1, nscoord aY1, nscoord aX2, nscoord aY2, nsRect* aGap) { if (nsnull == aGap) { aContext.DrawLine(aX1, aY1, aX2, aY2); } else { nscoord x1 = (aX1 < aX2) ? aX1 : aX2; nscoord x2 = (aX1 < aX2) ? aX2 : aX1; nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y); nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height); if ((aGap->y <= aY1) && (gapLowerRight.y >= aY2)) { if ((aGap->x > x1) && (aGap->x < x2)) { aContext.DrawLine(x1, aY1, aGap->x, aY1); } if ((gapLowerRight.x > x1) && (gapLowerRight.x < x2)) { aContext.DrawLine(gapUpperRight.x, aY2, x2, aY2); } } else { aContext.DrawLine(aX1, aY1, aX2, aY2); } } } // Fill a polygon, skipping that portion which crosses aGap. aGap defines a rectangle gap // This services fieldset legends and only works for points defining a horizontal rectangle void nsCSSRendering::FillPolygon (nsIRenderingContext& aContext, const nsPoint aPoints[], PRInt32 aNumPoints, nsRect* aGap) { if (nsnull == aGap) { aContext.FillPolygon(aPoints, aNumPoints); } else if (4 == aNumPoints) { nsPoint gapUpperRight(aGap->x + aGap->width, aGap->y); nsPoint gapLowerRight(aGap->x + aGap->width, aGap->y + aGap->height); // sort the 4 points by x nsPoint points[4]; for (PRInt32 pX = 0; pX < 4; pX++) { points[pX] = aPoints[pX]; } for (PRInt32 i = 0; i < 3; i++) { for (PRInt32 j = i+1; j < 4; j++) { if (points[j].x < points[i].x) { nsPoint swap = points[i]; points[i] = points[j]; points[j] = swap; } } } nsPoint upperLeft = (points[0].y <= points[1].y) ? points[0] : points[1]; nsPoint lowerLeft = (points[0].y <= points[1].y) ? points[1] : points[0]; nsPoint upperRight = (points[2].y <= points[3].y) ? points[2] : points[3]; nsPoint lowerRight = (points[2].y <= points[3].y) ? points[3] : points[2]; if ((aGap->y <= upperLeft.y) && (gapLowerRight.y >= lowerRight.y)) { if ((aGap->x > upperLeft.x) && (aGap->x < upperRight.x)) { nsPoint leftRect[4]; leftRect[0] = upperLeft; leftRect[1] = nsPoint(aGap->x, upperLeft.y); leftRect[2] = nsPoint(aGap->x, lowerLeft.y); leftRect[3] = lowerLeft; aContext.FillPolygon(leftRect, 4); } if ((gapUpperRight.x > upperLeft.x) && (gapUpperRight.x < upperRight.x)) { nsPoint rightRect[4]; rightRect[0] = nsPoint(gapUpperRight.x, upperRight.y); rightRect[1] = upperRight; rightRect[2] = lowerRight; rightRect[3] = nsPoint(gapLowerRight.x, lowerRight.y); aContext.FillPolygon(rightRect, 4); } } else { aContext.FillPolygon(aPoints, aNumPoints); } } } /** * Make a bevel color */ nscolor nsCSSRendering::MakeBevelColor(PRIntn whichSide, PRUint8 style, nscolor aBackgroundColor, nscolor aBorderColor) { nscolor colors[2]; nscolor theColor; // Given a background color and a border color // calculate the color used for the shading NS_GetSpecial3DColors(colors, aBackgroundColor, aBorderColor); if ((style == NS_STYLE_BORDER_STYLE_OUTSET) || (style == NS_STYLE_BORDER_STYLE_RIDGE)) { // Flip colors for these two border styles switch (whichSide) { case NS_SIDE_BOTTOM: whichSide = NS_SIDE_TOP; break; case NS_SIDE_RIGHT: whichSide = NS_SIDE_LEFT; break; case NS_SIDE_TOP: whichSide = NS_SIDE_BOTTOM; break; case NS_SIDE_LEFT: whichSide = NS_SIDE_RIGHT; break; } } switch (whichSide) { case NS_SIDE_BOTTOM: theColor = colors[1]; break; case NS_SIDE_RIGHT: theColor = colors[1]; break; case NS_SIDE_TOP: theColor = colors[0]; break; case NS_SIDE_LEFT: default: theColor = colors[0]; break; } return theColor; } // Maximum poly points in any of the polygons we generate below #define MAX_POLY_POINTS 4 #define ACTUAL_THICKNESS(outside, inside, frac, tpp) \ (NSToCoordRound(((outside) - (inside)) * (frac) / (tpp)) * (tpp)) /** * Draw a dotted/dashed sides of a box */ //XXX dashes which span more than two edges are not handled properly MMP void nsCSSRendering::DrawDashedSides(PRIntn startSide, nsIRenderingContext& aContext, /* XXX unused */ const nsRect& aDirtyRect, const PRUint8 borderStyles[], const nscolor borderColors[], const nsRect& borderOutside, const nsRect& borderInside, PRIntn aSkipSides, /* XXX unused */ nsRect* aGap) { PRIntn dashLength; nsRect dashRect, firstRect, currRect; PRBool bSolid = PR_TRUE; float over = 0.0f; PRUint8 style = borderStyles[startSide]; PRBool skippedSide = PR_FALSE; for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) { PRUint8 prevStyle = style; style = borderStyles[whichSide]; if ((1< 0.0f) { firstRect.x = dashRect.x; firstRect.width = dashRect.width; firstRect.height = nscoord(dashRect.height * over); firstRect.y = dashRect.y + (dashRect.height - firstRect.height); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.YMost() > borderInside.y) { //clip if necessary if (currRect.y < borderInside.y) { over = float(borderInside.y - dashRect.y) / float(dashRect.height); currRect.height = currRect.height - (borderInside.y - currRect.y); currRect.y = borderInside.y; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y - currRect.height; currRect = dashRect; } break; case NS_SIDE_TOP: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderOutside.x, borderOutside.y, borderInside.x - borderOutside.x, borderInside.y - borderOutside.y); } dashRect.height = borderInside.y - borderOutside.y; dashRect.width = dashRect.height * dashLength; dashRect.x = borderInside.x; dashRect.y = borderOutside.y; if (over > 0.0f) { firstRect.x = dashRect.x; firstRect.y = dashRect.y; firstRect.width = nscoord(dashRect.width * over); firstRect.height = dashRect.height; over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.x < borderInside.XMost()) { //clip if necessary if (currRect.XMost() > borderInside.XMost()) { over = float(dashRect.XMost() - borderInside.XMost()) / float(dashRect.width); currRect.width = currRect.width - (currRect.XMost() - borderInside.XMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x + currRect.width; currRect = dashRect; } break; case NS_SIDE_RIGHT: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderInside.XMost(), borderOutside.y, borderOutside.XMost() - borderInside.XMost(), borderInside.y - borderOutside.y); } dashRect.width = borderOutside.XMost() - borderInside.XMost(); dashRect.height = nscoord(dashRect.width * dashLength); dashRect.x = borderInside.XMost(); dashRect.y = borderInside.y; if (over > 0.0f) { firstRect.x = dashRect.x; firstRect.y = dashRect.y; firstRect.width = dashRect.width; firstRect.height = nscoord(dashRect.height * over); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.y < borderInside.YMost()) { //clip if necessary if (currRect.YMost() > borderInside.YMost()) { over = float(dashRect.YMost() - borderInside.YMost()) / float(dashRect.height); currRect.height = currRect.height - (currRect.YMost() - borderInside.YMost()); } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.y = dashRect.y + currRect.height; currRect = dashRect; } break; case NS_SIDE_BOTTOM: //if we are continuing a solid rect, fill in the corner first if (bSolid) { aContext.FillRect(borderInside.XMost(), borderInside.YMost(), borderOutside.XMost() - borderInside.XMost(), borderOutside.YMost() - borderInside.YMost()); } dashRect.height = borderOutside.YMost() - borderInside.YMost(); dashRect.width = nscoord(dashRect.height * dashLength); dashRect.x = borderInside.XMost() - dashRect.width; dashRect.y = borderInside.YMost(); if (over > 0.0f) { firstRect.y = dashRect.y; firstRect.width = nscoord(dashRect.width * over); firstRect.height = dashRect.height; firstRect.x = dashRect.x + (dashRect.width - firstRect.width); over = 0.0f; currRect = firstRect; } else { currRect = dashRect; } while (currRect.XMost() > borderInside.x) { //clip if necessary if (currRect.x < borderInside.x) { over = float(borderInside.x - dashRect.x) / float(dashRect.width); currRect.width = currRect.width - (borderInside.x - currRect.x); currRect.x = borderInside.x; } //draw if necessary if (bSolid) { aContext.FillRect(currRect); } //setup for next iteration if (over == 0.0f) { bSolid = PRBool(!bSolid); } dashRect.x = dashRect.x - currRect.width; currRect = dashRect; } break; } } skippedSide = PR_FALSE; } } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 10/22/99 dwc */ void nsCSSRendering::DrawDashedSides(PRIntn startSide, nsIRenderingContext& aContext, const nsRect& aDirtyRect, const nsStyleColor* aColorStyle, const nsStyleBorder* aBorderStyle, const nsStyleOutline* aOutlineStyle, PRBool aDoOutline, const nsRect& borderOutside, const nsRect& borderInside, PRIntn aSkipSides, /* XXX unused */ nsRect* aGap) { PRIntn dashLength; nsRect dashRect, currRect; nscoord temp, temp1, adjust; PRBool bSolid = PR_TRUE; float over = 0.0f; PRBool skippedSide = PR_FALSE; NS_ASSERTION(aColorStyle && ((aDoOutline && aOutlineStyle) || (!aDoOutline && aBorderStyle)), "null params not allowed"); PRUint8 style = aDoOutline ? aOutlineStyle->GetOutlineStyle() : aBorderStyle->GetBorderStyle(startSide); // find the x and y width nscoord xwidth = aDirtyRect.XMost(); nscoord ywidth = aDirtyRect.YMost(); for (PRIntn whichSide = startSide; whichSide < 4; whichSide++) { PRUint8 prevStyle = style; style = aDoOutline ? aOutlineStyle->GetOutlineStyle() : aBorderStyle->GetBorderStyle(whichSide); if ((1<mColor); PRBool isInvert = PR_FALSE; if (aDoOutline) { if (!aOutlineStyle->GetOutlineInitialColor()) { aOutlineStyle->GetOutlineColor(sideColor); } #ifdef GFX_HAS_INVERT else { isInvert = PR_TRUE; } #endif } else { PRBool transparent; PRBool foreground; aBorderStyle->GetBorderColor(whichSide, sideColor, transparent, foreground); if (foreground) sideColor = aColorStyle->mColor; if (transparent) continue; // side is transparent } aContext.SetColor(sideColor); switch (whichSide) { case NS_SIDE_RIGHT: case NS_SIDE_LEFT: bSolid = PR_FALSE; // This is our dot or dash.. if(whichSide==NS_SIDE_LEFT){ dashRect.width = borderInside.x - borderOutside.x; } else { dashRect.width = borderOutside.XMost() - borderInside.XMost(); } if( dashRect.width >0 ) { dashRect.height = dashRect.width * dashLength; dashRect.y = borderOutside.y; if(whichSide == NS_SIDE_RIGHT){ dashRect.x = borderInside.XMost(); } else { dashRect.x = borderOutside.x; } temp = borderOutside.height; temp1 = temp/dashRect.height; currRect = dashRect; if((temp1%2)==0){ adjust = (dashRect.height-(temp%dashRect.height))/2; // adjust back // draw in the left and right FillOrInvertRect(aContext, dashRect.x, borderOutside.y,dashRect.width, dashRect.height-adjust,isInvert); FillOrInvertRect(aContext,dashRect.x,(borderOutside.YMost()-(dashRect.height-adjust)),dashRect.width, dashRect.height-adjust,isInvert); currRect.y += (dashRect.height-adjust); temp-= (dashRect.height-adjust); } else { adjust = (temp%dashRect.width)/2; // adjust a tad longer // draw in the left and right FillOrInvertRect(aContext, dashRect.x, borderOutside.y,dashRect.width, dashRect.height+adjust,isInvert); FillOrInvertRect(aContext, dashRect.x,(borderOutside.YMost()-(dashRect.height+adjust)),dashRect.width, dashRect.height+adjust,isInvert); currRect.y += (dashRect.height+adjust); temp-= (dashRect.height+adjust); } temp += borderOutside.y; if( temp > ywidth) temp = ywidth; // get the currRect's x into the view before we start if( currRect.y < aDirtyRect.y){ temp1 = NSToCoordFloor((float)((aDirtyRect.y-currRect.y)/dashRect.height)); currRect.y += temp1*dashRect.height; if((temp1%2)==1){ bSolid = PR_TRUE; } } while(currRect.y0 ) { dashRect.width = dashRect.height * dashLength; dashRect.x = borderOutside.x; if(whichSide == NS_SIDE_BOTTOM){ dashRect.y = borderInside.YMost(); } else { dashRect.y = borderOutside.y; } temp = borderOutside.width; temp1 = temp/dashRect.width; currRect = dashRect; if((temp1%2)==0){ adjust = (dashRect.width-(temp%dashRect.width))/2; // even, adjust back // draw in the left and right FillOrInvertRect(aContext, borderOutside.x,dashRect.y,dashRect.width-adjust,dashRect.height,isInvert); FillOrInvertRect(aContext, (borderOutside.XMost()-(dashRect.width-adjust)),dashRect.y,dashRect.width-adjust,dashRect.height,isInvert); currRect.x += (dashRect.width-adjust); temp-= (dashRect.width-adjust); } else { adjust = (temp%dashRect.width)/2; // draw in the left and right FillOrInvertRect(aContext, borderOutside.x,dashRect.y,dashRect.width+adjust,dashRect.height,isInvert); FillOrInvertRect(aContext, (borderOutside.XMost()-(dashRect.width+adjust)),dashRect.y,dashRect.width+adjust,dashRect.height,isInvert); currRect.x += (dashRect.width+adjust); temp-= (dashRect.width+adjust); } temp += borderOutside.x; if( temp > xwidth) temp = xwidth; // get the currRect's x into the view before we start if( currRect.x < aDirtyRect.x){ temp1 = NSToCoordFloor((float)((aDirtyRect.x-currRect.x)/dashRect.width)); currRect.x += temp1*dashRect.width; if((temp1%2)==1){ bSolid = PR_TRUE; } } while(currRect.x sat) { value = sat; // convert this color back into the RGB color space. NS_HSV2RGB(newcolor,hue,sat,value); } } return newcolor; } //---------------------------------------------------------------------- // Thebes Border Rendering Code Start #undef DEBUG_NEW_BORDERS #ifdef DEBUG_NEW_BORDERS #include static inline void S(const gfxPoint& p) { fprintf (stderr, "[%f,%f]", p.x, p.y); } static inline void S(const gfxSize& s) { fprintf (stderr, "[%f %f]", s.width, s.height); } static inline void S(const gfxRect& r) { fprintf (stderr, "[%f %f %f %f]", r.pos.x, r.pos.y, r.size.width, r.size.height); } static inline void S(const gfxFloat f) { fprintf (stderr, "%f", f); } static inline void S(const char *s) { fprintf (stderr, "%s", s); } static inline void SN(const char *s = nsnull) { if (s) fprintf (stderr, "%s", s); fprintf (stderr, "\n"); fflush (stderr); } static inline void SF(const char *fmt, ...) { va_list vl; va_start(vl, fmt); vfprintf (stderr, fmt, vl); va_end(vl); } static inline void SX(gfxContext *ctx) { gfxPoint p = ctx->CurrentPoint(); fprintf (stderr, "p: %f %f\n", p.x, p.y); return; ctx->MoveTo(p + gfxPoint(-2, -2)); ctx->LineTo(p + gfxPoint(2, 2)); ctx->MoveTo(p + gfxPoint(-2, 2)); ctx->LineTo(p + gfxPoint(2, -2)); ctx->MoveTo(p); } #else static inline void S(const gfxPoint& p) {} static inline void S(const gfxSize& s) {} static inline void S(const gfxRect& r) {} static inline void S(const gfxFloat f) {} static inline void S(const char *s) {} static inline void SN(const char *s = nsnull) {} static inline void SF(const char *fmt, ...) {} static inline void SX(gfxContext *ctx) {} #endif // the static order in which we paint sides static const PRUint8 gBorderSideOrder[] = { NS_SIDE_TOP, NS_SIDE_RIGHT, NS_SIDE_BOTTOM, NS_SIDE_LEFT }; // little helper function to check if the array of 4 floats given are // equal to the given value static PRBool CheckFourFloatsEqual(const gfxFloat *vals, gfxFloat k) { if (vals[0] == k && vals[1] == k && vals[2] == k && vals[3] == k) return PR_TRUE; return PR_FALSE; } // another helper function to convert a nsRect to a gfxRect static gfxRect RectToGfxRect(const nsRect& rect, nscoord twipsPerPixel) { return gfxRect(gfxFloat(rect.x) / twipsPerPixel, gfxFloat(rect.y) / twipsPerPixel, gfxFloat(rect.width) / twipsPerPixel, gfxFloat(rect.height) / twipsPerPixel); } /* * Figure out whether we need to draw using separate side rendering or * not. * * The only case where we can draw the border in one pass if, for all sides: * - the same style is used, and it is SOLID, DOUBLE, DASHED, or DOTTED * - the same color is used * * We can draw the border in two passes if, for all sides: * - the same style is used, and it is INSET, OUTSET, GROOVE, or RIDGE * - the same color is used * * Otherwise, we have do all 4 sides separately. Generally this only * happens if we have different colors on the different sides. */ static PRUint8 NumBorderPasses (PRUint8 *borderStyles, nscolor *borderColors, nsBorderColors **compositeColors) { PRUint8 numBorderPasses = 1; PRUint8 firstSideStyle = borderStyles[0]; nscolor firstSideColor = borderColors[0]; for (int i = 0; i < 4; i++) { PRUint8 borderRenderStyle = borderStyles[i]; // split into 4 if: // - the styles don't match // - the colors don't match // - there are any compositeColors if (borderRenderStyle != firstSideStyle || borderColors[i] != firstSideColor || compositeColors[i]) return 4; switch (borderRenderStyle) { case NS_STYLE_BORDER_STYLE_INSET: case NS_STYLE_BORDER_STYLE_OUTSET: case NS_STYLE_BORDER_STYLE_GROOVE: case NS_STYLE_BORDER_STYLE_RIDGE: /* XXX See bug 397303 why this is 4 instead of 2; this could be optimized further */ numBorderPasses = 4; break; case NS_STYLE_BORDER_STYLE_SOLID: case NS_STYLE_BORDER_STYLE_DOUBLE: case NS_STYLE_BORDER_STYLE_DASHED: case NS_STYLE_BORDER_STYLE_DOTTED: // we can do this as 1, if everything else is ok break; default: return 4; } } // everything's transparent if (firstSideColor == 0x0) return 0; return numBorderPasses; } #define C_TL 0 #define C_TR 1 #define C_BR 2 #define C_BL 3 #ifndef NS_PI #define NS_PI 3.14159265358979323846 #endif /* Return the dimensions of the corners of the border area, taking * into account any border radius. The width and height of each * corner (in order of TL, TR, BR, BL) is returned in oDims, which * should be a 4-element array of gfxSize. */ // How much of the actual corner size to call the "corner" for the // dimensions. Must be >= 1.0; anything over 1.0 will give more of a // corner in dotted/dashed rendering cases. It's not clear whether >= // 1.0 looks better. #define CORNER_FACTOR 1.0 static void GetBorderCornerDimensions(const gfxRect& oRect, const gfxRect& iRect, const gfxFloat *radii, gfxSize *oDims) { gfxFloat halfWidth = oRect.size.width / 2.0; gfxFloat halfHeight = oRect.size.height / 2.0; gfxFloat topWidth = iRect.pos.y - oRect.pos.y; gfxFloat leftWidth = iRect.pos.x - oRect.pos.x; gfxFloat rightWidth = oRect.size.width - iRect.size.width - leftWidth; gfxFloat bottomWidth = oRect.size.height - iRect.size.height - topWidth; if (radii) { leftWidth = PR_MAX(leftWidth, PR_MAX(radii[C_TL], radii[C_BL])); topWidth = PR_MAX(topWidth, PR_MAX(radii[C_TL], radii[C_TR])); rightWidth = PR_MAX(rightWidth, PR_MAX(radii[C_TR], radii[C_BR])); bottomWidth = PR_MAX(bottomWidth, PR_MAX(radii[C_BR], radii[C_BL])); } // Make sure that the computed corner size doesn't ever go beyond // half of the full border width/height oDims[C_TL] = gfxSize(PR_MIN(halfWidth, leftWidth * CORNER_FACTOR), PR_MIN(halfHeight, topWidth * CORNER_FACTOR)); oDims[C_TR] = gfxSize(PR_MIN(halfWidth, rightWidth * CORNER_FACTOR), PR_MIN(halfHeight, topWidth * CORNER_FACTOR)); oDims[C_BL] = gfxSize(PR_MIN(halfWidth, leftWidth * CORNER_FACTOR), PR_MIN(halfHeight, bottomWidth * CORNER_FACTOR)); oDims[C_BR] = gfxSize(PR_MIN(halfWidth, rightWidth * CORNER_FACTOR), PR_MIN(halfHeight, bottomWidth * CORNER_FACTOR)); } /* Set up a path for rendering just the corners of the path. Executed * by computing the corner dimensions, and then drawing rectangles for * each corner. * * Because this function is used mainly for dashed rendering, the * sides that don't have a dotted/dashed styles are also included. */ static void DoCornerClipSubPath(gfxContext *ctx, const gfxRect& oRect, const gfxRect& iRect, const gfxFloat *radii, PRIntn dashedSides = 0xff) { gfxSize dims[4]; GetBorderCornerDimensions(oRect, iRect, radii, dims); gfxRect tl(oRect.pos.x, oRect.pos.y, dims[C_TL].width, dims[C_TL].height); gfxRect tr(oRect.pos.x + oRect.size.width - dims[C_TR].width, oRect.pos.y, dims[C_TR].width, dims[C_TR].height); gfxRect br(oRect.pos.x + oRect.size.width - dims[C_BR].width, oRect.pos.y + oRect.size.height - dims[C_BR].height, dims[C_BR].width, dims[C_BR].height); gfxRect bl(oRect.pos.x, oRect.pos.y + oRect.size.height - dims[C_BL].height, dims[C_BL].width, dims[C_BL].height); ctx->Rectangle(tl); ctx->Rectangle(tr); ctx->Rectangle(br); ctx->Rectangle(bl); // Now if any of the sides are not dashed, include that full side. if (!(dashedSides & SIDE_BIT_TOP)) { ctx->Rectangle(gfxRect(tl.pos.x, tl.pos.y, oRect.size.width, dims[C_TL].height)); } if (!(dashedSides & SIDE_BIT_RIGHT)) { ctx->Rectangle(gfxRect(tr.pos.x, tr.pos.y, dims[C_TR].width, oRect.size.height)); } if (!(dashedSides & SIDE_BIT_BOTTOM)) { ctx->Rectangle(gfxRect(oRect.pos.x, br.pos.y, oRect.size.width, dims[C_BR].height)); } if (!(dashedSides & SIDE_BIT_LEFT)) { ctx->Rectangle(gfxRect(oRect.pos.x, oRect.pos.y, dims[C_BL].width, oRect.size.height)); } } // Draw a path for a rounded rectangle with the corners rounded by the // given radii, with the path going clockwise. static void DoRoundedRectCWSubPath(gfxContext *ctx, const gfxRect& sRect, const gfxFloat *radii) { ctx->Translate(sRect.pos); ctx->MoveTo(gfxPoint(sRect.size.width - radii[C_TR], 0.0)); SX(ctx); if (radii[C_TR]) { ctx->Arc(gfxPoint(sRect.size.width - radii[C_TR], radii[C_TR]), radii[C_TR], 3.0 * NS_PI / 2.0, 0.0); SX(ctx); } ctx->LineTo(gfxPoint(sRect.size.width, sRect.size.height - radii[C_BR])); SX(ctx); if (radii[C_BR]) { ctx->Arc(gfxPoint(sRect.size.width - radii[C_BR], sRect.size.height - radii[C_BR]), radii[C_BR], 0.0, NS_PI / 2.0); SX(ctx); } ctx->LineTo(gfxPoint(radii[C_BL], sRect.size.height)); SX(ctx); if (radii[C_BL]) { ctx->Arc(gfxPoint(radii[C_BL], sRect.size.height - radii[C_BL]), radii[C_BL], NS_PI / 2.0, NS_PI); SX(ctx); } ctx->LineTo(gfxPoint(0.0, radii[C_TL])); SX(ctx); if (radii[C_TL]) { ctx->Arc(gfxPoint(radii[C_TL], radii[C_TL]), radii[C_TL], NS_PI, 3.0 * NS_PI / 2.0); SX(ctx); } ctx->ClosePath(); ctx->Translate(-sRect.pos); } // Draw a path for a rounded rectangle with the corners rounded by the // given radii, with the path going counterclockwise. static void DoRoundedRectCCWSubPath(gfxContext *ctx, const gfxRect& sRect, const gfxFloat *radii) { ctx->Translate(sRect.pos); ctx->MoveTo(gfxPoint(radii[C_TL], 0.0)); if (radii[C_TL]) { ctx->NegativeArc(gfxPoint(radii[C_TL], radii[C_TL]), radii[C_TL], 3.0 * NS_PI / 2.0, NS_PI); SX(ctx); } ctx->LineTo(gfxPoint(0.0, sRect.size.height - radii[C_BL])); if (radii[C_BL]) { ctx->NegativeArc(gfxPoint(radii[C_BL], sRect.size.height - radii[C_BL]), radii[C_BL], NS_PI, NS_PI / 2.0); SX(ctx); } ctx->LineTo(gfxPoint(sRect.size.width - radii[C_BR], sRect.size.height)); if (radii[C_BR]) { ctx->NegativeArc(gfxPoint(sRect.size.width - radii[C_BR], sRect.size.height - radii[C_BR]), radii[C_BR], NS_PI / 2.0, 0.0); SX(ctx); } ctx->LineTo(gfxPoint(sRect.size.width, radii[C_TR])); if (radii[C_TR]) { ctx->NegativeArc(gfxPoint(sRect.size.width - radii[C_TR], radii[C_TR]), radii[C_TR], 0.0, 3.0 * NS_PI / 2.0); SX(ctx); } ctx->ClosePath(); ctx->Translate(-sRect.pos); } // Calculate the inner radii from the outer and the border sizes. static void CalculateInnerRadii(const gfxFloat *radii, const gfxFloat *borderSizes, gfxFloat *innerRadii) { innerRadii[C_TL] = PR_MAX(0.0, radii[C_TL] - PR_MAX(borderSizes[NS_SIDE_TOP], borderSizes[NS_SIDE_LEFT])); innerRadii[C_TR] = PR_MAX(0.0, radii[C_TR] - PR_MAX(borderSizes[NS_SIDE_TOP], borderSizes[NS_SIDE_RIGHT])); innerRadii[C_BR] = PR_MAX(0.0, radii[C_BR] - PR_MAX(borderSizes[NS_SIDE_BOTTOM], borderSizes[NS_SIDE_RIGHT])); innerRadii[C_BL] = PR_MAX(0.0, radii[C_BL] - PR_MAX(borderSizes[NS_SIDE_BOTTOM], borderSizes[NS_SIDE_LEFT])); } // Draw the entire border path. Intended to be filled with the // (default) WINDING rule. static void DoAllSidesBorderPath(gfxContext *ctx, const gfxRect &oRect, const gfxRect &iRect, const gfxFloat *radii, const gfxFloat *borderSizes) { gfxFloat innerRadii[4]; CalculateInnerRadii(radii, borderSizes, innerRadii); ctx->NewPath(); // do the outer border DoRoundedRectCWSubPath(ctx, oRect, radii); // then do the inner border DoRoundedRectCCWSubPath(ctx, iRect, innerRadii); } // Draw the top left piece of the border path. Intended to be filled // with the (default) WINDING rule. static void DoTopLeftSidesBorderPath(gfxContext *ctx, const gfxRect &oRect, const gfxRect &iRect, const gfxFloat *radii, const gfxFloat *borderSizes) { gfxFloat innerRadii[4]; CalculateInnerRadii(radii, borderSizes, innerRadii); ctx->NewPath(); // start drawing counterclockwise on the outside, // in the first left-side straightway ctx->MoveTo(oRect.BottomLeft() + gfxPoint(0.0, - radii[C_BL])); if (radii[C_BL]) { ctx->NegativeArc(oRect.BottomLeft() + gfxPoint(radii[C_BL], - radii[C_BL]), radii[C_BL], NS_PI, NS_PI * 3.0 / 4.0); } // flip here; start drawing clockwise; line between arc endpoints will // be filled in by cairo if (innerRadii[C_BL]) { ctx->Arc(iRect.BottomLeft() + gfxPoint(innerRadii[C_BL], - innerRadii[C_BL]), innerRadii[C_BL], NS_PI * 3.0 / 4.0, NS_PI); } else { ctx->LineTo(iRect.BottomLeft()); } ctx->LineTo(iRect.TopLeft() + gfxPoint(0.0, innerRadii[C_TL])); if (innerRadii[C_TL]) { ctx->Arc(iRect.TopLeft() + gfxPoint(innerRadii[C_TL], innerRadii[C_TL]), innerRadii[C_TL], NS_PI, NS_PI * 3.0 / 2.0); } ctx->LineTo(iRect.TopRight() + gfxPoint(- innerRadii[C_TR], 0.0)); if (innerRadii[C_TR]) { ctx->Arc(iRect.TopRight() + gfxPoint( - innerRadii[C_TR], innerRadii[C_TR]), innerRadii[C_TR], NS_PI * 6.0 / 4.0, NS_PI * 7.0 / 4.0); } // now go back if (radii[C_TR]) { ctx->NegativeArc(oRect.TopRight() + gfxPoint(- radii[C_TR], radii[C_TR]), radii[C_TR], NS_PI * 7.0 / 4.0, NS_PI * 6.0 / 4.0); } else { ctx->LineTo(oRect.TopRight()); } ctx->LineTo(oRect.TopLeft() + gfxPoint(radii[C_TL], 0.0)); if (radii[C_TL]) { ctx->NegativeArc(oRect.TopLeft() + gfxPoint(radii[C_TL], radii[C_TL]), radii[C_TL], NS_PI * 3.0 / 2.0, NS_PI); } ctx->ClosePath(); } // Draw the bottom right piece of the border path. Intended to be // filled with the (default) WINDING rule. static void DoBottomRightSidesBorderPath(gfxContext *ctx, const gfxRect &oRect, const gfxRect &iRect, const gfxFloat *radii, const gfxFloat *borderSizes) { gfxFloat innerRadii[4]; CalculateInnerRadii(radii, borderSizes, innerRadii); ctx->NewPath(); // start drawing counterclockwise on the outside, // in the first right-side straightway ctx->MoveTo(oRect.TopRight() + gfxPoint(0.0, radii[C_TR])); if (radii[C_TR]) { ctx->NegativeArc(oRect.TopRight() + gfxPoint(- radii[C_TR], radii[C_TR]), radii[C_TR], 0.0, NS_PI * 7.0 / 4.0); } // flip if (innerRadii[C_TR]) { ctx->Arc(iRect.TopRight() + gfxPoint(- innerRadii[C_TR], innerRadii[C_TR]), innerRadii[C_TR], NS_PI * 7.0 / 4.0, 0.0); } else { ctx->LineTo(iRect.TopRight()); } ctx->LineTo(iRect.BottomRight() + gfxPoint(0.0, - innerRadii[C_BR])); if (innerRadii[C_BR]) { ctx->Arc(iRect.BottomRight() + gfxPoint(- innerRadii[C_BR], - innerRadii[C_BR]), innerRadii[C_BR], 0.0, NS_PI / 2.0); } ctx->LineTo(iRect.BottomLeft() + gfxPoint(innerRadii[C_BL], 0.0)); if (innerRadii[C_BL]) { ctx->Arc(iRect.BottomLeft() + gfxPoint(innerRadii[C_BL], - innerRadii[C_BL]), innerRadii[C_BL], NS_PI / 2.0, NS_PI * 3.0 / 4.0); } // and flip if (radii[C_BL]) { ctx->NegativeArc(oRect.BottomLeft() + gfxPoint(radii[C_BL], - radii[C_BL]), radii[C_BL], NS_PI * 3.0 / 4.0, NS_PI / 2.0); } else { ctx->LineTo(oRect.BottomLeft()); } ctx->LineTo(oRect.BottomRight() + gfxPoint(- radii[C_BR], 0.0)); if (radii[C_BR]) { ctx->NegativeArc(oRect.BottomRight() + gfxPoint(- radii[C_BR], - radii[C_BR]), radii[C_BR], NS_PI / 2.0, 0.0); } ctx->ClosePath(); } // Given a set of sides to fill and a color, do so in the fastest way. // // Stroke tends to be faster for smaller borders because it doesn't go // through the tessellator, which has initialization overhead. If // we're rendering all sides, we can use stroke at any thickness; we // also do TL/BR pairs at 1px thickness using stroke. // // If we can't stroke, then if it's a TL/BR pair, we use the specific // TL/BR paths. Otherwise, we do the full path and fill. // // Calling code is expected to only set up a clip as necessary; no // clip is needed if we can render the entire border in 1 or 2 passes. static void FillFastBorderPath(gfxContext *ctx, const gfxRect &oRect, const gfxRect &iRect, const gfxFloat *radii, const gfxFloat *borderSizes, PRIntn sides, const gfxRGBA& color) { ctx->SetColor(color); if (CheckFourFloatsEqual(radii, 0.0) && CheckFourFloatsEqual(borderSizes, borderSizes[0])) { if (sides == SIDE_BITS_ALL) { ctx->NewPath(); gfxRect r(oRect); r.Inset(borderSizes[0] / 2.0); ctx->Rectangle(r); ctx->SetLineWidth(borderSizes[0]); ctx->Stroke(); return; } if (sides == (SIDE_BIT_TOP | SIDE_BIT_LEFT) && borderSizes[0] == 1.0 && color.a == 1.0) { ctx->SetLineWidth(1.0); ctx->NewPath(); ctx->MoveTo(oRect.BottomLeft() + gfxSize(0.5, 0.0)); ctx->LineTo(oRect.TopLeft() + gfxSize(0.5, 0.5)); ctx->LineTo(oRect.TopRight() + gfxSize(0.0, 0.5)); ctx->Stroke(); return; } if (sides == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT) && borderSizes[0] == 1.0 && color.a == 1.0) { ctx->SetLineWidth(1.0); ctx->NewPath(); ctx->MoveTo(oRect.BottomLeft() + gfxSize(0.0, -0.5)); ctx->LineTo(oRect.BottomRight() + gfxSize(-0.5, -0.5)); ctx->LineTo(oRect.TopRight() + gfxSize(-0.5, 0.0)); ctx->Stroke(); return; } } // we weren't able to render using stroke; do paths and fill. if (sides == (SIDE_BIT_TOP | SIDE_BIT_LEFT)) { DoTopLeftSidesBorderPath(ctx, oRect, iRect, radii, borderSizes); } else if (sides == (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) { DoBottomRightSidesBorderPath(ctx, oRect, iRect, radii, borderSizes); } else { DoAllSidesBorderPath(ctx, oRect, iRect, radii, borderSizes); } ctx->Fill(); } // Create a clip path for the wedge that this side of // the border should take up. This is only called // when we're drawing separate border sides, so we know // that ADD compositing is taking place. // // This code needs to make sure that the individual pieces // don't ever (mathematically) overlap; the pixel overlap // is taken care of by the ADD compositing. // // The side border type and the adjacent border types are // examined and one of the different types of clipping (listed // below) is selected. typedef enum { // clip to the trapezoid formed by the corners of the // inner and outer rectangles for the given side SIDE_CLIP_TRAPEZOID, // clip to the trapezoid formed by the outer rectangle // corners and the center of the region, making sure // that diagonal lines all go directly from the outside // corner to the inside corner, but that they then continue on // to the middle. // // This is needed for correctly clipping rounded borders, // which might extend past the SIDE_CLIP_TRAPEZOID trap. SIDE_CLIP_TRAPEZOID_FULL, // clip to the rectangle formed by the given side; a specific // overlap algorithm is used; see the function for details. // this is currently used for dashing. SIDE_CLIP_RECTANGLE } SideClipType; static void DoSideClipSubPath(gfxContext *ctx, const gfxRect& iRect, const gfxRect& oRect, PRUint8 whichSide, const PRUint8 *borderStyles, const gfxFloat *borderRadii) { // the clip proceeds clockwise from the top left corner; // so "start" in each case is the start of the region from that side. // // the final path will be formed like: // s0 ------- e0 // | / // s1 ----- e1 // // that is, the second point will always be on the inside gfxPoint start[2]; gfxPoint end[2]; PRUint8 style = borderStyles[whichSide]; PRUint8 startAdjacentStyle = borderStyles[((whichSide - 1) + 4) % 4]; PRUint8 endAdjacentStyle = borderStyles[(whichSide + 1) % 4]; PRBool isDashed = (style == NS_STYLE_BORDER_STYLE_DASHED || style == NS_STYLE_BORDER_STYLE_DOTTED); PRBool startIsDashed = (startAdjacentStyle == NS_STYLE_BORDER_STYLE_DASHED || startAdjacentStyle == NS_STYLE_BORDER_STYLE_DOTTED); PRBool endIsDashed = (endAdjacentStyle == NS_STYLE_BORDER_STYLE_DASHED || endAdjacentStyle == NS_STYLE_BORDER_STYLE_DOTTED); PRBool startHasRadius = PR_FALSE; PRBool endHasRadius = PR_FALSE; SideClipType startType = SIDE_CLIP_TRAPEZOID; SideClipType endType = SIDE_CLIP_TRAPEZOID; if (borderRadii) { startHasRadius = borderRadii[whichSide] != 0.0; endHasRadius = borderRadii[(whichSide+1) % 4] != 0.0; } if (startHasRadius) { startType = SIDE_CLIP_TRAPEZOID_FULL; } else if (startIsDashed && isDashed) { startType = SIDE_CLIP_RECTANGLE; } if (endHasRadius) { endType = SIDE_CLIP_TRAPEZOID_FULL; } else if (endIsDashed && isDashed) { endType = SIDE_CLIP_RECTANGLE; } if (startType == SIDE_CLIP_TRAPEZOID || startType == SIDE_CLIP_TRAPEZOID_FULL) { switch (whichSide) { case NS_SIDE_TOP: start[0] = oRect.TopLeft(); start[1] = iRect.TopLeft(); break; case NS_SIDE_RIGHT: start[0] = oRect.TopRight(); start[1] = iRect.TopRight(); break; case NS_SIDE_BOTTOM: start[0] = oRect.BottomRight(); start[1] = iRect.BottomRight(); break; case NS_SIDE_LEFT: start[0] = oRect.BottomLeft(); start[1] = iRect.BottomLeft(); break; } if (startType == SIDE_CLIP_TRAPEZOID_FULL) { gfxFloat mx = iRect.pos.x + iRect.size.width / 2.0; gfxFloat my = iRect.pos.y + iRect.size.height / 2.0; gfxPoint ps, pc; ps = start[1] - start[0]; if (ps.x == 0.0 && ps.y == 0.0) { // do nothing; pc == start[1] } else if (ps.x == 0.0) { start[1] = start[0] + gfxSize(ps.y, ps.y); } else if (ps.y == 0.0) { start[1] = start[0] + gfxSize(ps.x, ps.x); } else { gfxFloat k = PR_MIN((mx - start[0].x) / ps.x, (my - start[0].y) / ps.y); start[1] = start[0] + ps * k; } } } else if (startType == SIDE_CLIP_RECTANGLE) { switch (whichSide) { case NS_SIDE_TOP: start[0] = oRect.TopLeft(); start[1] = gfxPoint(start[0].x, iRect.TopLeft().y); break; case NS_SIDE_RIGHT: start[0] = oRect.TopRight(); start[1] = gfxPoint(iRect.TopRight().x, start[0].y); break; case NS_SIDE_BOTTOM: start[0] = oRect.BottomRight(); start[1] = gfxPoint(start[0].x, iRect.BottomRight().y); break; case NS_SIDE_LEFT: start[0] = oRect.BottomLeft(); start[1] = gfxPoint(iRect.BottomLeft().x, start[0].y); break; } } if (endType == SIDE_CLIP_TRAPEZOID || endType == SIDE_CLIP_TRAPEZOID_FULL) { switch (whichSide) { case NS_SIDE_TOP: end[0] = oRect.TopRight(); end[1] = iRect.TopRight(); break; case NS_SIDE_RIGHT: end[0] = oRect.BottomRight(); end[1] = iRect.BottomRight(); break; case NS_SIDE_BOTTOM: end[0] = oRect.BottomLeft(); end[1] = iRect.BottomLeft(); break; case NS_SIDE_LEFT: end[0] = oRect.TopLeft(); end[1] = iRect.TopLeft(); break; } if (endType == SIDE_CLIP_TRAPEZOID_FULL) { gfxFloat mx = iRect.pos.x + iRect.size.width / 2.0; gfxFloat my = iRect.pos.y + iRect.size.height / 2.0; gfxPoint ps, pc; ps = end[1] - end[0]; if (ps.x == 0.0 && ps.y == 0.0) { // do nothing; pc == end[1] } else if (ps.x == 0.0) { end[1] = end[0] + gfxSize(ps.y, ps.y); } else if (ps.y == 0.0) { end[1] = end[0] + gfxSize(ps.x, ps.x); } else { gfxFloat k = PR_MIN((mx - end[0].x) / ps.x, (my - end[0].y) / ps.y); end[1] = end[0] + ps * k; } } } else if (endType == SIDE_CLIP_RECTANGLE) { switch (whichSide) { case NS_SIDE_TOP: end[0] = gfxPoint(iRect.TopRight().x, oRect.TopRight().y); end[1] = iRect.TopRight(); break; case NS_SIDE_RIGHT: end[0] = gfxPoint(oRect.BottomRight().x, iRect.BottomRight().y); end[1] = iRect.BottomRight(); break; case NS_SIDE_BOTTOM: end[0] = gfxPoint(iRect.BottomLeft().x, oRect.BottomLeft().y); end[1] = iRect.BottomLeft(); break; case NS_SIDE_LEFT: end[0] = gfxPoint(oRect.TopLeft().x, iRect.TopLeft().y); end[1] = iRect.TopLeft(); break; } } ctx->MoveTo(start[0]); ctx->LineTo(end[0]); ctx->LineTo(end[1]); ctx->LineTo(start[1]); ctx->ClosePath(); } typedef enum { BorderColorStyleNone, BorderColorStyleSolid, BorderColorStyleLight, BorderColorStyleDark } BorderColorStyle; static void MakeBorderColor(gfxRGBA& color, const gfxRGBA& backgroundColor, BorderColorStyle bpat) { nscolor colors[2]; switch (bpat) { case BorderColorStyleNone: color.r = 0.0; color.g = 0.0; color.b = 0.0; color.a = 0.0; break; case BorderColorStyleSolid: break; case BorderColorStyleLight: NS_GetSpecial3DColors(colors, backgroundColor.Packed(), color.Packed()); color.r = NS_GET_R(colors[1]) / 255.0; color.g = NS_GET_G(colors[1]) / 255.0; color.b = NS_GET_B(colors[1]) / 255.0; color.a = 1.0; break; case BorderColorStyleDark: NS_GetSpecial3DColors(colors, backgroundColor.Packed(), color.Packed()); color.r = NS_GET_R(colors[0]) / 255.0; color.g = NS_GET_G(colors[0]) / 255.0; color.b = NS_GET_B(colors[0]) / 255.0; color.a = 1.0; break; } } // Given a line index (an index starting from the outside of the // border going inwards) and an array of line styles, calculate the // color that that stripe of the border should be rendered in. static void ComputeColorForLine(PRUint32 lineIndex, const BorderColorStyle* borderColorStyle, PRUint32 borderColorStyleCount, const nsBorderColors* borderColors, PRUint32 borderColorCount, nscolor borderColor, nscolor backgroundColor, gfxRGBA& outColor) { NS_ASSERTION(lineIndex < borderColorStyleCount, "Invalid lineIndex given"); if (borderColors) { if (lineIndex >= borderColorCount) { //outColor = gfxRGBA(borderColor); //return; // use the last color lineIndex = borderColorCount - 1; } while (lineIndex--) borderColors = borderColors->mNext; if (borderColors->mTransparent) outColor.r = outColor.g = outColor.b = outColor.a = 0.0; else outColor = gfxRGBA(borderColors->mColor); return; } outColor = gfxRGBA(borderColor); MakeBorderColor(outColor, gfxRGBA(backgroundColor), borderColorStyle[lineIndex]); } /** ** This function assumes that it can twiddle with the gfx state, and ** expects to be called between a Save/Restore pair. **/ static void DrawBorderSides(gfxContext *ctx, // The content to render to const gfxFloat *borderWidths, // The widths of the border sides; top-right-bottom-left PRIntn sides, // The specific sides we're actually rendering (bits) PRUint8 borderRenderStyle, // The style the border is to be rendered in const gfxRect& oRect, // The outside rectangle that encompasses the entire border const gfxRect& iRect, // The inner rectangle of the border nscolor borderRenderColor, // The base color the border is to be rendered in const nsBorderColors *compositeColors, // Composite colors, nsnull if none nscolor bgColor, // The background color; used for computing the actual color for some styles nscoord twipsPerPixel, // The current twips-per-pixel ratio const gfxFloat *borderRadii) // The border radii; TL, TR, BR, BL -- nsnull if none { gfxFloat radii[4]; gfxFloat *radiiPtr = nsnull; PRUint32 borderColorStyleCount = 0; BorderColorStyle borderColorStyleTopLeft[3], borderColorStyleBottomRight[3]; BorderColorStyle *borderColorStyle = nsnull; PRUint32 compositeColorCount = 0; if (borderRadii) { // make a copy, because we munge this during this function for (int i = 0; i < 4; i++) radii[i] = borderRadii[i]; radiiPtr = &radii[0]; } // if we're not doing compositeColors, we can calculate the borderColorStyle based // on the specified style. The borderColorStyle array goes from the outer to the inner // style. if (!compositeColors) { // if the border width is 1, we need to change the borderRenderStyle a bit to make sure // that we get the right colors -- e.g. 'ridge' with a 1px border needs to look like // solid, not like 'outset'. if (CheckFourFloatsEqual(borderWidths, 1.0)) { if (borderRenderStyle == NS_STYLE_BORDER_STYLE_RIDGE || borderRenderStyle == NS_STYLE_BORDER_STYLE_GROOVE || borderRenderStyle == NS_STYLE_BORDER_STYLE_DOUBLE) borderRenderStyle = NS_STYLE_BORDER_STYLE_SOLID; } switch (borderRenderStyle) { case NS_STYLE_BORDER_STYLE_SOLID: case NS_STYLE_BORDER_STYLE_DASHED: case NS_STYLE_BORDER_STYLE_DOTTED: borderColorStyleTopLeft[0] = BorderColorStyleSolid; borderColorStyleBottomRight[0] = BorderColorStyleSolid; borderColorStyleCount = 1; break; case NS_STYLE_BORDER_STYLE_GROOVE: borderColorStyleTopLeft[0] = BorderColorStyleDark; borderColorStyleTopLeft[1] = BorderColorStyleLight; borderColorStyleBottomRight[0] = BorderColorStyleLight; borderColorStyleBottomRight[1] = BorderColorStyleDark; borderColorStyleCount = 2; break; case NS_STYLE_BORDER_STYLE_RIDGE: borderColorStyleTopLeft[0] = BorderColorStyleLight; borderColorStyleTopLeft[1] = BorderColorStyleDark; borderColorStyleBottomRight[0] = BorderColorStyleDark; borderColorStyleBottomRight[1] = BorderColorStyleLight; borderColorStyleCount = 2; break; case NS_STYLE_BORDER_STYLE_DOUBLE: borderColorStyleTopLeft[0] = BorderColorStyleSolid; borderColorStyleTopLeft[1] = BorderColorStyleNone; borderColorStyleTopLeft[2] = BorderColorStyleSolid; borderColorStyleBottomRight[0] = BorderColorStyleSolid; borderColorStyleBottomRight[1] = BorderColorStyleNone; borderColorStyleBottomRight[2] = BorderColorStyleSolid; borderColorStyleCount = 3; break; case NS_STYLE_BORDER_STYLE_INSET: borderColorStyleTopLeft[0] = BorderColorStyleDark; borderColorStyleBottomRight[0] = BorderColorStyleLight; borderColorStyleCount = 1; break; case NS_STYLE_BORDER_STYLE_OUTSET: borderColorStyleTopLeft[0] = BorderColorStyleLight; borderColorStyleBottomRight[0] = BorderColorStyleDark; borderColorStyleCount = 1; break; default: NS_NOTREACHED("Unhandled border style!!"); break; } // The caller should never give us anything with a mix // of TL/BR if the border style would require a // TL/BR split. if (sides & (SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT)) borderColorStyle = borderColorStyleBottomRight; else borderColorStyle = borderColorStyleTopLeft; } else { // composite colors; we need to calculate borderColorStyle differently -- // all borders are rendered as "solid", but we might need an arbitrary number // of them. PRUint32 maxBorderWidth = 0; for (int i = 0; i < 4; i++) maxBorderWidth = PR_MAX(maxBorderWidth, PRUint32(borderWidths[i])); borderColorStyle = new BorderColorStyle[maxBorderWidth]; borderColorStyleCount = maxBorderWidth; const nsBorderColors *tmp = compositeColors; do { compositeColorCount++; tmp = tmp->mNext; } while (tmp); for (unsigned int i = 0; i < borderColorStyleCount; i++) { borderColorStyle[i] = BorderColorStyleSolid; } } SF("borderWidths: %f %f %f %f ", borderWidths[0], borderWidths[1], borderWidths[2], borderWidths[3]), SN(), SF(" borderColorStyleCount: %d\n", borderColorStyleCount); if (radiiPtr) { SF(" radii: %f %f %f %f\n", radiiPtr[0], radiiPtr[1], radiiPtr[2], radiiPtr[3]); } // -moz-border-colors is a hack; if we have it for a border, then // it's always drawn solid, and each color is given 1px. The last // color is used for the remainder of the border's size. // // Otherwise, we distribute the border across the available space. if (compositeColorCount == 0) { if (borderColorStyleCount == 1) { gfxRGBA color; ComputeColorForLine(0, borderColorStyle, borderColorStyleCount, nsnull, 0, borderRenderColor, bgColor, color); SF("borderColorStyle: %d color: %f %f %f %f\n", borderColorStyle[0], color.r, color.g, color.b, color.a); FillFastBorderPath(ctx, oRect, iRect, radiiPtr, borderWidths, sides, color); } else if (borderColorStyleCount == 2) { // with 2 color styles, any extra pixel goes to the outside gfxFloat outerBorderWidths[4], innerBorderWidths[4]; for (int i = 0; i < 4; i++) { outerBorderWidths[i] = PRInt32(borderWidths[i]) / 2 + PRInt32(borderWidths[i]) % 2; innerBorderWidths[i] = PRInt32(borderWidths[i]) / 2; } gfxRGBA color; gfxRect soRect, siRect; // draw outer rect if (borderColorStyle[1] != BorderColorStyleNone) { ComputeColorForLine(0, borderColorStyle, borderColorStyleCount, nsnull, 0, borderRenderColor, bgColor, color); soRect = oRect; siRect = iRect; siRect.Outset(innerBorderWidths); FillFastBorderPath(ctx, soRect, siRect, radiiPtr, outerBorderWidths, sides, color); } if (radiiPtr) CalculateInnerRadii(radiiPtr, outerBorderWidths, radiiPtr); // draw inner rect if (borderColorStyle[0] != BorderColorStyleNone) { ComputeColorForLine(1, borderColorStyle, borderColorStyleCount, nsnull, 0, borderRenderColor, bgColor, color); soRect = oRect; siRect = iRect; soRect.Inset(outerBorderWidths); FillFastBorderPath(ctx, soRect, siRect, radiiPtr, innerBorderWidths, sides, color); } } else if (borderColorStyleCount == 3) { // with 3 color styles, any extra pixel (or lack of extra pixel) // goes to the middle gfxFloat outerBorderWidths[4], middleBorderWidths[4], innerBorderWidths[4]; for (int i = 0; i < 4; i++) { if (borderWidths[i] == 1.0) { outerBorderWidths[i] = 1.0; middleBorderWidths[i] = innerBorderWidths[i] = 0.0; } else { PRInt32 rest = PRInt32(borderWidths[i]) % 3; outerBorderWidths[i] = innerBorderWidths[i] = middleBorderWidths[i] = (PRInt32(borderWidths[i]) - rest) / 3; if (rest == 1) { middleBorderWidths[i] += 1.0; } else if (rest == 2) { outerBorderWidths[i] += 1.0; innerBorderWidths[i] += 1.0; } } } gfxRGBA color; gfxRect soRect, siRect; // draw outer rect if (borderColorStyle[2] != BorderColorStyleNone) { ComputeColorForLine(0, borderColorStyle, borderColorStyleCount, nsnull, 0, borderRenderColor, bgColor, color); soRect = oRect; siRect = iRect; siRect.Outset(innerBorderWidths); siRect.Outset(middleBorderWidths); FillFastBorderPath(ctx, soRect, siRect, radiiPtr, outerBorderWidths, sides, color); } if (radiiPtr) CalculateInnerRadii(radiiPtr, outerBorderWidths, radiiPtr); // draw middle rect if (borderColorStyle[1] != BorderColorStyleNone) { ComputeColorForLine(1, borderColorStyle, borderColorStyleCount, nsnull, 0, borderRenderColor, bgColor, color); soRect = oRect; siRect = iRect; soRect.Inset(outerBorderWidths); siRect.Outset(innerBorderWidths); FillFastBorderPath(ctx, soRect, siRect, radiiPtr, middleBorderWidths, sides, color); } if (radiiPtr) CalculateInnerRadii(radiiPtr, middleBorderWidths, radiiPtr); // draw inner rect if (borderColorStyle[0] != BorderColorStyleNone) { ComputeColorForLine(2, borderColorStyle, borderColorStyleCount, nsnull, 0, borderRenderColor, bgColor, color); soRect = oRect; siRect = iRect; soRect.Inset(outerBorderWidths); soRect.Inset(middleBorderWidths); FillFastBorderPath(ctx, soRect, siRect, radiiPtr, innerBorderWidths, sides, color); } } else { // The only way to get to here is by having a // borderColorStyleCount < 1 or > 3; this should never happen, // since -moz-border-colors doesn't get handled here. NS_ERROR("Non-border-colors case with borderColorStyleCount < 1 or > 3; what happened?"); } } else { // the generic composite colors path; each border is 1px in size gfxRect soRect = oRect; gfxRect siRect; gfxFloat maxBorderWidth = 0; for (int i = 0; i < 4; i++) maxBorderWidth = PR_MAX(maxBorderWidth, borderWidths[i]); // distribute the border sizes evenly as we draw lines; we end up // drawing borders that are potentially less than 1px in width // if some of the sides are bigger than the others, but we have // consistent colors all the way around. gfxFloat fakeBorderSizes[4]; for (int i = 0; i < 4; i++) fakeBorderSizes[i] = borderWidths[i] / maxBorderWidth; for (PRUint32 i = 0; i < PRUint32(maxBorderWidth); i++) { gfxRGBA lineColor; siRect = soRect; siRect.Inset(fakeBorderSizes); ComputeColorForLine(i, borderColorStyle, borderColorStyleCount, compositeColors, compositeColorCount, borderRenderColor, bgColor, lineColor); FillFastBorderPath(ctx, soRect, siRect, radiiPtr, fakeBorderSizes, sides, lineColor); soRect.Inset(fakeBorderSizes); if (radiiPtr) CalculateInnerRadii(radiiPtr, fakeBorderSizes, radiiPtr); } } if (compositeColors) { delete [] borderColorStyle; } ctx->SetFillRule(gfxContext::FILL_RULE_WINDING); #if 0 ctx->SetOperator(gfxContext::OPERATOR_OVER); // debug; draw a line on the outside and inside edge // of the border. ctx->SetLineWidth(1.0); ctx->SetDash(nsnull, 0, 0.0); ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0)); ctx->NewPath(); ctx->Rectangle(oRect); ctx->Stroke(); ctx->NewPath(); ctx->Rectangle(iRect); ctx->Stroke(); #endif } /* * Compute the float-pixel radii that should be used for drawing * this border/outline, given the various input bits. * * If a side is skipped via skipSides, its corners are forced to 0, * otherwise the resulting radius is the smaller of the specified * radius and half of each adjacent side's length. */ static void ComputePixelRadii(const nscoord *aTwipsRadii, const nsRect& outerRect, const nsMargin& borderMargin, PRIntn skipSides, nscoord twipsPerPixel, gfxFloat *oBorderRadii) { nscoord twipsRadii[4] = { aTwipsRadii[0], aTwipsRadii[1], aTwipsRadii[2], aTwipsRadii[3] }; nsMargin border(borderMargin); if (skipSides & SIDE_BIT_TOP) { border.top = 0; twipsRadii[C_TL] = 0; twipsRadii[C_TR] = 0; } if (skipSides & SIDE_BIT_RIGHT) { border.right = 0; twipsRadii[C_TR] = 0; twipsRadii[C_BR] = 0; } if (skipSides & SIDE_BIT_BOTTOM) { border.bottom = 0; twipsRadii[C_BR] = 0; twipsRadii[C_BL] = 0; } if (skipSides & SIDE_BIT_LEFT) { border.left = 0; twipsRadii[C_BL] = 0; twipsRadii[C_TL] = 0; } nsRect innerRect(outerRect); innerRect.Deflate(border); // make sure the corner radii don't get too big nsMargin maxRadiusSize(innerRect.width/2 + border.left, innerRect.height/2 + border.top, innerRect.width/2 + border.right, innerRect.height/2 + border.bottom); oBorderRadii[C_TL] = gfxFloat(PR_MIN(twipsRadii[C_TL], PR_MIN(maxRadiusSize.top, maxRadiusSize.left))) / twipsPerPixel; oBorderRadii[C_TR] = gfxFloat(PR_MIN(twipsRadii[C_TR], PR_MIN(maxRadiusSize.top, maxRadiusSize.right))) / twipsPerPixel; oBorderRadii[C_BL] = gfxFloat(PR_MIN(twipsRadii[C_BL], PR_MIN(maxRadiusSize.bottom, maxRadiusSize.left))) / twipsPerPixel; oBorderRadii[C_BR] = gfxFloat(PR_MIN(twipsRadii[C_BR], PR_MIN(maxRadiusSize.bottom, maxRadiusSize.right))) / twipsPerPixel; } static void DrawDashedSide(gfxContext *ctx, PRUint8 side, const gfxRect& iRect, const gfxRect& oRect, PRUint8 style, gfxFloat borderWidth, nscolor borderColor, gfxSize *cornerDimensions) { gfxFloat dashWidth; gfxFloat dash[2]; if (borderWidth == 0.0) return; if (style == NS_STYLE_BORDER_STYLE_DASHED) { dashWidth = gfxFloat(borderWidth * DOT_LENGTH * DASH_LENGTH); dash[0] = dashWidth; dash[1] = dashWidth; ctx->SetLineCap(gfxContext::LINE_CAP_BUTT); } else if (style == NS_STYLE_BORDER_STYLE_DOTTED) { dashWidth = gfxFloat(borderWidth * DOT_LENGTH); if (borderWidth > 2.0) { dash[0] = 0.0; dash[1] = dashWidth * 2.0; ctx->SetLineCap(gfxContext::LINE_CAP_ROUND); } else { dash[0] = dashWidth; dash[1] = dashWidth; } } else { SF("DrawDashedSide: style: %d!!\n", style); NS_ERROR("DrawDashedSide called with style other than DASHED or DOTTED; someone's not playing nice"); return; } SF("dash: %f %f\n", dash[0], dash[1]); ctx->SetDash(dash, 2, 0.0); // Get the line drawn gfxPoint start, end; gfxFloat length; if (side == NS_SIDE_TOP) { start = gfxPoint(oRect.pos.x + cornerDimensions[C_TL].width, (oRect.pos.y + iRect.pos.y) / 2.0); end = gfxPoint(oRect.pos.x + oRect.size.width - cornerDimensions[C_TR].width, (oRect.pos.y + iRect.pos.y) / 2.0); length = end.x - start.x; } else if (side == NS_SIDE_RIGHT) { start = gfxPoint(oRect.pos.x + oRect.size.width - borderWidth / 2.0, oRect.pos.y + cornerDimensions[C_TR].height); end = gfxPoint(oRect.pos.x + oRect.size.width - borderWidth / 2.0, oRect.pos.y + oRect.size.height - cornerDimensions[C_BR].height); length = end.y - start.y; } else if (side == NS_SIDE_BOTTOM) { start = gfxPoint(oRect.pos.x + oRect.size.width - cornerDimensions[C_BR].width, oRect.pos.y + oRect.size.height - borderWidth / 2.0); end = gfxPoint(oRect.pos.x + cornerDimensions[C_BL].width, oRect.pos.y + oRect.size.height - borderWidth / 2.0); length = start.x - end.x; } else if (side == NS_SIDE_LEFT) { start = gfxPoint(oRect.pos.x + borderWidth / 2.0, oRect.pos.y + oRect.size.height - cornerDimensions[C_BL].height); end = gfxPoint(oRect.pos.x + borderWidth / 2.0, oRect.pos.y + cornerDimensions[C_TR].height); length = start.y - end.y; } ctx->NewPath(); ctx->MoveTo(start); ctx->LineTo(end); ctx->SetLineWidth(borderWidth); ctx->SetColor(gfxRGBA(borderColor)); //ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 1.0)); ctx->Stroke(); } static void DrawBorders(gfxContext *ctx, gfxRect& oRect, gfxRect& iRect, PRUint8 *borderStyles, gfxFloat *borderWidths, gfxFloat *borderRadii, nscolor *borderColors, nsBorderColors **compositeColors, PRIntn skipSides, nscolor backgroundColor, nscoord twipsPerPixel, nsRect *aGap = nsnull) { // Examine the border style to figure out if we can draw it in one // go or not. PRUint8 numRenderPasses = NumBorderPasses (borderStyles, borderColors, compositeColors); if (numRenderPasses == 0) { // all the colors are transparent; nothing to do. return; } // round oRect and iRect; they're already an integer // number of pixels apart and should stay that way after // rounding. oRect.Round(); iRect.Round(); S(" oRect: "), S(oRect), SN(); S(" iRect: "), S(iRect), SN(); SF(" borderColors: 0x%08x 0x%08x 0x%08x 0x%08x\n", borderColors[0], borderColors[1], borderColors[2], borderColors[3]); // if conditioning the outside rect failed, then bail -- the outside // rect is supposed to enclose the entire border oRect.Condition(); if (oRect.IsEmpty()) return; iRect.Condition(); // do we have any sides that are dotted/dashed? PRIntn dashedSides = 0; for (int i = 0; i < 4; i++) { PRUint8 style = borderStyles[i]; if (style == NS_STYLE_BORDER_STYLE_DASHED || style == NS_STYLE_BORDER_STYLE_DOTTED) { dashedSides |= (1 << i); } // just bail out entirely if RULES_MARKER // got through (see bug 379419). if (style & NS_STYLE_BORDER_STYLE_RULES_MARKER) return; } SF(" dashedSides: 0x%02x\n", dashedSides); // Clamp the CTM to be pixel-aligned; we do this only // for translation-only matrices now, but we could do it // if the matrix has just a scale as well. We should not // do it if there's a rotation. gfxMatrix mat = ctx->CurrentMatrix(); if (!mat.HasNonTranslation()) { mat.x0 = floor(mat.x0 + 0.5); mat.y0 = floor(mat.y0 + 0.5); ctx->SetMatrix(mat); } // if we're going to do separate sides, we need to do it as // a temporary surface group PRBool canAvoidGroup = PR_TRUE; if (numRenderPasses > 1) { // clip to oRect to define the size of the temporary surface ctx->NewPath(); ctx->Rectangle(oRect); if (aGap) { gfxRect gapRect(RectToGfxRect(*aGap, twipsPerPixel)); // draw the rectangle backwards, so that we get it // clipped out via the winding rule ctx->MoveTo(gapRect.pos); ctx->LineTo(gapRect.pos + gfxSize(0.0, gapRect.size.height)); ctx->LineTo(gapRect.pos + gapRect.size); ctx->LineTo(gapRect.pos + gfxSize(gapRect.size.width, 0.0)); ctx->ClosePath(); } ctx->Clip(); // OPTIMIZATION // Starting a compositing group is more work than necessary; // can avoid doing it if: // a) all the colors involved have to be solid (NS_GET_A(c) == 0xff) // b) no border radius is involved (the curves have antialiasing) // c) no dashed/dotted borders are involved // d) no DOUBLE style is involved (the middle part of DOUBLE needs // to have the the background color show through; [we could // handle this by just clearing out the parts that will be drawn]) if (dashedSides != 0) { canAvoidGroup = PR_FALSE; } else { for (int i = 0; i < 4; i++) { if (borderRadii[i] != 0.0) { canAvoidGroup = PR_FALSE; break; } PRUint8 style = borderStyles[i]; if (style == NS_STYLE_BORDER_STYLE_DASHED || style == NS_STYLE_BORDER_STYLE_DOTTED || style == NS_STYLE_BORDER_STYLE_DOUBLE) { canAvoidGroup = PR_FALSE; break; } if (compositeColors[i]) { nsBorderColors* colors = compositeColors[i]; do { if (NS_GET_A(colors->mColor) != 0xff) { canAvoidGroup = PR_FALSE; break; } colors = colors->mNext; } while (colors); } else { if (NS_GET_A(borderColors[i]) != 0xff) { canAvoidGroup = PR_FALSE; break; } } } } if (canAvoidGroup) { // clear the area underneath where the border's to be // rendered, so we can avoid using a compositing group // but still have the ADD operator work correctly // OPTIMIZATION // avoid doing a group or using OPERATOR_ADD for the common // case of a TL/BR border style in 1px size. if (numRenderPasses == 2 && CheckFourFloatsEqual(borderWidths, 1.0) && NS_GET_A(borderColors[0]) == 0xff) { // OVER is faster than SOURCE in a lot of cases, and they'll // behave the same since the color has no transparency. // We don't need to clear anything out in this case, either. ctx->SetOperator(gfxContext::OPERATOR_OVER); } else { // clear out the area so that we can use ADD without drawing ctx->SetOperator(gfxContext::OPERATOR_CLEAR); FillFastBorderPath(ctx, oRect, iRect, borderRadii, borderWidths, SIDE_BITS_ALL, gfxRGBA(0.0,0.0,0.0,0.0)); ctx->SetOperator(gfxContext::OPERATOR_ADD); } } else { // start a compositing group ctx->PushGroup(gfxASurface::CONTENT_COLOR_ALPHA); ctx->SetOperator(gfxContext::OPERATOR_ADD); } SF("canAvoidGroup: %d\n", canAvoidGroup); } else if (aGap) { gfxRect gapRect(RectToGfxRect(*aGap, twipsPerPixel)); // draw the rectangle backwards, so that we get it // clipped out via the winding rule ctx->MoveTo(gapRect.pos); ctx->LineTo(gapRect.pos + gfxSize(0.0, gapRect.size.height)); ctx->LineTo(gapRect.pos + gapRect.size); ctx->LineTo(gapRect.pos + gfxSize(gapRect.size.width, 0.0)); ctx->ClosePath(); ctx->Clip(); } // if we have dashed sides, clip to the corners so that we can draw the // dashed bits later. if (dashedSides) { ctx->Save(); ctx->NewPath(); DoCornerClipSubPath(ctx, oRect, iRect, borderRadii, dashedSides); #if 0 ctx->SetColor(gfxRGBA(1.0, 0.0, 1.0, 1.0)); ctx->SetLineWidth(2.); ctx->Stroke(); #endif ctx->Clip(); } // Render with either 1, 2, or 4 passes, depending on how // many are needed to get the job done. for (int i = 0; i < numRenderPasses; i++) { PRIntn sideBits; PRUint8 side; if (numRenderPasses == 4) { side = gBorderSideOrder[i]; sideBits = 1 << side; // skip this side if it's, well, skipped if (skipSides & (1 << side)) continue; ctx->Save(); ctx->NewPath(); DoSideClipSubPath(ctx, iRect, oRect, side, borderStyles, borderRadii); ctx->Clip(); } else if (numRenderPasses == 2) { if (i == 0) { side = NS_SIDE_TOP; sideBits = SIDE_BIT_TOP | SIDE_BIT_LEFT; } else { side = NS_SIDE_BOTTOM; sideBits = SIDE_BIT_BOTTOM | SIDE_BIT_RIGHT; } } else { side = NS_SIDE_TOP; sideBits = SIDE_BITS_ALL; } const PRUint8 style = borderStyles[side]; if (style != NS_STYLE_BORDER_STYLE_NONE && style != NS_STYLE_BORDER_STYLE_HIDDEN) { // Draw the whole border. If we're not drawing multiple passes, // then sides are identical and no clip was set -- this will draw // the entire border. Otherwise, this will still draw the entire // border in the style of this side, but it will be clipped by the // above code. We do this to get the joins looking correct. DrawBorderSides(ctx, borderWidths, sideBits, style, oRect, iRect, borderColors[side], compositeColors[side], backgroundColor, twipsPerPixel, borderRadii); SN("----------------"); } if (numRenderPasses > 2) ctx->Restore(); } // now fill in any dotted/dashed borders if (dashedSides != 0) { // get rid of the corner clip we set earlier ctx->Restore(); gfxSize dims[4]; GetBorderCornerDimensions(oRect, iRect, borderRadii, dims); for (int i = 0; i < 4; i++) { PRUint8 side = gBorderSideOrder[i]; if (NS_GET_A(borderColors[side]) != 0x00 && dashedSides & (1 << side)) { // side is dotted/dashed. DrawDashedSide (ctx, side, iRect, oRect, borderStyles[side], borderWidths[side], borderColors[side], dims); } } } if (!canAvoidGroup) { ctx->PopGroupToSource(); ctx->Paint(); } } void nsCSSRendering::PaintBorder(nsPresContext* aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleBorder& aBorderStyle, nsStyleContext* aStyleContext, PRIntn aSkipSides, nsRect* aGap, nscoord aHardBorderSize, PRBool aShouldIgnoreRounded) { nsMargin border; nsStyleCoord bordStyleRadius[4]; PRInt32 twipsRadii[4]; float percent; nsCompatibility compatMode = aPresContext->CompatibilityMode(); SN("++ PaintBorder"); // Check to see if we have an appearance defined. If so, we let the theme // renderer draw the border. DO not get the data from aForFrame, since the passed in style context // may be different! Always use |aStyleContext|! const nsStyleDisplay* displayData = aStyleContext->GetStyleDisplay(); if (displayData->mAppearance) { nsITheme *theme = aPresContext->GetTheme(); if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame, displayData->mAppearance)) return; // Let the theme handle it. } // Get our style context's color struct. const nsStyleColor* ourColor = aStyleContext->GetStyleColor(); // in NavQuirks mode we want to use the parent's context as a starting point // for determining the background color const nsStyleBackground* bgColor = nsCSSRendering::FindNonTransparentBackground (aStyleContext, compatMode == eCompatibility_NavQuirks ? PR_TRUE : PR_FALSE); if (aHardBorderSize > 0) { border.SizeTo(aHardBorderSize, aHardBorderSize, aHardBorderSize, aHardBorderSize); } else { border = aBorderStyle.GetBorder(); } if ((0 == border.left) && (0 == border.right) && (0 == border.top) && (0 == border.bottom)) { // Empty border area return; } // get the radius for our border aBorderStyle.mBorderRadius.GetTop(bordStyleRadius[0]); //topleft aBorderStyle.mBorderRadius.GetRight(bordStyleRadius[1]); //topright aBorderStyle.mBorderRadius.GetBottom(bordStyleRadius[2]); //bottomright aBorderStyle.mBorderRadius.GetLeft(bordStyleRadius[3]); //bottomleft // convert percentage values for(int i = 0; i < 4; i++) { twipsRadii[i] = 0; switch (bordStyleRadius[i].GetUnit()) { case eStyleUnit_Percent: percent = bordStyleRadius[i].GetPercentValue(); twipsRadii[i] = (nscoord)(percent * aForFrame->GetSize().width); break; case eStyleUnit_Coord: twipsRadii[i] = bordStyleRadius[i].GetCoordValue(); break; default: break; } } // Turn off rendering for all of the zero sized sides if (aSkipSides & SIDE_BIT_TOP) border.top = 0; if (aSkipSides & SIDE_BIT_RIGHT) border.right = 0; if (aSkipSides & SIDE_BIT_BOTTOM) border.bottom = 0; if (aSkipSides & SIDE_BIT_LEFT) border.left = 0; // get the inside and outside parts of the border nsRect outerRect(aBorderArea), innerRect(aBorderArea); innerRect.Deflate(border); SF(" innerRect: %d %d %d %d\n", innerRect.x, innerRect.y, innerRect.width, innerRect.height); SF(" outerRect: %d %d %d %d\n", outerRect.x, outerRect.y, outerRect.width, outerRect.height); // if the border size is more than the appropriate dimension of the area, // then... do what? // XXX what is this? according to bug 62245, this check might not be // needed any more if (border.left + border.right > aBorderArea.width) { innerRect.x = outerRect.x; innerRect.width = outerRect.width; } if (border.top + border.bottom > aBorderArea.height) { innerRect.y = outerRect.y; innerRect.height = outerRect.height; } // If the dirty rect is completely inside the border area (e.g., only the // content is being painted), then we can skip out now // XXX this isn't exactly true for rounded borders, where the inner curves may // encroach into the content area. A safer calculation would be to // shorten innerRect by the radius one each side before performing this test. if (innerRect.Contains(aDirtyRect)) { return; } // we can assume that we're already clipped to aDirtyRect -- I think? (!?) // Get our conversion values nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1); // convert outer and inner rects gfxRect oRect(RectToGfxRect(outerRect, twipsPerPixel)); gfxRect iRect(RectToGfxRect(innerRect, twipsPerPixel)); // convert the border widths gfxFloat borderWidths[4] = { border.top / twipsPerPixel, border.right / twipsPerPixel, border.bottom / twipsPerPixel, border.left / twipsPerPixel }; // convert the radii gfxFloat borderRadii[4]; ComputePixelRadii(twipsRadii, outerRect, border, aSkipSides, twipsPerPixel, borderRadii); PRUint8 borderStyles[4]; nscolor borderColors[4]; nsBorderColors *compositeColors[4]; // pull out styles, colors, composite colors for (int i = 0; i < 4; i++) { PRBool transparent, foreground; borderStyles[i] = aBorderStyle.GetBorderStyle(i); aBorderStyle.GetBorderColor(i, borderColors[i], transparent, foreground); aBorderStyle.GetCompositeColors(i, &compositeColors[i]); if (transparent) borderColors[i] = 0x0; else if (foreground) borderColors[i] = ourColor->mColor; } SF(" borderStyles: %d %d %d %d\n", borderStyles[0], borderStyles[1], borderStyles[2], borderStyles[3]); // start drawing nsRefPtr ctx = aRenderingContext.ThebesContext(); ctx->Save(); #if 0 // this will draw a transparent red backround underneath the area between iRect and oRect ctx->Save(); ctx->Rectangle(iRect); ctx->Clip(); ctx->NewPath(); ctx->Rectangle(oRect); ctx->SetColor(gfxRGBA(1.0, 0.0, 0.0, 0.5)); ctx->Fill(); ctx->Restore(); #endif SF ("borderRadii: %f %f %f %f\n", borderRadii[0], borderRadii[1], borderRadii[2], borderRadii[3]); DrawBorders(ctx, oRect, iRect, borderStyles, borderWidths, borderRadii, borderColors, compositeColors, aSkipSides, bgColor->mBackgroundColor, twipsPerPixel, aGap); ctx->Restore(); SN(); } void nsCSSRendering::PaintOutline(nsPresContext* aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleBorder& aBorderStyle, const nsStyleOutline& aOutlineStyle, nsStyleContext* aStyleContext, nsRect* aGap) { nsStyleCoord bordStyleRadius[4]; PRInt32 twipsRadii[4]; // Get our style context's color struct. const nsStyleColor* ourColor = aStyleContext->GetStyleColor(); nscoord width, offset; float percent; aOutlineStyle.GetOutlineWidth(width); if (width == 0) { // Empty outline return; } const nsStyleBackground* bgColor = nsCSSRendering::FindNonTransparentBackground (aStyleContext, PR_FALSE); // get the radius for our outline aOutlineStyle.mOutlineRadius.GetTop(bordStyleRadius[0]); //topleft aOutlineStyle.mOutlineRadius.GetRight(bordStyleRadius[1]); //topright aOutlineStyle.mOutlineRadius.GetBottom(bordStyleRadius[2]); //bottomright aOutlineStyle.mOutlineRadius.GetLeft(bordStyleRadius[3]); //bottomleft // convert percentage values for (int i = 0; i < 4; i++) { twipsRadii[i] = 0; switch (bordStyleRadius[i].GetUnit()) { case eStyleUnit_Percent: percent = bordStyleRadius[i].GetPercentValue(); twipsRadii[i] = (nscoord)(percent * aBorderArea.width); break; case eStyleUnit_Coord: twipsRadii[i] = bordStyleRadius[i].GetCoordValue(); break; default: break; } } nsRect overflowArea = aForFrame->GetOverflowRect(); // get the offset for our outline aOutlineStyle.GetOutlineOffset(offset); nsRect outerRect(overflowArea + aBorderArea.TopLeft()); nsRect innerRect(outerRect); if (width + offset >= 0) { // the overflow area is exactly the outside edge of the outline innerRect.Deflate(width, width); } else { // the overflow area is exactly the rectangle containing the frame and its // children; we can compute the outline directly innerRect.Deflate(-offset, -offset); if (innerRect.width < 0 || innerRect.height < 0) { return; // Protect against negative outline sizes } outerRect = innerRect; outerRect.Inflate(width, width); } // If the dirty rect is completely inside the border area (e.g., only the // content is being painted), then we can skip out now // XXX this isn't exactly true for rounded borders, where the inside curves may // encroach into the content area. A safer calculation would be to // shorten insideRect by the radius one each side before performing this test. if (innerRect.Contains(aDirtyRect)) { return; } // Get our conversion values nscoord twipsPerPixel = aPresContext->DevPixelsToAppUnits(1); // get the inner and outer rectangles gfxRect oRect(RectToGfxRect(outerRect, twipsPerPixel)); gfxRect iRect(RectToGfxRect(innerRect, twipsPerPixel)); // convert the radii nsMargin outlineMargin(width, width, width, width); gfxFloat outlineRadii[4]; ComputePixelRadii(twipsRadii, outerRect, outlineMargin, 0, twipsPerPixel, outlineRadii); PRUint8 outlineStyle = aOutlineStyle.GetOutlineStyle(); PRUint8 outlineStyles[4] = { outlineStyle, outlineStyle, outlineStyle, outlineStyle }; nscolor outlineColor; // PR_FALSE means use the initial color; PR_TRUE means a color was // set. if (!aOutlineStyle.GetOutlineColor(outlineColor)) outlineColor = ourColor->mColor; nscolor outlineColors[4] = { outlineColor, outlineColor, outlineColor, outlineColor }; nsBorderColors *outlineCompositeColors[4] = { nsnull }; // convert the border widths gfxFloat outlineWidths[4] = { width / twipsPerPixel, width / twipsPerPixel, width / twipsPerPixel, width / twipsPerPixel }; // start drawing nsRefPtr ctx = aRenderingContext.ThebesContext(); ctx->Save(); DrawBorders(ctx, oRect, iRect, outlineStyles, outlineWidths, outlineRadii, outlineColors, outlineCompositeColors, 0, bgColor->mBackgroundColor, twipsPerPixel, aGap); ctx->Restore(); SN(); } // Thebes Border Rendering Code End //---------------------------------------------------------------------- //---------------------------------------------------------------------- // Returns the anchor point to use for the background image. The // anchor point is the (x, y) location where the first tile should // be placed // // For repeated tiling, the anchor values are normalized wrt to the upper-left // edge of the bounds, and are always in the range: // -(aTileWidth - 1) <= anchor.x <= 0 // -(aTileHeight - 1) <= anchor.y <= 0 // // i.e., they are either 0 or a negative number whose absolute value is // less than the tile size in that dimension // // aOriginBounds is the box to which the tiling position should be relative // aClipBounds is the box in which the tiling will actually be done // They should correspond to 'background-origin' and 'background-clip', // except when painting on the canvas, in which case the origin bounds // should be the bounds of the root element's frame and the clip bounds // should be the bounds of the canvas frame. static void ComputeBackgroundAnchorPoint(const nsStyleBackground& aColor, const nsRect& aOriginBounds, const nsRect& aClipBounds, nscoord aTileWidth, nscoord aTileHeight, nsPoint& aResult) { nscoord x; if (NS_STYLE_BG_X_POSITION_LENGTH & aColor.mBackgroundFlags) { x = aColor.mBackgroundXPosition.mCoord; } else if (NS_STYLE_BG_X_POSITION_PERCENT & aColor.mBackgroundFlags) { PRFloat64 percent = PRFloat64(aColor.mBackgroundXPosition.mFloat); nscoord tilePos = nscoord(percent * PRFloat64(aTileWidth)); nscoord boxPos = nscoord(percent * PRFloat64(aOriginBounds.width)); x = boxPos - tilePos; } else { x = 0; } x += aOriginBounds.x - aClipBounds.x; if (NS_STYLE_BG_REPEAT_X & aColor.mBackgroundRepeat) { // When we are tiling in the x direction the loop will run from // the left edge of the box to the right edge of the box. We need // to adjust the starting coordinate to lie within the band being // rendered. if (x < 0) { x = -x; if (x < 0) { // Some joker gave us max-negative-integer. x = 0; } x %= aTileWidth; x = -x; } else if (x != 0) { x %= aTileWidth; if (x > 0) { x = x - aTileWidth; } } NS_POSTCONDITION((x >= -(aTileWidth - 1)) && (x <= 0), "bad computed anchor value"); } aResult.x = x; nscoord y; if (NS_STYLE_BG_Y_POSITION_LENGTH & aColor.mBackgroundFlags) { y = aColor.mBackgroundYPosition.mCoord; } else if (NS_STYLE_BG_Y_POSITION_PERCENT & aColor.mBackgroundFlags){ PRFloat64 percent = PRFloat64(aColor.mBackgroundYPosition.mFloat); nscoord tilePos = nscoord(percent * PRFloat64(aTileHeight)); nscoord boxPos = nscoord(percent * PRFloat64(aOriginBounds.height)); y = boxPos - tilePos; } else { y = 0; } y += aOriginBounds.y - aClipBounds.y; if (NS_STYLE_BG_REPEAT_Y & aColor.mBackgroundRepeat) { // When we are tiling in the y direction the loop will run from // the top edge of the box to the bottom edge of the box. We need // to adjust the starting coordinate to lie within the band being // rendered. if (y < 0) { y = -y; if (y < 0) { // Some joker gave us max-negative-integer. y = 0; } y %= aTileHeight; y = -y; } else if (y != 0) { y %= aTileHeight; if (y > 0) { y = y - aTileHeight; } } NS_POSTCONDITION((y >= -(aTileHeight - 1)) && (y <= 0), "bad computed anchor value"); } aResult.y = y; } const nsStyleBackground* nsCSSRendering::FindNonTransparentBackground(nsStyleContext* aContext, PRBool aStartAtParent /*= PR_FALSE*/) { NS_ASSERTION(aContext, "Cannot find NonTransparentBackground in a null context" ); const nsStyleBackground* result = nsnull; nsStyleContext* context = nsnull; if (aStartAtParent) { context = aContext->GetParent(); } if (!context) { context = aContext; } while (context) { result = context->GetStyleBackground(); if (0 == (result->mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT)) break; context = context->GetParent(); } return result; } /** * |FindBackground| finds the correct style data to use to paint the * background. It is responsible for handling the following two * statements in section 14.2 of CSS2: * * The background of the box generated by the root element covers the * entire canvas. * * For HTML documents, however, we recommend that authors specify the * background for the BODY element rather than the HTML element. User * agents should observe the following precedence rules to fill in the * background: if the value of the 'background' property for the HTML * element is different from 'transparent' then use it, else use the * value of the 'background' property for the BODY element. If the * resulting value is 'transparent', the rendering is undefined. * * Thus, in our implementation, it is responsible for ensuring that: * + we paint the correct background on the |nsCanvasFrame|, * |nsRootBoxFrame|, or |nsPageFrame|, * + we don't paint the background on the root element, and * + we don't paint the background on the BODY element in *some* cases, * and for SGML-based HTML documents only. * * |FindBackground| returns true if a background should be painted, and * the resulting style context to use for the background information * will be filled in to |aBackground|. It fills in a boolean indicating * whether the frame is the canvas frame to allow PaintBackground to * ensure that it always paints something non-transparent for the * canvas. */ // Returns nsnull if aFrame is not a canvas frame. // Otherwise, it returns the frame we should look for the background on. // This is normally aFrame but if aFrame is the viewport, we need to // look for the background starting at the scroll root (which shares // style context with the document root) or the document root itself. // We need to treat the viewport as canvas because, even though // it does not actually paint a background, we need to get the right // background style so we correctly detect transparent documents. inline nsIFrame* IsCanvasFrame(nsIFrame *aFrame) { nsIAtom* frameType = aFrame->GetType(); if (frameType == nsGkAtoms::canvasFrame || frameType == nsGkAtoms::rootFrame || frameType == nsGkAtoms::pageFrame || frameType == nsGkAtoms::pageContentFrame) { return aFrame; } else if (frameType == nsGkAtoms::viewportFrame) { nsIFrame* firstChild = aFrame->GetFirstChild(nsnull); if (firstChild) { return firstChild; } } return nsnull; } inline PRBool FindCanvasBackground(nsIFrame* aForFrame, const nsStyleBackground** aBackground) { // XXXldb What if the root element is positioned, etc.? (We don't // allow that yet, do we?) nsIFrame *firstChild = aForFrame->GetFirstChild(nsnull); if (firstChild) { const nsStyleBackground* result = firstChild->GetStyleBackground(); nsIFrame* topFrame = aForFrame; if (firstChild->GetType() == nsGkAtoms::pageContentFrame) { topFrame = firstChild->GetFirstChild(nsnull); NS_ASSERTION(topFrame, "nsPageContentFrame is missing a normal flow child"); if (!topFrame) { return PR_FALSE; } NS_ASSERTION(topFrame->GetContent(), "nsPageContentFrame child without content"); result = topFrame->GetStyleBackground(); } // Check if we need to do propagation from BODY rather than HTML. if (result->IsTransparent()) { nsIContent* content = topFrame->GetContent(); if (content) { // Use |GetOwnerDoc| so it works during destruction. nsIDocument* document = content->GetOwnerDoc(); nsCOMPtr htmlDoc = do_QueryInterface(document); if (htmlDoc) { if (!document->IsCaseSensitive()) { // HTML, not XHTML nsCOMPtr body; htmlDoc->GetBody(getter_AddRefs(body)); nsCOMPtr bodyContent = do_QueryInterface(body); // We need to null check the body node (bug 118829) since // there are cases, thanks to the fix for bug 5569, where we // will reflow a document with no body. In particular, if a // SCRIPT element in the head blocks the parser and then has a // SCRIPT that does "document.location.href = 'foo'", then // nsParser::Terminate will call |DidBuildModel| methods // through to the content sink, which will call |StartLayout| // and thus |InitialReflow| on the pres shell. See bug 119351 // for the ugly details. if (bodyContent) { nsIFrame *bodyFrame = aForFrame->PresContext()->GetPresShell()-> GetPrimaryFrameFor(bodyContent); if (bodyFrame) result = bodyFrame->GetStyleBackground(); } } } } } *aBackground = result; } else { // This should always give transparent, so we'll fill it in with the // default color if needed. This seems to happen a bit while a page is // being loaded. *aBackground = aForFrame->GetStyleBackground(); } return PR_TRUE; } inline PRBool FindElementBackground(nsIFrame* aForFrame, const nsStyleBackground** aBackground) { nsIFrame *parentFrame = aForFrame->GetParent(); // XXXldb We shouldn't have to null-check |parentFrame| here. if (parentFrame && IsCanvasFrame(parentFrame) == parentFrame) { // Check that we're really the root (rather than in another child list). nsIFrame *childFrame = parentFrame->GetFirstChild(nsnull); if (childFrame == aForFrame) return PR_FALSE; // Background was already drawn for the canvas. } *aBackground = aForFrame->GetStyleBackground(); // Return true unless the frame is for a BODY element whose background // was propagated to the viewport. if (aForFrame->GetStyleContext()->GetPseudoType()) return PR_TRUE; // A pseudo-element frame. nsIContent* content = aForFrame->GetContent(); if (!content || !content->IsNodeOfType(nsINode::eHTML)) return PR_TRUE; // not frame for an HTML element if (!parentFrame) return PR_TRUE; // no parent to look at if (content->Tag() != nsGkAtoms::body) return PR_TRUE; // not frame for element // We should only look at the background if we're in an HTML document nsIDocument* document = content->GetOwnerDoc(); nsCOMPtr htmlDoc = do_QueryInterface(document); if (!htmlDoc) return PR_TRUE; if (document->IsCaseSensitive()) // XHTML, not HTML return PR_TRUE; nsCOMPtr body; htmlDoc->GetBody(getter_AddRefs(body)); nsCOMPtr bodyContent = do_QueryInterface(body); if (bodyContent != content) return PR_TRUE; // this wasn't the background that was propagated const nsStyleBackground* htmlBG = parentFrame->GetStyleBackground(); return !htmlBG->IsTransparent(); } PRBool nsCSSRendering::FindBackground(nsPresContext* aPresContext, nsIFrame* aForFrame, const nsStyleBackground** aBackground, PRBool* aIsCanvas) { nsIFrame* canvasFrame = IsCanvasFrame(aForFrame); *aIsCanvas = canvasFrame != nsnull; return canvasFrame ? FindCanvasBackground(canvasFrame, aBackground) : FindElementBackground(aForFrame, aBackground); } void nsCSSRendering::DidPaint() { gInlineBGData->Reset(); } void nsCSSRendering::PaintBackground(nsPresContext* aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleBorder& aBorder, const nsStylePadding& aPadding, PRBool aUsePrintSettings, nsRect* aBGClipRect) { NS_PRECONDITION(aForFrame, "Frame is expected to be provided to PaintBackground"); PRBool isCanvas; const nsStyleBackground *color; if (!FindBackground(aPresContext, aForFrame, &color, &isCanvas)) { // we don't want to bail out of moz-appearance is set on a root // node. If it has a parent content node, bail because it's not // a root, other wise keep going in order to let the theme stuff // draw the background. The canvas really should be drawing the // bg, but there's no way to hook that up via css. if (!aForFrame->GetStyleDisplay()->mAppearance) { return; } nsIContent* content = aForFrame->GetContent(); if (!content || content->GetParent()) { return; } color = aForFrame->GetStyleBackground(); } if (!isCanvas) { PaintBackgroundWithSC(aPresContext, aRenderingContext, aForFrame, aDirtyRect, aBorderArea, *color, aBorder, aPadding, aUsePrintSettings, aBGClipRect); return; } nsStyleBackground canvasColor(*color); nsIViewManager* vm = aPresContext->GetViewManager(); if (canvasColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT) { nsIView* rootView; vm->GetRootView(rootView); if (!rootView->GetParent()) { PRBool widgetIsTransparent = PR_FALSE; if (rootView->HasWidget()) { rootView->GetWidget()->GetHasTransparentBackground(widgetIsTransparent); } if (!widgetIsTransparent) { // Ensure that we always paint a color for the root (in case there's // no background at all or a partly transparent image). canvasColor.mBackgroundFlags &= ~NS_STYLE_BG_COLOR_TRANSPARENT; canvasColor.mBackgroundColor = aPresContext->DefaultBackgroundColor(); } } } vm->SetDefaultBackgroundColor(canvasColor.mBackgroundColor); PaintBackgroundWithSC(aPresContext, aRenderingContext, aForFrame, aDirtyRect, aBorderArea, canvasColor, aBorder, aPadding, aUsePrintSettings, aBGClipRect); } inline nscoord IntDivFloor(nscoord aDividend, nscoord aDivisor) { NS_PRECONDITION(aDivisor > 0, "this function only works for positive divisors"); // ANSI C, ISO 9899:1999 section 6.5.5 defines integer division as // truncation of the result towards zero. Earlier C standards, as // well as the C++ standards (1998 and 2003) do not, but we depend // on it elsewhere. return (aDividend < 0 ? (aDividend - aDivisor + 1) : aDividend) / aDivisor; } inline nscoord IntDivCeil(nscoord aDividend, nscoord aDivisor) { NS_PRECONDITION(aDivisor > 0, "this function only works for positive divisors"); // ANSI C, ISO 9899:1999 section 6.5.5 defines integer division as // truncation of the result towards zero. Earlier C standards, as // well as the C++ standards (1998 and 2003) do not, but we depend // on it elsewhere. return (aDividend > 0 ? (aDividend + aDivisor - 1) : aDividend) / aDivisor; } /** * Return the largest 'v' such that v = aTileOffset + N*aTileSize, for some * integer N, and v <= aDirtyStart. */ static nscoord FindTileStart(nscoord aDirtyStart, nscoord aTileOffset, nscoord aTileSize) { // Find largest integer N such that aTileOffset + N*aTileSize <= aDirtyStart return aTileOffset + IntDivFloor(aDirtyStart - aTileOffset, aTileSize) * aTileSize; } /** * Return the smallest 'v' such that v = aTileOffset + N*aTileSize, for some * integer N, and v >= aDirtyEnd. */ static nscoord FindTileEnd(nscoord aDirtyEnd, nscoord aTileOffset, nscoord aTileSize) { // Find smallest integer N such that aTileOffset + N*aTileSize >= aDirtyEnd return aTileOffset + IntDivCeil(aDirtyEnd - aTileOffset, aTileSize) * aTileSize; } void nsCSSRendering::PaintBackgroundWithSC(nsPresContext* aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aDirtyRect, const nsRect& aBorderArea, const nsStyleBackground& aColor, const nsStyleBorder& aBorder, const nsStylePadding& aPadding, PRBool aUsePrintSettings, nsRect* aBGClipRect) { NS_PRECONDITION(aForFrame, "Frame is expected to be provided to PaintBackground"); PRBool canDrawBackgroundImage = PR_TRUE; PRBool canDrawBackgroundColor = PR_TRUE; if (aUsePrintSettings) { canDrawBackgroundImage = aPresContext->GetBackgroundImageDraw(); canDrawBackgroundColor = aPresContext->GetBackgroundColorDraw(); } // Check to see if we have an appearance defined. If so, we let the theme // renderer draw the background and bail out. const nsStyleDisplay* displayData = aForFrame->GetStyleDisplay(); if (displayData->mAppearance) { nsITheme *theme = aPresContext->GetTheme(); if (theme && theme->ThemeSupportsWidget(aPresContext, aForFrame, displayData->mAppearance)) { nsPoint offset = aBorderArea.TopLeft(); nsIRenderingContext::AutoPushTranslation translate(&aRenderingContext, offset.x, offset.y); nsRect dirty; nsRect border = aBorderArea - offset; dirty.IntersectRect(aDirtyRect - offset, border); theme->DrawWidgetBackground(&aRenderingContext, aForFrame, displayData->mAppearance, border, dirty); return; } } nsRect bgClipArea; if (aBGClipRect) { bgClipArea = *aBGClipRect; } else { // The background is rendered over the 'background-clip' area. bgClipArea = aBorderArea; if (aColor.mBackgroundClip != NS_STYLE_BG_CLIP_BORDER) { NS_ASSERTION(aColor.mBackgroundClip == NS_STYLE_BG_CLIP_PADDING, "unknown background-clip value"); nsMargin border = aForFrame->GetUsedBorder(); aForFrame->ApplySkipSides(border); bgClipArea.Deflate(border); } } // The actual dirty rect is the intersection of the 'background-clip' // area and the dirty rect we were given nsRect dirtyRect; if (!dirtyRect.IntersectRect(bgClipArea, aDirtyRect)) { // Nothing to paint return; } // if there is no background image or background images are turned off, try a color. if (!aColor.mBackgroundImage || !canDrawBackgroundImage) { PaintBackgroundColor(aPresContext, aRenderingContext, aForFrame, bgClipArea, aColor, aBorder, aPadding, canDrawBackgroundColor); return; } // We have a background image // Lookup the image imgIRequest *req = aPresContext->LoadImage(aColor.mBackgroundImage, aForFrame); PRUint32 status = imgIRequest::STATUS_ERROR; if (req) req->GetImageStatus(&status); if (!req || !(status & imgIRequest::STATUS_FRAME_COMPLETE) || !(status & imgIRequest::STATUS_SIZE_AVAILABLE)) { PaintBackgroundColor(aPresContext, aRenderingContext, aForFrame, bgClipArea, aColor, aBorder, aPadding, canDrawBackgroundColor); return; } nsCOMPtr image; req->GetImage(getter_AddRefs(image)); nsSize imageSize; image->GetWidth(&imageSize.width); image->GetHeight(&imageSize.height); imageSize.width = nsPresContext::CSSPixelsToAppUnits(imageSize.width); imageSize.height = nsPresContext::CSSPixelsToAppUnits(imageSize.height); req = nsnull; nsRect bgOriginArea; nsIAtom* frameType = aForFrame->GetType(); if (frameType == nsGkAtoms::inlineFrame || frameType == nsGkAtoms::positionedInlineFrame) { switch (aColor.mBackgroundInlinePolicy) { case NS_STYLE_BG_INLINE_POLICY_EACH_BOX: bgOriginArea = aBorderArea; break; case NS_STYLE_BG_INLINE_POLICY_BOUNDING_BOX: bgOriginArea = gInlineBGData->GetBoundingRect(aForFrame) + aBorderArea.TopLeft(); break; default: NS_ERROR("Unknown background-inline-policy value! " "Please, teach me what to do."); case NS_STYLE_BG_INLINE_POLICY_CONTINUOUS: bgOriginArea = gInlineBGData->GetContinuousRect(aForFrame) + aBorderArea.TopLeft(); break; } } else { bgOriginArea = aBorderArea; } // Background images are tiled over the 'background-clip' area // but the origin of the tiling is based on the 'background-origin' area if (aColor.mBackgroundOrigin != NS_STYLE_BG_ORIGIN_BORDER) { nsMargin border = aForFrame->GetUsedBorder(); aForFrame->ApplySkipSides(border); bgOriginArea.Deflate(border); if (aColor.mBackgroundOrigin != NS_STYLE_BG_ORIGIN_PADDING) { nsMargin padding = aForFrame->GetUsedPadding(); aForFrame->ApplySkipSides(padding); bgOriginArea.Deflate(padding); NS_ASSERTION(aColor.mBackgroundOrigin == NS_STYLE_BG_ORIGIN_CONTENT, "unknown background-origin value"); } } // Based on the repeat setting, compute how many tiles we should // lay down for each axis. The value computed is the maximum based // on the dirty rect before accounting for the background-position. nscoord tileWidth = imageSize.width; nscoord tileHeight = imageSize.height; PRBool needBackgroundColor = !(aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT); PRIntn repeat = aColor.mBackgroundRepeat; nscoord xDistance, yDistance; switch (repeat) { case NS_STYLE_BG_REPEAT_X: xDistance = dirtyRect.width; yDistance = tileHeight; break; case NS_STYLE_BG_REPEAT_Y: xDistance = tileWidth; yDistance = dirtyRect.height; break; case NS_STYLE_BG_REPEAT_XY: xDistance = dirtyRect.width; yDistance = dirtyRect.height; if (needBackgroundColor) { // If the image is completely opaque, we do not need to paint the // background color nsCOMPtr gfxImgFrame; image->GetCurrentFrame(getter_AddRefs(gfxImgFrame)); if (gfxImgFrame) { gfxImgFrame->GetNeedsBackground(&needBackgroundColor); /* check for tiling of a image where frame smaller than container */ nsSize iSize; image->GetWidth(&iSize.width); image->GetHeight(&iSize.height); nsRect iframeRect; gfxImgFrame->GetRect(iframeRect); if (iSize.width != iframeRect.width || iSize.height != iframeRect.height) { needBackgroundColor = PR_TRUE; } } } break; case NS_STYLE_BG_REPEAT_OFF: default: NS_ASSERTION(repeat == NS_STYLE_BG_REPEAT_OFF, "unknown background-repeat value"); xDistance = tileWidth; yDistance = tileHeight; break; } // The background color is rendered over the 'background-clip' area if (needBackgroundColor) { PaintBackgroundColor(aPresContext, aRenderingContext, aForFrame, bgClipArea, aColor, aBorder, aPadding, canDrawBackgroundColor); } if ((tileWidth == 0) || (tileHeight == 0) || dirtyRect.IsEmpty()) { // Nothing left to paint return; } // Compute the anchor point. // // When tiling, the anchor coordinate values will be negative offsets // from the background-origin area. // relative to the origin of aForFrame nsPoint anchor; if (NS_STYLE_BG_ATTACHMENT_FIXED == aColor.mBackgroundAttachment) { // If it's a fixed background attachment, then the image is placed // relative to the viewport, which is the area of the root frame // in a screen context or the page content frame in a print context. // Remember that we've drawn position-varying content in this prescontext aPresContext->SetRenderedPositionVaryingContent(); nsIFrame* topFrame = aPresContext->PresShell()->FrameManager()->GetRootFrame(); NS_ASSERTION(topFrame, "no root frame"); if (aPresContext->IsPaginated()) { nsIFrame* pageContentFrame = nsLayoutUtils::GetClosestFrameOfType(aForFrame, nsGkAtoms::pageContentFrame); if (pageContentFrame) { topFrame = pageContentFrame; } // else this is an embedded shell and its root frame is what we want } // Get the anchor point, relative to the viewport. nsRect viewportArea = topFrame->GetRect(); ComputeBackgroundAnchorPoint(aColor, viewportArea, viewportArea, tileWidth, tileHeight, anchor); // Convert the anchor point from viewport coordinates to aForFrame // coordinates. anchor -= aForFrame->GetOffsetTo(topFrame); } else { if (frameType == nsGkAtoms::canvasFrame) { // If the frame is the canvas, the image is placed relative to // the root element's (first) frame (see bug 46446) nsRect firstRootElementFrameArea; nsIFrame* firstRootElementFrame = aForFrame->GetFirstChild(nsnull); NS_ASSERTION(firstRootElementFrame, "A canvas with a background " "image had no child frame, which is impossible according to CSS. " "Make sure there isn't a background image specified on the " "|:viewport| pseudo-element in |html.css|."); // temporary null check -- see bug 97226 if (firstRootElementFrame) { firstRootElementFrameArea = firstRootElementFrame->GetRect(); // Take the border out of the frame's rect const nsStyleBorder* borderStyle = firstRootElementFrame->GetStyleBorder(); firstRootElementFrameArea.Deflate(borderStyle->GetBorder()); // Get the anchor point ComputeBackgroundAnchorPoint(aColor, firstRootElementFrameArea + aBorderArea.TopLeft(), bgClipArea, tileWidth, tileHeight, anchor); } else { ComputeBackgroundAnchorPoint(aColor, bgOriginArea, bgClipArea, tileWidth, tileHeight, anchor); } } else { // Otherwise, it is the normal case, and the background is // simply placed relative to the frame's background-clip area ComputeBackgroundAnchorPoint(aColor, bgOriginArea, bgClipArea, tileWidth, tileHeight, anchor); } // For scrolling attachment, the anchor is within the 'background-clip' anchor.x += bgClipArea.x - aBorderArea.x; anchor.y += bgClipArea.y - aBorderArea.y; } nsRefPtr ctx = aRenderingContext.ThebesContext(); ctx->Save(); nscoord appUnitsPerPixel = aPresContext->DevPixelsToAppUnits(1); ctx->NewPath(); ctx->Rectangle(RectToGfxRect(dirtyRect, appUnitsPerPixel), PR_TRUE); ctx->Clip(); nsStyleCoord bordStyleRadius[4]; nscoord borderRadii[4]; // get the radius for our border aBorder.mBorderRadius.GetTop(bordStyleRadius[NS_SIDE_TOP]); // topleft aBorder.mBorderRadius.GetRight(bordStyleRadius[NS_SIDE_RIGHT]); // topright aBorder.mBorderRadius.GetBottom(bordStyleRadius[NS_SIDE_BOTTOM]); // bottomright aBorder.mBorderRadius.GetLeft(bordStyleRadius[NS_SIDE_LEFT]); // bottomleft PRBool haveRadius = PR_FALSE; PRUint8 side = 0; for (; side < 4; ++side) { borderRadii[side] = 0; switch (bordStyleRadius[side].GetUnit()) { case eStyleUnit_Percent: borderRadii[side] = nscoord(bordStyleRadius[side].GetPercentValue() * aForFrame->GetSize().width); break; case eStyleUnit_Coord: borderRadii[side] = bordStyleRadius[side].GetCoordValue(); break; default: break; } if (borderRadii[side] != 0) haveRadius = PR_TRUE; } if (haveRadius) { gfxFloat radii[4]; ComputePixelRadii(borderRadii, bgClipArea, aBorder.GetBorder(), aForFrame ? aForFrame->GetSkipSides() : 0, appUnitsPerPixel, radii); gfxRect oRect(RectToGfxRect(bgClipArea, appUnitsPerPixel)); oRect.Round(); oRect.Condition(); ctx->NewPath(); DoRoundedRectCWSubPath(ctx, oRect, radii); ctx->Clip(); } // Compute the x and y starting points and limits for tiling /* An Overview Of The Following Logic A........ . . . . . . . . . . . . . . : +---:-------.-------.-------.---- /|\ : | : . . . | nh :.......: . . . x . . . . . . . . . . \|/ . | . . . . . | . . ########### . . . . . . . . . . .#. . . . .#. . . . . | . . ########### . /|\ . | . . . . | h . . | . . . . . . . . . . . . . z . . \|/ . | . . . . |<-----nw------>| |<--w-->| ---- = the background clip area edge. The painting is done within to this area. If the background is positioned relative to the viewport ('fixed') then this is the viewport edge. .... = the primary tile. . . = the other tiles. #### = the dirtyRect. This is the minimum region we want to cover. A = The anchor point. This is the point at which the tile should start. Always negative or zero. x = x0 and y0 in the code. The point at which tiling must start so that the fewest tiles are laid out while completely covering the dirtyRect area. z = x1 and y1 in the code. The point at which tiling must end so that the fewest tiles are laid out while completely covering the dirtyRect area. w = the width of the tile (tileWidth). h = the height of the tile (tileHeight). n = the number of whole tiles that fit between 'A' and 'x'. (the vertical n and the horizontal n are different) Therefore, x0 = bgClipArea.x + anchor.x + n * tileWidth; ...where n is an integer greater or equal to 0 fitting: n * tileWidth <= dirtyRect.x - (bgClipArea.x + anchor.x) <= (n+1) * tileWidth ...i.e., n <= (dirtyRect.x - (bgClipArea.x + anchor.x)) / tileWidth < n + 1 ...which, treating the division as an integer divide rounding down, gives: n = (dirtyRect.x - (bgClipArea.x + anchor.x)) / tileWidth Substituting into the original expression for x0: x0 = bgClipArea.x + anchor.x + ((dirtyRect.x - (bgClipArea.x + anchor.x)) / tileWidth) * tileWidth; From this x1 is determined, x1 = x0 + m * tileWidth; ...where m is an integer greater than 0 fitting: (m - 1) * tileWidth < dirtyRect.x + dirtyRect.width - x0 <= m * tileWidth ...i.e., m - 1 < (dirtyRect.x + dirtyRect.width - x0) / tileWidth <= m ...which, treating the division as an integer divide, and making it round up, gives: m = (dirtyRect.x + dirtyRect.width - x0 + tileWidth - 1) / tileWidth Substituting into the original expression for x1: x1 = x0 + ((dirtyRect.x + dirtyRect.width - x0 + tileWidth - 1) / tileWidth) * tileWidth The vertical case is analogous. If the background is fixed, then bgClipArea.x and bgClipArea.y are set to zero when finding the parent viewport, above. */ // relative to aBorderArea.TopLeft() nsRect tileRect(anchor, nsSize(tileWidth, tileHeight)); if (repeat & NS_STYLE_BG_REPEAT_X) { // When tiling in the x direction, adjust the starting position of the // tile to account for dirtyRect.x. When tiling in x, the anchor.x value // will be a negative value used to adjust the starting coordinate. nscoord x0 = FindTileStart(dirtyRect.x - aBorderArea.x, anchor.x, tileWidth); nscoord x1 = FindTileEnd(dirtyRect.XMost() - aBorderArea.x, anchor.x, tileWidth); tileRect.x = x0; tileRect.width = x1 - x0; } if (repeat & NS_STYLE_BG_REPEAT_Y) { // When tiling in the y direction, adjust the starting position of the // tile to account for dirtyRect.y. When tiling in y, the anchor.y value // will be a negative value used to adjust the starting coordinate. nscoord y0 = FindTileStart(dirtyRect.y - aBorderArea.y, anchor.y, tileHeight); nscoord y1 = FindTileEnd(dirtyRect.YMost() - aBorderArea.y, anchor.y, tileHeight); tileRect.y = y0; tileRect.height = y1 - y0; } // Take the intersection again to paint only the required area. nsRect absTileRect = tileRect + aBorderArea.TopLeft(); nsRect drawRect; if (drawRect.IntersectRect(absTileRect, dirtyRect)) { // Note that due to the way FindTileStart works we're guaranteed // that drawRect overlaps the top-left-most tile when repeating. NS_ASSERTION(drawRect.x >= absTileRect.x && drawRect.y >= absTileRect.y, "Bogus intersection"); NS_ASSERTION(drawRect.x < absTileRect.x + tileWidth, "Bogus x coord for draw rect"); NS_ASSERTION(drawRect.y < absTileRect.y + tileHeight, "Bogus y coord for draw rect"); // Figure out whether we can get away with not tiling at all. nsRect sourceRect = drawRect - absTileRect.TopLeft(); if (sourceRect.XMost() <= tileWidth && sourceRect.YMost() <= tileHeight) { // The entire drawRect is contained inside a single tile; just // draw the corresponding part of the image once. nsLayoutUtils::DrawImage(&aRenderingContext, image, absTileRect, drawRect); } else { aRenderingContext.DrawTile(image, absTileRect.x, absTileRect.y, &drawRect); } } ctx->Restore(); } void nsCSSRendering::PaintBackgroundColor(nsPresContext* aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aBgClipArea, const nsStyleBackground& aColor, const nsStyleBorder& aBorder, const nsStylePadding& aPadding, PRBool aCanPaintNonWhite) { // If we're only allowed to paint white, then don't bail out on transparent // color if we're not completely transparent. See the corresponding check // for whether we're allowed to paint background images in // PaintBackgroundWithSC before the first call to PaintBackgroundColor. if ((aColor.mBackgroundFlags & NS_STYLE_BG_COLOR_TRANSPARENT) && (aCanPaintNonWhite || aColor.IsTransparent())) { // nothing to paint return; } nsStyleCoord bordStyleRadius[4]; nscoord borderRadii[4]; nsRect bgClipArea(aBgClipArea); // get the radius for our border aBorder.mBorderRadius.GetTop(bordStyleRadius[NS_SIDE_TOP]); // topleft aBorder.mBorderRadius.GetRight(bordStyleRadius[NS_SIDE_RIGHT]); // topright aBorder.mBorderRadius.GetBottom(bordStyleRadius[NS_SIDE_BOTTOM]); // bottomright aBorder.mBorderRadius.GetLeft(bordStyleRadius[NS_SIDE_LEFT]); // bottomleft PRUint8 side = 0; for (; side < 4; ++side) { borderRadii[side] = 0; switch (bordStyleRadius[side].GetUnit()) { case eStyleUnit_Percent: borderRadii[side] = nscoord(bordStyleRadius[side].GetPercentValue() * aForFrame->GetSize().width); break; case eStyleUnit_Coord: borderRadii[side] = bordStyleRadius[side].GetCoordValue(); break; default: break; } } // Rounded version of the border // XXXdwh Composite borders (with multiple colors per side) use their own border radius // algorithm now, since the current one doesn't work right for small radii. if (!aBorder.mBorderColors) { for (side = 0; side < 4; ++side) { if (borderRadii[side] > 0) { PaintRoundedBackground(aPresContext, aRenderingContext, aForFrame, bgClipArea, aColor, aBorder, borderRadii, aCanPaintNonWhite); return; } } } else if (aColor.mBackgroundClip == NS_STYLE_BG_CLIP_BORDER) { // XXX users of -moz-border-*-colors expect a transparent border-color // to show the parent's background-color instead of its background-color. // This seems wrong, but we handle that here by explictly clipping the // background to the padding area. nsMargin border = aForFrame->GetUsedBorder(); aForFrame->ApplySkipSides(border); bgClipArea.Deflate(border); } nscolor color; if (!aCanPaintNonWhite) { color = NS_RGB(255, 255, 255); } else { color = aColor.mBackgroundColor; } aRenderingContext.SetColor(color); aRenderingContext.FillRect(bgClipArea); } /** --------------------------------------------------- * See documentation in nsCSSRendering.h * @update 3/26/99 dwc */ void nsCSSRendering::PaintRoundedBackground(nsPresContext* aPresContext, nsIRenderingContext& aRenderingContext, nsIFrame* aForFrame, const nsRect& aBgClipArea, const nsStyleBackground& aColor, const nsStyleBorder& aBorder, nscoord aTheRadius[4], PRBool aCanPaintNonWhite) { nsRefPtr ctx = aRenderingContext.ThebesContext(); // needed for our border thickness nscoord appUnitsPerPixel = aPresContext->AppUnitsPerDevPixel(); nscolor color = aColor.mBackgroundColor; if (!aCanPaintNonWhite) { color = NS_RGB(255, 255, 255); } aRenderingContext.SetColor(color); // Adjust for background-clip, if necessary if (aColor.mBackgroundClip != NS_STYLE_BG_CLIP_BORDER) { NS_ASSERTION(aColor.mBackgroundClip == NS_STYLE_BG_CLIP_PADDING, "unknown background-clip value"); // Get the radius to the outer edge of the padding. // -moz-border-radius is the radius to the outer edge of the border. NS_FOR_CSS_SIDES(side) { aTheRadius[side] -= aBorder.GetBorderWidth(side); aTheRadius[side] = PR_MAX(aTheRadius[side], 0); } } // the bgClipArea is the outside gfxRect oRect(RectToGfxRect(aBgClipArea, appUnitsPerPixel)); oRect.Round(); oRect.Condition(); if (oRect.IsEmpty()) return; // convert the radii gfxFloat radii[4]; nsMargin border = aBorder.GetBorder(); ComputePixelRadii(aTheRadius, aBgClipArea, border, aForFrame ? aForFrame->GetSkipSides() : 0, appUnitsPerPixel, radii); // Add 1.0 to any border radii; if we don't, the border and background // curves will combine to have fringing at the rounded corners. Since // alpha is used for coverage, we have problems because the border and // background should have identical coverage, and the border should // overlay the background exactly. The way to avoid this is by using // a supersampling scheme, but we don't have the mechanism in place to do // this. So, this will do for now. for (int i = 0; i < 4; i++) { if (radii[i] > 0.0) radii[i] += 1.0; } ctx->NewPath(); DoRoundedRectCWSubPath(ctx, oRect, radii); ctx->SetColor(gfxRGBA(color)); ctx->Fill(); } void FillOrInvertRect(nsIRenderingContext& aRC, nscoord aX, nscoord aY, nscoord aWidth, nscoord aHeight, PRBool aInvert) { #ifdef GFX_HAS_INVERT if (aInvert) { aRC.InvertRect(aX, aY, aWidth, aHeight); } else { #endif aRC.FillRect(aX, aY, aWidth, aHeight); #ifdef GFX_HAS_INVERT } #endif } void FillOrInvertRect(nsIRenderingContext& aRC, const nsRect& aRect, PRBool aInvert) { #ifdef GFX_HAS_INVERT if (aInvert) { aRC.InvertRect(aRect); } else { #endif aRC.FillRect(aRect); #ifdef GFX_HAS_INVERT } #endif } // Begin table border-collapsing section // These functions were written to not disrupt the normal ones and yet satisfy some additional requirements // At some point, all functions should be unified to include the additional functionality that these provide static nscoord RoundIntToPixel(nscoord aValue, nscoord aTwipsPerPixel, PRBool aRoundDown = PR_FALSE) { if (aTwipsPerPixel <= 0) // We must be rendering to a device that has a resolution greater than Twips! // In that case, aValue is as accurate as it's going to get. return aValue; nscoord halfPixel = NSToCoordRound(aTwipsPerPixel / 2.0f); nscoord extra = aValue % aTwipsPerPixel; nscoord finalValue = (!aRoundDown && (extra >= halfPixel)) ? aValue + (aTwipsPerPixel - extra) : aValue - extra; return finalValue; } static nscoord RoundFloatToPixel(float aValue, nscoord aTwipsPerPixel, PRBool aRoundDown = PR_FALSE) { return RoundIntToPixel(NSToCoordRound(aValue), aTwipsPerPixel, aRoundDown); } static void SetPoly(const nsRect& aRect, nsPoint* poly) { poly[0].x = aRect.x; poly[0].y = aRect.y; poly[1].x = aRect.x + aRect.width; poly[1].y = aRect.y; poly[2].x = aRect.x + aRect.width; poly[2].y = aRect.y + aRect.height; poly[3].x = aRect.x; poly[3].y = aRect.y + aRect.height; poly[4].x = aRect.x; poly[4].y = aRect.y; } static void DrawSolidBorderSegment(nsIRenderingContext& aContext, nsRect aRect, nscoord aTwipsPerPixel, PRUint8 aStartBevelSide = 0, nscoord aStartBevelOffset = 0, PRUint8 aEndBevelSide = 0, nscoord aEndBevelOffset = 0) { if ((aRect.width == aTwipsPerPixel) || (aRect.height == aTwipsPerPixel) || ((0 == aStartBevelOffset) && (0 == aEndBevelOffset))) { // simple line or rectangle if ((NS_SIDE_TOP == aStartBevelSide) || (NS_SIDE_BOTTOM == aStartBevelSide)) { if (1 == aRect.height) aContext.DrawLine(aRect.x, aRect.y, aRect.x, aRect.y + aRect.height); else aContext.FillRect(aRect); } else { if (1 == aRect.width) aContext.DrawLine(aRect.x, aRect.y, aRect.x + aRect.width, aRect.y); else aContext.FillRect(aRect); } } else { // polygon with beveling nsPoint poly[5]; SetPoly(aRect, poly); switch(aStartBevelSide) { case NS_SIDE_TOP: poly[0].x += aStartBevelOffset; poly[4].x = poly[0].x; break; case NS_SIDE_BOTTOM: poly[3].x += aStartBevelOffset; break; case NS_SIDE_RIGHT: poly[1].y += aStartBevelOffset; break; case NS_SIDE_LEFT: poly[0].y += aStartBevelOffset; poly[4].y = poly[0].y; } switch(aEndBevelSide) { case NS_SIDE_TOP: poly[1].x -= aEndBevelOffset; break; case NS_SIDE_BOTTOM: poly[2].x -= aEndBevelOffset; break; case NS_SIDE_RIGHT: poly[2].y -= aEndBevelOffset; break; case NS_SIDE_LEFT: poly[3].y -= aEndBevelOffset; } aContext.FillPolygon(poly, 5); } } static void GetDashInfo(nscoord aBorderLength, nscoord aDashLength, nscoord aTwipsPerPixel, PRInt32& aNumDashSpaces, nscoord& aStartDashLength, nscoord& aEndDashLength) { aNumDashSpaces = 0; if (aStartDashLength + aDashLength + aEndDashLength >= aBorderLength) { aStartDashLength = aBorderLength; aEndDashLength = 0; } else { aNumDashSpaces = aBorderLength / (2 * aDashLength); // round down nscoord extra = aBorderLength - aStartDashLength - aEndDashLength - (((2 * aNumDashSpaces) - 1) * aDashLength); if (extra > 0) { nscoord half = RoundIntToPixel(extra / 2, aTwipsPerPixel); aStartDashLength += half; aEndDashLength += (extra - half); } } } void nsCSSRendering::DrawTableBorderSegment(nsIRenderingContext& aContext, PRUint8 aBorderStyle, nscolor aBorderColor, const nsStyleBackground* aBGColor, const nsRect& aBorder, PRInt32 aAppUnitsPerCSSPixel, PRUint8 aStartBevelSide, nscoord aStartBevelOffset, PRUint8 aEndBevelSide, nscoord aEndBevelOffset) { aContext.SetColor (aBorderColor); PRBool horizontal = ((NS_SIDE_TOP == aStartBevelSide) || (NS_SIDE_BOTTOM == aStartBevelSide)); nscoord twipsPerPixel = NSIntPixelsToAppUnits(1, aAppUnitsPerCSSPixel); PRUint8 ridgeGroove = NS_STYLE_BORDER_STYLE_RIDGE; if ((twipsPerPixel >= aBorder.width) || (twipsPerPixel >= aBorder.height) || (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) || (NS_STYLE_BORDER_STYLE_DOTTED == aBorderStyle)) { // no beveling for 1 pixel border, dash or dot aStartBevelOffset = 0; aEndBevelOffset = 0; } #ifdef MOZ_CAIRO_GFX gfxContext *ctx = aContext.ThebesContext(); gfxContext::AntialiasMode oldMode = ctx->CurrentAntialiasMode(); ctx->SetAntialiasMode(gfxContext::MODE_ALIASED); #endif switch (aBorderStyle) { case NS_STYLE_BORDER_STYLE_NONE: case NS_STYLE_BORDER_STYLE_HIDDEN: //NS_ASSERTION(PR_FALSE, "style of none or hidden"); break; case NS_STYLE_BORDER_STYLE_DOTTED: case NS_STYLE_BORDER_STYLE_DASHED: { nscoord dashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) ? DASH_LENGTH : DOT_LENGTH; // make the dash length proportional to the border thickness dashLength *= (horizontal) ? aBorder.height : aBorder.width; // make the min dash length for the ends 1/2 the dash length nscoord minDashLength = (NS_STYLE_BORDER_STYLE_DASHED == aBorderStyle) ? RoundFloatToPixel(((float)dashLength) / 2.0f, twipsPerPixel) : dashLength; minDashLength = PR_MAX(minDashLength, twipsPerPixel); nscoord numDashSpaces = 0; nscoord startDashLength = minDashLength; nscoord endDashLength = minDashLength; if (horizontal) { GetDashInfo(aBorder.width, dashLength, twipsPerPixel, numDashSpaces, startDashLength, endDashLength); nsRect rect(aBorder.x, aBorder.y, startDashLength, aBorder.height); DrawSolidBorderSegment(aContext, rect, twipsPerPixel); for (PRInt32 spaceX = 0; spaceX < numDashSpaces; spaceX++) { rect.x += rect.width + dashLength; rect.width = (spaceX == (numDashSpaces - 1)) ? endDashLength : dashLength; DrawSolidBorderSegment(aContext, rect, twipsPerPixel); } } else { GetDashInfo(aBorder.height, dashLength, twipsPerPixel, numDashSpaces, startDashLength, endDashLength); nsRect rect(aBorder.x, aBorder.y, aBorder.width, startDashLength); DrawSolidBorderSegment(aContext, rect, twipsPerPixel); for (PRInt32 spaceY = 0; spaceY < numDashSpaces; spaceY++) { rect.y += rect.height + dashLength; rect.height = (spaceY == (numDashSpaces - 1)) ? endDashLength : dashLength; DrawSolidBorderSegment(aContext, rect, twipsPerPixel); } } } break; case NS_STYLE_BORDER_STYLE_GROOVE: ridgeGroove = NS_STYLE_BORDER_STYLE_GROOVE; // and fall through to ridge case NS_STYLE_BORDER_STYLE_RIDGE: if ((horizontal && (twipsPerPixel >= aBorder.height)) || (!horizontal && (twipsPerPixel >= aBorder.width))) { // a one pixel border DrawSolidBorderSegment(aContext, aBorder, twipsPerPixel, aStartBevelSide, aStartBevelOffset, aEndBevelSide, aEndBevelOffset); } else { nscoord startBevel = (aStartBevelOffset > 0) ? RoundFloatToPixel(0.5f * (float)aStartBevelOffset, twipsPerPixel, PR_TRUE) : 0; nscoord endBevel = (aEndBevelOffset > 0) ? RoundFloatToPixel(0.5f * (float)aEndBevelOffset, twipsPerPixel, PR_TRUE) : 0; PRUint8 ridgeGrooveSide = (horizontal) ? NS_SIDE_TOP : NS_SIDE_LEFT; aContext.SetColor ( MakeBevelColor(ridgeGrooveSide, ridgeGroove, aBGColor->mBackgroundColor, aBorderColor)); nsRect rect(aBorder); nscoord half; if (horizontal) { // top, bottom half = RoundFloatToPixel(0.5f * (float)aBorder.height, twipsPerPixel); rect.height = half; if (NS_SIDE_TOP == aStartBevelSide) { rect.x += startBevel; rect.width -= startBevel; } if (NS_SIDE_TOP == aEndBevelSide) { rect.width -= endBevel; } DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); } else { // left, right half = RoundFloatToPixel(0.5f * (float)aBorder.width, twipsPerPixel); rect.width = half; if (NS_SIDE_LEFT == aStartBevelSide) { rect.y += startBevel; rect.height -= startBevel; } if (NS_SIDE_LEFT == aEndBevelSide) { rect.height -= endBevel; } DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); } rect = aBorder; ridgeGrooveSide = (NS_SIDE_TOP == ridgeGrooveSide) ? NS_SIDE_BOTTOM : NS_SIDE_RIGHT; aContext.SetColor ( MakeBevelColor(ridgeGrooveSide, ridgeGroove, aBGColor->mBackgroundColor, aBorderColor)); if (horizontal) { rect.y = rect.y + half; rect.height = aBorder.height - half; if (NS_SIDE_BOTTOM == aStartBevelSide) { rect.x += startBevel; rect.width -= startBevel; } if (NS_SIDE_BOTTOM == aEndBevelSide) { rect.width -= endBevel; } DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); } else { rect.x = rect.x + half; rect.width = aBorder.width - half; if (NS_SIDE_RIGHT == aStartBevelSide) { rect.y += aStartBevelOffset - startBevel; rect.height -= startBevel; } if (NS_SIDE_RIGHT == aEndBevelSide) { rect.height -= endBevel; } DrawSolidBorderSegment(aContext, rect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); } } break; case NS_STYLE_BORDER_STYLE_DOUBLE: if ((aBorder.width > 2) && (aBorder.height > 2)) { nscoord startBevel = (aStartBevelOffset > 0) ? RoundFloatToPixel(0.333333f * (float)aStartBevelOffset, twipsPerPixel) : 0; nscoord endBevel = (aEndBevelOffset > 0) ? RoundFloatToPixel(0.333333f * (float)aEndBevelOffset, twipsPerPixel) : 0; if (horizontal) { // top, bottom nscoord thirdHeight = RoundFloatToPixel(0.333333f * (float)aBorder.height, twipsPerPixel); // draw the top line or rect nsRect topRect(aBorder.x, aBorder.y, aBorder.width, thirdHeight); if (NS_SIDE_TOP == aStartBevelSide) { topRect.x += aStartBevelOffset - startBevel; topRect.width -= aStartBevelOffset - startBevel; } if (NS_SIDE_TOP == aEndBevelSide) { topRect.width -= aEndBevelOffset - endBevel; } DrawSolidBorderSegment(aContext, topRect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); // draw the botom line or rect nscoord heightOffset = aBorder.height - thirdHeight; nsRect bottomRect(aBorder.x, aBorder.y + heightOffset, aBorder.width, aBorder.height - heightOffset); if (NS_SIDE_BOTTOM == aStartBevelSide) { bottomRect.x += aStartBevelOffset - startBevel; bottomRect.width -= aStartBevelOffset - startBevel; } if (NS_SIDE_BOTTOM == aEndBevelSide) { bottomRect.width -= aEndBevelOffset - endBevel; } DrawSolidBorderSegment(aContext, bottomRect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); } else { // left, right nscoord thirdWidth = RoundFloatToPixel(0.333333f * (float)aBorder.width, twipsPerPixel); nsRect leftRect(aBorder.x, aBorder.y, thirdWidth, aBorder.height); if (NS_SIDE_LEFT == aStartBevelSide) { leftRect.y += aStartBevelOffset - startBevel; leftRect.height -= aStartBevelOffset - startBevel; } if (NS_SIDE_LEFT == aEndBevelSide) { leftRect.height -= aEndBevelOffset - endBevel; } DrawSolidBorderSegment(aContext, leftRect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); nscoord widthOffset = aBorder.width - thirdWidth; nsRect rightRect(aBorder.x + widthOffset, aBorder.y, aBorder.width - widthOffset, aBorder.height); if (NS_SIDE_RIGHT == aStartBevelSide) { rightRect.y += aStartBevelOffset - startBevel; rightRect.height -= aStartBevelOffset - startBevel; } if (NS_SIDE_RIGHT == aEndBevelSide) { rightRect.height -= aEndBevelOffset - endBevel; } DrawSolidBorderSegment(aContext, rightRect, twipsPerPixel, aStartBevelSide, startBevel, aEndBevelSide, endBevel); } break; } // else fall through to solid case NS_STYLE_BORDER_STYLE_SOLID: DrawSolidBorderSegment(aContext, aBorder, twipsPerPixel, aStartBevelSide, aStartBevelOffset, aEndBevelSide, aEndBevelOffset); break; case NS_STYLE_BORDER_STYLE_OUTSET: case NS_STYLE_BORDER_STYLE_INSET: NS_ASSERTION(PR_FALSE, "inset, outset should have been converted to groove, ridge"); break; case NS_STYLE_BORDER_STYLE_AUTO: NS_ASSERTION(PR_FALSE, "Unexpected 'auto' table border"); break; } #ifdef MOZ_CAIRO_GFX ctx->SetAntialiasMode(oldMode); #endif } // End table border-collapsing section void nsCSSRendering::PaintDecorationLine(gfxContext* aGfxContext, const nscolor aColor, const gfxPoint& aPt, const gfxSize& aLineSize, const gfxFloat aAscent, const gfxFloat aOffset, const gfxFloat aPreferredHeight, const PRUint8 aDecoration, const PRUint8 aStyle, const PRBool aIsRTL) { if (aLineSize.width <= 0 || aLineSize.height <= 0 || aStyle == NS_STYLE_BORDER_STYLE_NONE) return; if (aDecoration != NS_STYLE_TEXT_DECORATION_UNDERLINE && aDecoration != NS_STYLE_TEXT_DECORATION_OVERLINE && aDecoration != NS_STYLE_TEXT_DECORATION_LINE_THROUGH) { NS_ERROR("Invalid decoration value!"); return; } PRBool contextIsSaved = PR_FALSE; gfxFloat totalHeight = aLineSize.height; gfxFloat oldLineWidth; nsRefPtr oldPattern; switch (aStyle) { case NS_STYLE_BORDER_STYLE_SOLID: oldLineWidth = aGfxContext->CurrentLineWidth(); oldPattern = aGfxContext->GetPattern(); break; case NS_STYLE_BORDER_STYLE_DASHED: { aGfxContext->Save(); contextIsSaved = PR_TRUE; gfxFloat dashWidth = aLineSize.height * DOT_LENGTH * DASH_LENGTH; gfxFloat dash[2] = { dashWidth, dashWidth }; aGfxContext->SetLineCap(gfxContext::LINE_CAP_BUTT); aGfxContext->SetDash(dash, 2, 0.0); break; } case NS_STYLE_BORDER_STYLE_DOTTED: { aGfxContext->Save(); contextIsSaved = PR_TRUE; gfxFloat dashWidth = aLineSize.height * DOT_LENGTH; gfxFloat dash[2]; if (aLineSize.height > 2.0) { dash[0] = 0.0; dash[1] = dashWidth * 2.0; aGfxContext->SetLineCap(gfxContext::LINE_CAP_ROUND); } else { dash[0] = dashWidth; dash[1] = dashWidth; } aGfxContext->SetDash(dash, 2, 0.0); break; } case NS_STYLE_BORDER_STYLE_DOUBLE: totalHeight *= 3.0; break; default: NS_ERROR("Invalid style value!"); return; } gfxFloat offset = aOffset; switch (aDecoration) { case NS_STYLE_TEXT_DECORATION_UNDERLINE: break; case NS_STYLE_TEXT_DECORATION_OVERLINE: // The offset includes the preferred size, we should remove it offset += aPreferredHeight; // the bottom of the decoration line should be aligned to the top of the // text. offset -= totalHeight; break; case NS_STYLE_TEXT_DECORATION_LINE_THROUGH: { // The offset includes the preferred size, we should remove it offset += aPreferredHeight; // the middle of the decoration line should be aligned to the middle of // the original strike out offset. offset -= PR_MAX(aPreferredHeight, (totalHeight / 2.0)); break; } default: NS_NOTREACHED("Invalid decoration value!"); return; } // round to device pixels for suppressing the AA. gfxFloat x = NS_round(aPt.x); gfxFloat y = NS_round(aPt.y + aAscent) - NS_round(offset); gfxFloat width = NS_round(aLineSize.width); gfxFloat height = NS_round(aLineSize.height); // The y position should be set to the middle of the line. y += height / 2; aGfxContext->SetColor(gfxRGBA(aColor)); aGfxContext->SetLineWidth(height); switch (aStyle) { case NS_STYLE_BORDER_STYLE_SOLID: aGfxContext->NewPath(); aGfxContext->MoveTo(gfxPoint(x, y)); aGfxContext->LineTo(gfxPoint(x + width, y)); aGfxContext->Stroke(); break; case NS_STYLE_BORDER_STYLE_DOUBLE: aGfxContext->NewPath(); aGfxContext->MoveTo(gfxPoint(x, y)); aGfxContext->LineTo(gfxPoint(x + width, y)); aGfxContext->MoveTo(gfxPoint(x, y + height * 2.0)); aGfxContext->LineTo(gfxPoint(x + width, y + height * 2.0)); aGfxContext->Stroke(); break; case NS_STYLE_BORDER_STYLE_DOTTED: case NS_STYLE_BORDER_STYLE_DASHED: aGfxContext->NewPath(); if (aIsRTL) { aGfxContext->MoveTo(gfxPoint(x + width, y)); aGfxContext->LineTo(gfxPoint(x, y)); } else { aGfxContext->MoveTo(gfxPoint(x, y)); aGfxContext->LineTo(gfxPoint(x + width, y)); } aGfxContext->Stroke(); break; default: NS_ERROR("Invalid style value!"); break; } if (contextIsSaved) { aGfxContext->Restore(); } else { aGfxContext->SetPattern(oldPattern); aGfxContext->SetLineWidth(oldLineWidth); } }