/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsLayoutUtils.h" #include "mozilla/ArrayUtils.h" #include "mozilla/BasicEvents.h" #include "mozilla/dom/CanvasUtils.h" #include "mozilla/ClearOnShutdown.h" #include "mozilla/EffectCompositor.h" #include "mozilla/EffectSet.h" #include "mozilla/EventDispatcher.h" #include "mozilla/EventStateManager.h" #include "mozilla/FloatingPoint.h" #include "mozilla/gfx/gfxVars.h" #include "mozilla/gfx/PathHelpers.h" #include "mozilla/layers/PAPZ.h" #include "mozilla/Likely.h" #include "mozilla/Maybe.h" #include "mozilla/MemoryReporting.h" #include "mozilla/PerfStats.h" #include "mozilla/PresShell.h" #include "mozilla/ServoStyleSetInlines.h" #include "mozilla/StaticPrefs_apz.h" #include "mozilla/StaticPrefs_dom.h" #include "mozilla/StaticPrefs_font.h" #include "mozilla/StaticPrefs_gfx.h" #include "mozilla/StaticPrefs_layers.h" #include "mozilla/StaticPrefs_layout.h" #include "mozilla/Unused.h" #include "mozilla/ViewportFrame.h" #include "nsCharTraits.h" #include "mozilla/dom/BrowserChild.h" #include "mozilla/dom/Document.h" #include "mozilla/dom/DocumentInlines.h" #include "nsFontMetrics.h" #include "nsPresContext.h" #include "nsPresContextInlines.h" #include "nsIContent.h" #include "nsFrameList.h" #include "nsGenericHTMLElement.h" #include "nsGkAtoms.h" #include "nsAtom.h" #include "nsCaret.h" #include "nsCSSPseudoElements.h" #include "nsCSSAnonBoxes.h" #include "nsCSSColorUtils.h" #include "nsView.h" #include "nsViewManager.h" #include "nsPlaceholderFrame.h" #include "nsIScrollableFrame.h" #include "nsSubDocumentFrame.h" #include "nsDisplayList.h" #include "nsRegion.h" #include "nsCSSFrameConstructor.h" #include "nsBlockFrame.h" #include "nsBidiPresUtils.h" #include "imgIContainer.h" #include "ImageOps.h" #include "ImageRegion.h" #include "gfxRect.h" #include "gfxContext.h" #include "nsIInterfaceRequestorUtils.h" #include "nsCSSRendering.h" #include "nsTextFragment.h" #include "nsStyleConsts.h" #include "nsPIDOMWindow.h" #include "nsIDocShell.h" #include "nsIWidget.h" #include "gfxMatrix.h" #include "gfxTypes.h" #include "nsTArray.h" #include "mozilla/dom/HTMLCanvasElement.h" #include "nsICanvasRenderingContextInternal.h" #include "gfxPlatform.h" #include #include #include "mozilla/dom/AnonymousContent.h" #include "mozilla/dom/HTMLBodyElement.h" #include "mozilla/dom/HTMLMediaElementBinding.h" #include "mozilla/dom/HTMLVideoElement.h" #include "mozilla/dom/HTMLImageElement.h" #include "mozilla/dom/DOMRect.h" #include "mozilla/dom/DOMStringList.h" #include "mozilla/dom/KeyframeEffect.h" #include "mozilla/layers/APZCCallbackHelper.h" #include "imgIRequest.h" #include "nsIImageLoadingContent.h" #include "nsCOMPtr.h" #include "nsCSSProps.h" #include "nsListControlFrame.h" #include "mozilla/dom/Element.h" #include "nsCanvasFrame.h" #include "gfxDrawable.h" #include "gfxEnv.h" #include "gfxUtils.h" #include "nsDataHashtable.h" #include "nsTableWrapperFrame.h" #include "nsTextFrame.h" #include "nsFontInflationData.h" #include "nsSVGIntegrationUtils.h" #include "nsSVGUtils.h" #include "SVGImageContext.h" #include "SVGTextFrame.h" #include "nsStyleStructInlines.h" #include "nsStyleTransformMatrix.h" #include "nsIFrameInlines.h" #include "ImageContainer.h" #include "nsComputedDOMStyle.h" #include "ActiveLayerTracker.h" #include "mozilla/gfx/2D.h" #include "gfx2DGlue.h" #include "mozilla/LookAndFeel.h" #include "UnitTransforms.h" #include "TiledLayerBuffer.h" // For TILEDLAYERBUFFER_TILE_SIZE #include "ClientLayerManager.h" #include "nsRefreshDriver.h" #include "nsIContentViewer.h" #include "LayersLogging.h" #include "mozilla/Preferences.h" #include "nsFrameSelection.h" #include "FrameLayerBuilder.h" #include "mozilla/layers/APZUtils.h" // for apz::CalculatePendingDisplayPort #include "mozilla/layers/CompositorBridgeChild.h" #include "mozilla/Telemetry.h" #include "mozilla/StyleAnimationValue.h" #include "mozilla/ServoStyleSet.h" #include "mozilla/WheelHandlingHelper.h" // for WheelHandlingUtils #include "RegionBuilder.h" #include "SVGViewportElement.h" #include "DisplayItemClip.h" #include "mozilla/layers/StackingContextHelper.h" #include "mozilla/layers/WebRenderLayerManager.h" #include "prenv.h" #include "RetainedDisplayListBuilder.h" #include "DisplayListChecker.h" #include "TextDrawTarget.h" #include "nsDeckFrame.h" #include "mozilla/dom/InspectorFontFace.h" #ifdef MOZ_XUL # include "nsXULPopupManager.h" #endif #include "GeckoProfiler.h" #include "nsAnimationManager.h" #include "nsTransitionManager.h" #include "mozilla/RestyleManager.h" #include "LayoutLogging.h" // Make sure getpid() works. #ifdef XP_WIN # include # define getpid _getpid #else # include #endif using namespace mozilla; using namespace mozilla::dom; using namespace mozilla::image; using namespace mozilla::layers; using namespace mozilla::layout; using namespace mozilla::gfx; using mozilla::dom::HTMLMediaElement_Binding::HAVE_METADATA; using mozilla::dom::HTMLMediaElement_Binding::HAVE_NOTHING; #ifdef DEBUG // TODO: remove, see bug 598468. bool nsLayoutUtils::gPreventAssertInCompareTreePosition = false; #endif // DEBUG typedef ScrollableLayerGuid::ViewID ViewID; typedef nsStyleTransformMatrix::TransformReferenceBox TransformReferenceBox; static ViewID sScrollIdCounter = ScrollableLayerGuid::START_SCROLL_ID; typedef nsDataHashtable ContentMap; static ContentMap* sContentMap = nullptr; static ContentMap& GetContentMap() { if (!sContentMap) { sContentMap = new ContentMap(); } return *sContentMap; } template static bool HasMatchingAnimations(EffectSet& aEffects, TestType&& aTest) { for (KeyframeEffect* effect : aEffects) { if (!effect->GetAnimation() || !effect->GetAnimation()->IsRelevant()) { continue; } if (aTest(*effect, aEffects)) { return true; } } return false; } template static bool HasMatchingAnimations(const nsIFrame* aFrame, const nsCSSPropertyIDSet& aPropertySet, TestType&& aTest) { MOZ_ASSERT(aFrame); if (aPropertySet.IsSubsetOf(nsCSSPropertyIDSet::OpacityProperties()) && !aFrame->MayHaveOpacityAnimation()) { return false; } if (aPropertySet.IsSubsetOf(nsCSSPropertyIDSet::TransformLikeProperties()) && !aFrame->MayHaveTransformAnimation()) { return false; } EffectSet* effectSet = EffectSet::GetEffectSetForFrame(aFrame, aPropertySet); if (!effectSet) { return false; } return HasMatchingAnimations(*effectSet, aTest); } /* static */ bool nsLayoutUtils::HasAnimationOfPropertySet( const nsIFrame* aFrame, const nsCSSPropertyIDSet& aPropertySet) { return HasMatchingAnimations( aFrame, aPropertySet, [&aPropertySet](KeyframeEffect& aEffect, const EffectSet&) { return aEffect.HasAnimationOfPropertySet(aPropertySet); }); } /* static */ bool nsLayoutUtils::HasAnimationOfPropertySet( const nsIFrame* aFrame, const nsCSSPropertyIDSet& aPropertySet, EffectSet* aEffectSet) { MOZ_ASSERT( !aEffectSet || EffectSet::GetEffectSetForFrame(aFrame, aPropertySet) == aEffectSet, "The EffectSet, if supplied, should match what we would otherwise fetch"); if (!aEffectSet) { return nsLayoutUtils::HasAnimationOfPropertySet(aFrame, aPropertySet); } if (aPropertySet.IsSubsetOf(nsCSSPropertyIDSet::TransformLikeProperties()) && !aEffectSet->MayHaveTransformAnimation()) { return false; } if (aPropertySet.IsSubsetOf(nsCSSPropertyIDSet::OpacityProperties()) && !aEffectSet->MayHaveOpacityAnimation()) { return false; } return HasMatchingAnimations( *aEffectSet, [&aPropertySet](KeyframeEffect& aEffect, const EffectSet& aEffectSet) { return aEffect.HasAnimationOfPropertySet(aPropertySet); }); } /* static */ bool nsLayoutUtils::HasAnimationOfTransformAndMotionPath( const nsIFrame* aFrame) { return nsLayoutUtils::HasAnimationOfPropertySet( aFrame, nsCSSPropertyIDSet{eCSSProperty_transform, eCSSProperty_translate, eCSSProperty_rotate, eCSSProperty_scale, eCSSProperty_offset_path}) || (!aFrame->StyleDisplay()->mOffsetPath.IsNone() && nsLayoutUtils::HasAnimationOfPropertySet( aFrame, nsCSSPropertyIDSet::MotionPathProperties())); } /* static */ bool nsLayoutUtils::HasEffectiveAnimation( const nsIFrame* aFrame, const nsCSSPropertyIDSet& aPropertySet) { return HasMatchingAnimations( aFrame, aPropertySet, [&aPropertySet](KeyframeEffect& aEffect, const EffectSet& aEffectSet) { return aEffect.HasEffectiveAnimationOfPropertySet(aPropertySet, aEffectSet); }); } /* static */ nsCSSPropertyIDSet nsLayoutUtils::GetAnimationPropertiesForCompositor( const nsIFrame* aStyleFrame) { nsCSSPropertyIDSet properties; // We fetch the effects for the style frame here since this method is called // by RestyleManager::AddLayerChangesForAnimation which takes care to apply // the relevant hints to the primary frame as needed. EffectSet* effects = EffectSet::GetEffectSetForStyleFrame(aStyleFrame); if (!effects) { return properties; } AnimationPerformanceWarning::Type warning; if (!EffectCompositor::AllowCompositorAnimationsOnFrame(aStyleFrame, warning)) { return properties; } for (const KeyframeEffect* effect : *effects) { properties |= effect->GetPropertiesForCompositor(*effects, aStyleFrame); } // If properties only have motion-path properties, we have to make sure they // have effects. i.e. offset-path is not none or we have offset-path // animations. if (properties.IsSubsetOf(nsCSSPropertyIDSet::MotionPathProperties()) && !properties.HasProperty(eCSSProperty_offset_path) && aStyleFrame->StyleDisplay()->mOffsetPath.IsNone()) { properties.Empty(); } return properties; } static float GetSuitableScale(float aMaxScale, float aMinScale, nscoord aVisibleDimension, nscoord aDisplayDimension) { float displayVisibleRatio = float(aDisplayDimension) / float(aVisibleDimension); // We want to rasterize based on the largest scale used during the // transform animation, unless that would make us rasterize something // larger than the screen. But we never want to go smaller than the // minimum scale over the animation. if (FuzzyEqualsMultiplicative(displayVisibleRatio, aMaxScale, .01f)) { // Using aMaxScale may make us rasterize something a fraction larger than // the screen. However, if aMaxScale happens to be the final scale of a // transform animation it is better to use aMaxScale so that for the // fraction of a second before we delayerize the composited texture it has // a better chance of being pixel aligned and composited without resampling // (avoiding visually clunky delayerization). return aMaxScale; } return std::max(std::min(aMaxScale, displayVisibleRatio), aMinScale); } // The first value in this pair is the min scale, and the second one is the max // scale. using MinAndMaxScale = Pair; static inline void UpdateMinMaxScale(const nsIFrame* aFrame, const AnimationValue& aValue, MinAndMaxScale& aMinAndMaxScale) { Size size = aValue.GetScaleValue(aFrame); Size& minScale = aMinAndMaxScale.first(); Size& maxScale = aMinAndMaxScale.second(); minScale = Min(minScale, size); maxScale = Max(maxScale, size); } // The final transform matrix is calculated by merging the final results of each // transform-like properties, so do the scale factors. In other words, the // potential min/max scales could be gotten by multiplying the max/min scales of // each properties. // // For example, there is an animation: // from { "transform: scale(1, 1)", "scale: 3, 3" }; // to { "transform: scale(2, 2)", "scale: 1, 1" }; // // the min scale is (1, 1) * (1, 1) = (1, 1), and // The max scale is (2, 2) * (3, 3) = (6, 6). // This means we multiply the min/max scale factor of transform property and the // min/max scale factor of scale property to get the final max/min scale factor. static Array GetMinAndMaxScaleForAnimationProperty( const nsIFrame* aFrame, const nsTArray>& aAnimations) { // We use a fixed array to store the min/max scales for each property. // The first element in the array is for eCSSProperty_transform, and the // second one is for eCSSProperty_scale. const MinAndMaxScale defaultValue = MakePair(Size(std::numeric_limits::max(), std::numeric_limits::max()), Size(std::numeric_limits::min(), std::numeric_limits::min())); Array minAndMaxScales(defaultValue, defaultValue); for (dom::Animation* anim : aAnimations) { // This method is only expected to be passed animations that are running on // the compositor and we only pass playing animations to the compositor, // which are, by definition, "relevant" animations (animations that are // not yet finished or which are filling forwards). MOZ_ASSERT(anim->IsRelevant()); const dom::KeyframeEffect* effect = anim->GetEffect() ? anim->GetEffect()->AsKeyframeEffect() : nullptr; MOZ_ASSERT(effect, "A playing animation should have a keyframe effect"); for (const AnimationProperty& prop : effect->Properties()) { if (prop.mProperty != eCSSProperty_transform && prop.mProperty != eCSSProperty_scale) { continue; } // 0: eCSSProperty_transform. // 1: eCSSProperty_scale. MinAndMaxScale& scales = minAndMaxScales[prop.mProperty == eCSSProperty_transform ? 0 : 1]; // We need to factor in the scale of the base style if the base style // will be used on the compositor. const AnimationValue& baseStyle = effect->BaseStyle(prop.mProperty); if (!baseStyle.IsNull()) { UpdateMinMaxScale(aFrame, baseStyle, scales); } for (const AnimationPropertySegment& segment : prop.mSegments) { // In case of add or accumulate composite, StyleAnimationValue does // not have a valid value. if (segment.HasReplaceableFromValue()) { UpdateMinMaxScale(aFrame, segment.mFromValue, scales); } if (segment.HasReplaceableToValue()) { UpdateMinMaxScale(aFrame, segment.mToValue, scales); } } } } return minAndMaxScales; } Size nsLayoutUtils::ComputeSuitableScaleForAnimation( const nsIFrame* aFrame, const nsSize& aVisibleSize, const nsSize& aDisplaySize) { const nsTArray> compositorAnimations = EffectCompositor::GetAnimationsForCompositor( aFrame, nsCSSPropertyIDSet{eCSSProperty_transform, eCSSProperty_scale}); if (compositorAnimations.IsEmpty()) { return Size(1.0, 1.0); } const Array minAndMaxScales = GetMinAndMaxScaleForAnimationProperty(aFrame, compositorAnimations); // This might cause an issue if users use std::numeric_limits::min() // (or max()) as the scale value. However, in this case, we may render an // extreme small (or large) element, so this may not be a problem. If so, // please fix this. Size maxScale(std::numeric_limits::min(), std::numeric_limits::min()); Size minScale(std::numeric_limits::max(), std::numeric_limits::max()); auto isUnset = [](const Size& aMax, const Size& aMin) { return aMax.width == std::numeric_limits::min() && aMax.height == std::numeric_limits::min() && aMin.width == std::numeric_limits::max() && aMin.height == std::numeric_limits::max(); }; // Iterate the slots to get the final scale value. for (const auto& pair : minAndMaxScales) { const Size& currMinScale = pair.first(); const Size& currMaxScale = pair.second(); if (isUnset(currMaxScale, currMinScale)) { // We don't have this animation property, so skip. continue; } if (isUnset(maxScale, minScale)) { // Initialize maxScale and minScale. maxScale = currMaxScale; minScale = currMinScale; } else { // The scale factors of each transform-like property should be multiplied // by others because we merge their sampled values as a final matrix by // matrix multiplication, so here we multiply the scale factors by the // previous one to get the possible max and min scale factors. maxScale = maxScale * currMaxScale; minScale = minScale * currMinScale; } } if (isUnset(maxScale, minScale)) { // We didn't encounter any transform-like property. return Size(1.0, 1.0); } return Size(GetSuitableScale(maxScale.width, minScale.width, aVisibleSize.width, aDisplaySize.width), GetSuitableScale(maxScale.height, minScale.height, aVisibleSize.height, aDisplaySize.height)); } bool nsLayoutUtils::AreAsyncAnimationsEnabled() { return StaticPrefs::layers_offmainthreadcomposition_async_animations() && gfxPlatform::OffMainThreadCompositingEnabled(); } bool nsLayoutUtils::AreRetainedDisplayListsEnabled() { #ifdef MOZ_WIDGET_ANDROID return StaticPrefs::layout_display_list_retain(); #else if (XRE_IsContentProcess()) { return StaticPrefs::layout_display_list_retain(); } if (XRE_IsE10sParentProcess()) { return StaticPrefs::layout_display_list_retain_chrome(); } // Retained display lists require e10s. return false; #endif } bool nsLayoutUtils::DisplayRootHasRetainedDisplayListBuilder(nsIFrame* aFrame) { const nsIFrame* displayRoot = nsLayoutUtils::GetDisplayRootFrame(aFrame); MOZ_ASSERT(displayRoot); return displayRoot->HasProperty(RetainedDisplayListBuilder::Cached()); } bool nsLayoutUtils::GPUImageScalingEnabled() { static bool sGPUImageScalingEnabled; static bool sGPUImageScalingPrefInitialised = false; if (!sGPUImageScalingPrefInitialised) { sGPUImageScalingPrefInitialised = true; sGPUImageScalingEnabled = Preferences::GetBool("layout.gpu-image-scaling.enabled", false); } return sGPUImageScalingEnabled; } void nsLayoutUtils::UnionChildOverflow(nsIFrame* aFrame, nsOverflowAreas& aOverflowAreas, FrameChildListIDs aSkipChildLists) { // Iterate over all children except pop-ups. FrameChildListIDs skip(aSkipChildLists); skip += {nsIFrame::kSelectPopupList, nsIFrame::kPopupList}; for (nsIFrame::ChildListIterator childLists(aFrame); !childLists.IsDone(); childLists.Next()) { if (skip.contains(childLists.CurrentID())) { continue; } nsFrameList children = childLists.CurrentList(); for (nsFrameList::Enumerator e(children); !e.AtEnd(); e.Next()) { nsIFrame* child = e.get(); nsOverflowAreas childOverflow = child->GetOverflowAreas() + child->GetPosition(); aOverflowAreas.UnionWith(childOverflow); } } } static void DestroyViewID(void* aObject, nsAtom* aPropertyName, void* aPropertyValue, void* aData) { ViewID* id = static_cast(aPropertyValue); GetContentMap().Remove(*id); delete id; } /** * A namespace class for static layout utilities. */ bool nsLayoutUtils::FindIDFor(const nsIContent* aContent, ViewID* aOutViewId) { void* scrollIdProperty = aContent->GetProperty(nsGkAtoms::RemoteId); if (scrollIdProperty) { *aOutViewId = *static_cast(scrollIdProperty); return true; } return false; } ViewID nsLayoutUtils::FindOrCreateIDFor(nsIContent* aContent) { ViewID scrollId; if (!FindIDFor(aContent, &scrollId)) { scrollId = sScrollIdCounter++; aContent->SetProperty(nsGkAtoms::RemoteId, new ViewID(scrollId), DestroyViewID); GetContentMap().Put(scrollId, aContent); } return scrollId; } nsIContent* nsLayoutUtils::FindContentFor(ViewID aId) { MOZ_ASSERT(aId != ScrollableLayerGuid::NULL_SCROLL_ID, "Cannot find a content element in map for null IDs."); nsIContent* content; bool exists = GetContentMap().Get(aId, &content); if (exists) { return content; } else { return nullptr; } } static nsIFrame* GetScrollFrameFromContent(nsIContent* aContent) { nsIFrame* frame = aContent->GetPrimaryFrame(); if (aContent->OwnerDoc()->GetRootElement() == aContent) { PresShell* presShell = frame ? frame->PresShell() : nullptr; if (!presShell) { presShell = aContent->OwnerDoc()->GetPresShell(); } // We want the scroll frame, the root scroll frame differs from all // others in that the primary frame is not the scroll frame. nsIFrame* rootScrollFrame = presShell ? presShell->GetRootScrollFrame() : nullptr; if (rootScrollFrame) { frame = rootScrollFrame; } } return frame; } nsIScrollableFrame* nsLayoutUtils::FindScrollableFrameFor( nsIContent* aContent) { nsIFrame* scrollFrame = GetScrollFrameFromContent(aContent); return scrollFrame ? scrollFrame->GetScrollTargetFrame() : nullptr; } nsIScrollableFrame* nsLayoutUtils::FindScrollableFrameFor(ViewID aId) { nsIContent* content = FindContentFor(aId); if (!content) { return nullptr; } return FindScrollableFrameFor(content); } ViewID nsLayoutUtils::FindIDForScrollableFrame( nsIScrollableFrame* aScrollable) { if (!aScrollable) { return ScrollableLayerGuid::NULL_SCROLL_ID; } nsIFrame* scrollFrame = do_QueryFrame(aScrollable); nsIContent* scrollContent = scrollFrame->GetContent(); ScrollableLayerGuid::ViewID scrollId; if (scrollContent && nsLayoutUtils::FindIDFor(scrollContent, &scrollId)) { return scrollId; } return ScrollableLayerGuid::NULL_SCROLL_ID; } static nsRect ApplyRectMultiplier(nsRect aRect, float aMultiplier) { if (aMultiplier == 1.0f) { return aRect; } float newWidth = aRect.width * aMultiplier; float newHeight = aRect.height * aMultiplier; float newX = aRect.x - ((newWidth - aRect.width) / 2.0f); float newY = aRect.y - ((newHeight - aRect.height) / 2.0f); // Rounding doesn't matter too much here, do a round-in return nsRect(ceil(newX), ceil(newY), floor(newWidth), floor(newHeight)); } bool nsLayoutUtils::UsesAsyncScrolling(nsIFrame* aFrame) { #ifdef MOZ_WIDGET_ANDROID // We always have async scrolling for android return true; #endif return AsyncPanZoomEnabled(aFrame); } bool nsLayoutUtils::AsyncPanZoomEnabled(nsIFrame* aFrame) { // We use this as a shortcut, since if the compositor will never use APZ, // no widget will either. if (!gfxPlatform::AsyncPanZoomEnabled()) { return false; } nsIFrame* frame = nsLayoutUtils::GetDisplayRootFrame(aFrame); nsIWidget* widget = frame->GetNearestWidget(); if (!widget) { return false; } return widget->AsyncPanZoomEnabled(); } bool nsLayoutUtils::AllowZoomingForDocument( const mozilla::dom::Document* aDocument) { // True if we allow zooming for all documents on this platform, or if we are // in RDM and handling meta viewports, which force zoom under some // circumstances. BrowsingContext* bc = aDocument ? aDocument->GetBrowsingContext() : nullptr; return StaticPrefs::apz_allow_zooming() || (bc && bc->InRDMPane() && nsLayoutUtils::ShouldHandleMetaViewport(aDocument)); } float nsLayoutUtils::GetCurrentAPZResolutionScale(PresShell* aPresShell) { return aPresShell ? aPresShell->GetCumulativeNonRootScaleResolution() : 1.0; } // Return the maximum displayport size, based on the LayerManager's maximum // supported texture size. The result is in app units. static nscoord GetMaxDisplayPortSize(nsIContent* aContent, nsPresContext* aFallbackPrescontext) { MOZ_ASSERT(!StaticPrefs::layers_enable_tiles_AtStartup(), "Do not clamp displayports if tiling is enabled"); // Pick a safe maximum displayport size for sanity purposes. This is the // lowest maximum texture size on tileless-platforms (Windows, D3D10). // If the gfx.max-texture-size pref is set, further restrict the displayport // size to fit within that, because the compositor won't upload stuff larger // than this size. nscoord safeMaximum = aFallbackPrescontext ? aFallbackPrescontext->DevPixelsToAppUnits( std::min(8192, gfxPlatform::MaxTextureSize())) : nscoord_MAX; nsIFrame* frame = aContent->GetPrimaryFrame(); if (!frame) { return safeMaximum; } frame = nsLayoutUtils::GetDisplayRootFrame(frame); nsIWidget* widget = frame->GetNearestWidget(); if (!widget) { return safeMaximum; } LayerManager* lm = widget->GetLayerManager(); if (!lm) { return safeMaximum; } nsPresContext* presContext = frame->PresContext(); int32_t maxSizeInDevPixels = lm->GetMaxTextureSize(); if (maxSizeInDevPixels < 0 || maxSizeInDevPixels == INT_MAX) { return safeMaximum; } maxSizeInDevPixels = std::min(maxSizeInDevPixels, gfxPlatform::MaxTextureSize()); return presContext->DevPixelsToAppUnits(maxSizeInDevPixels); } static nsRect GetDisplayPortFromRectData(nsIContent* aContent, DisplayPortPropertyData* aRectData, float aMultiplier) { // In the case where the displayport is set as a rect, we assume it is // already aligned and clamped as necessary. The burden to do that is // on the setter of the displayport. In practice very few places set the // displayport directly as a rect (mostly tests). We still do need to // expand it by the multiplier though. return ApplyRectMultiplier(aRectData->mRect, aMultiplier); } static nsRect GetDisplayPortFromMarginsData( nsIContent* aContent, DisplayPortMarginsPropertyData* aMarginsData, float aMultiplier) { // In the case where the displayport is set via margins, we apply the margins // to a base rect. Then we align the expanded rect based on the alignment // requested, further expand the rect by the multiplier, and finally, clamp it // to the size of the scrollable rect. nsRect base; if (nsRect* baseData = static_cast( aContent->GetProperty(nsGkAtoms::DisplayPortBase))) { base = *baseData; } else { // In theory we shouldn't get here, but we do sometimes (see bug 1212136). // Fall through for graceful handling. } nsIFrame* frame = GetScrollFrameFromContent(aContent); if (!frame) { // Turns out we can't really compute it. Oops. We still should return // something sane. Note that since we can't clamp the rect without a // frame, we don't apply the multiplier either as it can cause the result // to leak outside the scrollable area. NS_WARNING( "Attempting to get a displayport from a content with no primary " "frame!"); return base; } bool isRoot = false; if (aContent->OwnerDoc()->GetRootElement() == aContent) { isRoot = true; } nsPoint scrollPos; if (nsIScrollableFrame* scrollableFrame = frame->GetScrollTargetFrame()) { scrollPos = scrollableFrame->GetScrollPosition(); } nsPresContext* presContext = frame->PresContext(); int32_t auPerDevPixel = presContext->AppUnitsPerDevPixel(); LayoutDeviceToScreenScale2D res( presContext->PresShell()->GetCumulativeResolution() * nsLayoutUtils::GetTransformToAncestorScale(frame)); // Calculate the expanded scrollable rect, which we'll be clamping the // displayport to. nsRect expandedScrollableRect = nsLayoutUtils::CalculateExpandedScrollableRect(frame); // GetTransformToAncestorScale() can return 0. In this case, just return the // base rect (clamped to the expanded scrollable rect), as other calculations // would run into divisions by zero. if (res == LayoutDeviceToScreenScale2D(0, 0)) { // Make sure the displayport remains within the scrollable rect. return base.MoveInsideAndClamp(expandedScrollableRect - scrollPos); } // First convert the base rect to screen pixels LayoutDeviceToScreenScale2D parentRes = res; if (isRoot) { // the base rect for root scroll frames is specified in the parent document // coordinate space, so it doesn't include the local resolution. float localRes = presContext->PresShell()->GetResolution(); parentRes.xScale /= localRes; parentRes.yScale /= localRes; } ScreenRect screenRect = LayoutDeviceRect::FromAppUnits(base, auPerDevPixel) * parentRes; // Note on the correctness of applying the alignment in Screen space: // The correct space to apply the alignment in would be Layer space, but // we don't necessarily know the scale to convert to Layer space at this // point because Layout may not yet have chosen the resolution at which to // render (it chooses that in FrameLayerBuilder, but this can be called // during display list building). Therefore, we perform the alignment in // Screen space, which basically assumes that Layout chose to render at // screen resolution; since this is what Layout does most of the time, // this is a good approximation. A proper solution would involve moving // the choosing of the resolution to display-list building time. ScreenSize alignment; PresShell* presShell = presContext->PresShell(); MOZ_ASSERT(presShell); if (presShell->IsDisplayportSuppressed()) { alignment = ScreenSize(1, 1); } else if (StaticPrefs::layers_enable_tiles_AtStartup()) { // Don't align to tiles if they are too large, because we could expand // the displayport by a lot which can take more paint time. It's a tradeoff // though because if we don't align to tiles we have more waste on upload. IntSize tileSize = gfxVars::TileSize(); alignment = ScreenSize(std::min(256, tileSize.width), std::min(256, tileSize.height)); } else { // If we're not drawing with tiles then we need to be careful about not // hitting the max texture size and we only need 1 draw call per layer // so we can align to a smaller multiple. alignment = ScreenSize(128, 128); } // Avoid division by zero. if (alignment.width == 0) { alignment.width = 128; } if (alignment.height == 0) { alignment.height = 128; } if (StaticPrefs::layers_enable_tiles_AtStartup()) { // Expand the rect by the margins screenRect.Inflate(aMarginsData->mMargins); } else { // Calculate the displayport to make sure we fit within the max texture size // when not tiling. nscoord maxSizeAppUnits = GetMaxDisplayPortSize(aContent, presContext); MOZ_ASSERT(maxSizeAppUnits < nscoord_MAX); // The alignment code can round up to 3 tiles, we want to make sure // that the displayport can grow by up to 3 tiles without going // over the max texture size. const int MAX_ALIGN_ROUNDING = 3; // Find the maximum size in screen pixels. int32_t maxSizeDevPx = presContext->AppUnitsToDevPixels(maxSizeAppUnits); int32_t maxWidthScreenPx = floor(double(maxSizeDevPx) * res.xScale) - MAX_ALIGN_ROUNDING * alignment.width; int32_t maxHeightScreenPx = floor(double(maxSizeDevPx) * res.yScale) - MAX_ALIGN_ROUNDING * alignment.height; // For each axis, inflate the margins up to the maximum size. const ScreenMargin& margins = aMarginsData->mMargins; if (screenRect.height < maxHeightScreenPx) { int32_t budget = maxHeightScreenPx - screenRect.height; // Scale the margins down to fit into the budget if necessary, maintaining // their relative ratio. float scale = 1.0f; if (float(budget) < margins.TopBottom()) { scale = float(budget) / margins.TopBottom(); } float top = margins.top * scale; float bottom = margins.bottom * scale; screenRect.y -= top; screenRect.height += top + bottom; } if (screenRect.width < maxWidthScreenPx) { int32_t budget = maxWidthScreenPx - screenRect.width; float scale = 1.0f; if (float(budget) < margins.LeftRight()) { scale = float(budget) / margins.LeftRight(); } float left = margins.left * scale; float right = margins.right * scale; screenRect.x -= left; screenRect.width += left + right; } } ScreenPoint scrollPosScreen = LayoutDevicePoint::FromAppUnits(scrollPos, auPerDevPixel) * res; // Round-out the display port to the nearest alignment (tiles) screenRect += scrollPosScreen; float x = alignment.width * floor(screenRect.x / alignment.width); float y = alignment.height * floor(screenRect.y / alignment.height); float w = alignment.width * ceil(screenRect.width / alignment.width + 1); float h = alignment.height * ceil(screenRect.height / alignment.height + 1); screenRect = ScreenRect(x, y, w, h); screenRect -= scrollPosScreen; // Convert the aligned rect back into app units. nsRect result = LayoutDeviceRect::ToAppUnits(screenRect / res, auPerDevPixel); // If we have non-zero margins, expand the displayport for the low-res buffer // if that's what we're drawing. If we have zero margins, we want the // displayport to reflect the scrollport. if (aMarginsData->mMargins != ScreenMargin()) { result = ApplyRectMultiplier(result, aMultiplier); } // Make sure the displayport remains within the scrollable rect. result = result.MoveInsideAndClamp(expandedScrollableRect - scrollPos); return result; } static bool HasVisibleAnonymousContents(Document* aDoc) { for (RefPtr& ac : aDoc->GetAnonymousContents()) { // We check to see if the anonymous content node has a frame. If it doesn't, // that means that's not visible to the user because e.g. it's display:none. // For now we assume that if it has a frame, it is visible. We might be able // to refine this further by adding complexity if it turns out this // condition results in a lot of false positives. if (ac->ContentNode().GetPrimaryFrame()) { return true; } } return false; } bool nsLayoutUtils::ShouldDisableApzForElement(nsIContent* aContent) { if (!aContent) { return false; } Document* doc = aContent->GetComposedDoc(); if (PresShell* rootPresShell = APZCCallbackHelper::GetRootContentDocumentPresShellForContent( aContent)) { if (Document* rootDoc = rootPresShell->GetDocument()) { nsIContent* rootContent = rootPresShell->GetRootScrollFrame() ? rootPresShell->GetRootScrollFrame()->GetContent() : rootDoc->GetDocumentElement(); // For the AccessibleCaret and other anonymous contents: disable APZ on // any scrollable subframes that are not the root scrollframe of a // document, if the document has any visible anonymous contents. // // If we find this is triggering in too many scenarios then we might // want to tighten this check further. The main use cases for which we // want to disable APZ as of this writing are listed in bug 1316318. if (aContent != rootContent && HasVisibleAnonymousContents(rootDoc)) { return true; } } } if (!doc) { return false; } if (PresShell* presShell = doc->GetPresShell()) { if (RefPtr eventHub = presShell->GetAccessibleCaretEventHub()) { // Disable APZ for all elements if AccessibleCaret tells us to do so. if (eventHub->ShouldDisableApz()) { return true; } } } return StaticPrefs::apz_disable_for_scroll_linked_effects() && doc->HasScrollLinkedEffect(); } static bool GetDisplayPortData( nsIContent* aContent, DisplayPortPropertyData** aOutRectData, DisplayPortMarginsPropertyData** aOutMarginsData) { MOZ_ASSERT(aOutRectData && aOutMarginsData); *aOutRectData = static_cast( aContent->GetProperty(nsGkAtoms::DisplayPort)); *aOutMarginsData = static_cast( aContent->GetProperty(nsGkAtoms::DisplayPortMargins)); if (!*aOutRectData && !*aOutMarginsData) { // This content element has no displayport data at all return false; } if (*aOutRectData && *aOutMarginsData) { // choose margins if equal priority if ((*aOutRectData)->mPriority > (*aOutMarginsData)->mPriority) { *aOutMarginsData = nullptr; } else { *aOutRectData = nullptr; } } NS_ASSERTION((*aOutRectData == nullptr) != (*aOutMarginsData == nullptr), "Only one of aOutRectData or aOutMarginsData should be set!"); return true; } bool nsLayoutUtils::IsMissingDisplayPortBaseRect(nsIContent* aContent) { DisplayPortPropertyData* rectData = nullptr; DisplayPortMarginsPropertyData* marginsData = nullptr; if (GetDisplayPortData(aContent, &rectData, &marginsData) && marginsData) { return !aContent->GetProperty(nsGkAtoms::DisplayPortBase); } return false; } enum class MaxSizeExceededBehaviour { // Ask GetDisplayPortImpl to assert if the calculated displayport exceeds // the maximum allowed size. Assert, // Ask GetDisplayPortImpl to pretend like there's no displayport at all, if // the calculated displayport exceeds the maximum allowed size. Drop, }; static bool GetDisplayPortImpl( nsIContent* aContent, nsRect* aResult, float aMultiplier, MaxSizeExceededBehaviour aBehaviour = MaxSizeExceededBehaviour::Assert, bool* aOutPainted = nullptr) { DisplayPortPropertyData* rectData = nullptr; DisplayPortMarginsPropertyData* marginsData = nullptr; if (!GetDisplayPortData(aContent, &rectData, &marginsData)) { return false; } if (aOutPainted) { *aOutPainted = rectData ? rectData->mPainted : marginsData->mPainted; } nsIFrame* frame = aContent->GetPrimaryFrame(); if (frame && !frame->PresShell()->AsyncPanZoomEnabled()) { return false; } if (!aResult) { // We have displayport data, but the caller doesn't want the actual // rect, so we don't need to actually compute it. return true; } bool isDisplayportSuppressed = false; if (frame) { nsPresContext* presContext = frame->PresContext(); MOZ_ASSERT(presContext); PresShell* presShell = presContext->PresShell(); MOZ_ASSERT(presShell); isDisplayportSuppressed = presShell->IsDisplayportSuppressed(); } nsRect result; if (rectData) { result = GetDisplayPortFromRectData(aContent, rectData, aMultiplier); } else if (isDisplayportSuppressed || nsLayoutUtils::ShouldDisableApzForElement(aContent)) { DisplayPortMarginsPropertyData noMargins(ScreenMargin(), 1, /*painted=*/false); result = GetDisplayPortFromMarginsData(aContent, &noMargins, aMultiplier); } else { result = GetDisplayPortFromMarginsData(aContent, marginsData, aMultiplier); } if (!StaticPrefs::layers_enable_tiles_AtStartup()) { // Perform the desired error handling if the displayport dimensions // exceeds the maximum allowed size nscoord maxSize = GetMaxDisplayPortSize(aContent, nullptr); if (result.width > maxSize || result.height > maxSize) { switch (aBehaviour) { case MaxSizeExceededBehaviour::Assert: NS_ASSERTION(false, "Displayport must be a valid texture size"); break; case MaxSizeExceededBehaviour::Drop: return false; } } } *aResult = result; return true; } static void TranslateFromScrollPortToScrollFrame(nsIContent* aContent, nsRect* aRect) { MOZ_ASSERT(aRect); if (nsIScrollableFrame* scrollableFrame = nsLayoutUtils::FindScrollableFrameFor(aContent)) { *aRect += scrollableFrame->GetScrollPortRect().TopLeft(); } } bool nsLayoutUtils::GetDisplayPort( nsIContent* aContent, nsRect* aResult, RelativeTo aRelativeTo /* = RelativeTo::ScrollPort */, bool* aOutPainted /* = nullptr */) { float multiplier = StaticPrefs::layers_low_precision_buffer() ? 1.0f / StaticPrefs::layers_low_precision_resolution() : 1.0f; bool usingDisplayPort = GetDisplayPortImpl(aContent, aResult, multiplier, MaxSizeExceededBehaviour::Assert, aOutPainted); if (aResult && usingDisplayPort && aRelativeTo == RelativeTo::ScrollFrame) { TranslateFromScrollPortToScrollFrame(aContent, aResult); } return usingDisplayPort; } bool nsLayoutUtils::HasDisplayPort(nsIContent* aContent) { return GetDisplayPort(aContent, nullptr); } bool nsLayoutUtils::HasPaintedDisplayPort(nsIContent* aContent) { DisplayPortPropertyData* rectData = nullptr; DisplayPortMarginsPropertyData* marginsData = nullptr; GetDisplayPortData(aContent, &rectData, &marginsData); if (rectData) { return rectData->mPainted; } if (marginsData) { return marginsData->mPainted; } return false; } void nsLayoutUtils::MarkDisplayPortAsPainted(nsIContent* aContent) { DisplayPortPropertyData* rectData = nullptr; DisplayPortMarginsPropertyData* marginsData = nullptr; GetDisplayPortData(aContent, &rectData, &marginsData); MOZ_ASSERT(rectData || marginsData, "MarkDisplayPortAsPainted should only be called for an element " "with a displayport"); if (rectData) { rectData->mPainted = true; } if (marginsData) { marginsData->mPainted = true; } } /* static */ bool nsLayoutUtils::GetDisplayPortForVisibilityTesting( nsIContent* aContent, nsRect* aResult, RelativeTo aRelativeTo /* = RelativeTo::ScrollPort */) { MOZ_ASSERT(aResult); // Since the base rect might not have been updated very recently, it's // possible to end up with an extra-large displayport at this point, if the // zoom level is changed by a lot. Instead of using the default behaviour of // asserting, we can just ignore the displayport if that happens, as this // call site is best-effort. bool usingDisplayPort = GetDisplayPortImpl(aContent, aResult, 1.0f, MaxSizeExceededBehaviour::Drop); if (usingDisplayPort && aRelativeTo == RelativeTo::ScrollFrame) { TranslateFromScrollPortToScrollFrame(aContent, aResult); } return usingDisplayPort; } void nsLayoutUtils::InvalidateForDisplayPortChange( nsIContent* aContent, bool aHadDisplayPort, const nsRect& aOldDisplayPort, const nsRect& aNewDisplayPort, RepaintMode aRepaintMode) { if (aRepaintMode != RepaintMode::Repaint) { return; } bool changed = !aHadDisplayPort || !aOldDisplayPort.IsEqualEdges(aNewDisplayPort); nsIFrame* frame = GetScrollFrameFromContent(aContent); if (frame) { frame = do_QueryFrame(frame->GetScrollTargetFrame()); } if (changed && frame) { // It is important to call SchedulePaint on the same frame that we set the // dirty rect properties on so we can find the frame later to remove the // properties. frame->SchedulePaint(); if (!nsLayoutUtils::AreRetainedDisplayListsEnabled() || !nsLayoutUtils::DisplayRootHasRetainedDisplayListBuilder(frame)) { return; } bool found; nsRect* rect = frame->GetProperty( nsDisplayListBuilder::DisplayListBuildingDisplayPortRect(), &found); if (!found) { rect = new nsRect(); frame->AddProperty( nsDisplayListBuilder::DisplayListBuildingDisplayPortRect(), rect); frame->SetHasOverrideDirtyRegion(true); nsIFrame* rootFrame = frame->PresShell()->GetRootFrame(); MOZ_ASSERT(rootFrame); RetainedDisplayListData* data = GetOrSetRetainedDisplayListData(rootFrame); data->Flags(frame) |= RetainedDisplayListData::FrameFlags::HasProps; } else { MOZ_ASSERT(rect, "this property should only store non-null values"); } if (aHadDisplayPort) { // We only need to build a display list for any new areas added nsRegion newRegion(aNewDisplayPort); newRegion.SubOut(aOldDisplayPort); rect->UnionRect(*rect, newRegion.GetBounds()); } else { rect->UnionRect(*rect, aNewDisplayPort); } } } bool nsLayoutUtils::SetDisplayPortMargins(nsIContent* aContent, PresShell* aPresShell, const ScreenMargin& aMargins, uint32_t aPriority, RepaintMode aRepaintMode) { MOZ_ASSERT(aContent); MOZ_ASSERT(aContent->GetComposedDoc() == aPresShell->GetDocument()); DisplayPortMarginsPropertyData* currentData = static_cast( aContent->GetProperty(nsGkAtoms::DisplayPortMargins)); if (currentData && currentData->mPriority > aPriority) { return false; } nsIFrame* scrollFrame = GetScrollFrameFromContent(aContent); nsRect oldDisplayPort; bool hadDisplayPort = false; bool wasPainted = false; if (scrollFrame) { // We only use the two return values from this function to call // InvalidateForDisplayPortChange. InvalidateForDisplayPortChange does // nothing if aContent does not have a frame. So getting the displayport is // useless if the content has no frame, so we avoid calling this to avoid // triggering a warning about not having a frame. hadDisplayPort = GetHighResolutionDisplayPort(aContent, &oldDisplayPort, &wasPainted); } aContent->SetProperty( nsGkAtoms::DisplayPortMargins, new DisplayPortMarginsPropertyData(aMargins, aPriority, wasPainted), nsINode::DeleteProperty); nsRect newDisplayPort; DebugOnly hasDisplayPort = GetHighResolutionDisplayPort(aContent, &newDisplayPort); MOZ_ASSERT(hasDisplayPort); nsIScrollableFrame* scrollableFrame = scrollFrame ? scrollFrame->GetScrollTargetFrame() : nullptr; if (!scrollableFrame) { return true; } InvalidateForDisplayPortChange(aContent, hadDisplayPort, oldDisplayPort, newDisplayPort, aRepaintMode); scrollableFrame->TriggerDisplayPortExpiration(); // Display port margins changing means that the set of visible frames may // have drastically changed. Check if we should schedule an update. hadDisplayPort = scrollableFrame->GetDisplayPortAtLastApproximateFrameVisibilityUpdate( &oldDisplayPort); bool needVisibilityUpdate = !hadDisplayPort; // Check if the total size has changed by a large factor. if (!needVisibilityUpdate) { if ((newDisplayPort.width > 2 * oldDisplayPort.width) || (oldDisplayPort.width > 2 * newDisplayPort.width) || (newDisplayPort.height > 2 * oldDisplayPort.height) || (oldDisplayPort.height > 2 * newDisplayPort.height)) { needVisibilityUpdate = true; } } // Check if it's moved by a significant amount. if (!needVisibilityUpdate) { if (nsRect* baseData = static_cast( aContent->GetProperty(nsGkAtoms::DisplayPortBase))) { nsRect base = *baseData; if ((std::abs(newDisplayPort.X() - oldDisplayPort.X()) > base.width) || (std::abs(newDisplayPort.XMost() - oldDisplayPort.XMost()) > base.width) || (std::abs(newDisplayPort.Y() - oldDisplayPort.Y()) > base.height) || (std::abs(newDisplayPort.YMost() - oldDisplayPort.YMost()) > base.height)) { needVisibilityUpdate = true; } } } if (needVisibilityUpdate) { aPresShell->ScheduleApproximateFrameVisibilityUpdateNow(); } return true; } void nsLayoutUtils::SetDisplayPortBase(nsIContent* aContent, const nsRect& aBase) { aContent->SetProperty(nsGkAtoms::DisplayPortBase, new nsRect(aBase), nsINode::DeleteProperty); } void nsLayoutUtils::SetDisplayPortBaseIfNotSet(nsIContent* aContent, const nsRect& aBase) { if (!aContent->GetProperty(nsGkAtoms::DisplayPortBase)) { SetDisplayPortBase(aContent, aBase); } } bool nsLayoutUtils::GetCriticalDisplayPort(nsIContent* aContent, nsRect* aResult, bool* aOutPainted) { if (StaticPrefs::layers_low_precision_buffer()) { return GetDisplayPortImpl(aContent, aResult, 1.0f, MaxSizeExceededBehaviour::Assert, aOutPainted); } return false; } bool nsLayoutUtils::HasCriticalDisplayPort(nsIContent* aContent) { return GetCriticalDisplayPort(aContent, nullptr); } bool nsLayoutUtils::GetHighResolutionDisplayPort(nsIContent* aContent, nsRect* aResult, bool* aOutPainted) { if (StaticPrefs::layers_low_precision_buffer()) { return GetCriticalDisplayPort(aContent, aResult, aOutPainted); } return GetDisplayPort(aContent, aResult, RelativeTo::ScrollPort, aOutPainted); } void nsLayoutUtils::RemoveDisplayPort(nsIContent* aContent) { aContent->DeleteProperty(nsGkAtoms::DisplayPort); aContent->DeleteProperty(nsGkAtoms::DisplayPortMargins); } void nsLayoutUtils::NotifyPaintSkipTransaction(ViewID aScrollId) { if (nsIScrollableFrame* scrollFrame = nsLayoutUtils::FindScrollableFrameFor(aScrollId)) { scrollFrame->NotifyApzTransaction(); } } nsContainerFrame* nsLayoutUtils::LastContinuationWithChild( nsContainerFrame* aFrame) { MOZ_ASSERT(aFrame, "NULL frame pointer"); for (auto f = aFrame->LastContinuation(); f; f = f->GetPrevContinuation()) { for (nsIFrame::ChildListIterator lists(f); !lists.IsDone(); lists.Next()) { if (MOZ_LIKELY(!lists.CurrentList().IsEmpty())) { return static_cast(f); } } } return aFrame; } // static FrameChildListID nsLayoutUtils::GetChildListNameFor(nsIFrame* aChildFrame) { nsIFrame::ChildListID id = nsIFrame::kPrincipalList; MOZ_DIAGNOSTIC_ASSERT(!(aChildFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW)); if (aChildFrame->GetStateBits() & NS_FRAME_IS_OVERFLOW_CONTAINER) { nsIFrame* pif = aChildFrame->GetPrevInFlow(); if (pif->GetParent() == aChildFrame->GetParent()) { id = nsIFrame::kExcessOverflowContainersList; } else { id = nsIFrame::kOverflowContainersList; } } else { LayoutFrameType childType = aChildFrame->Type(); if (LayoutFrameType::MenuPopup == childType) { nsIFrame* parent = aChildFrame->GetParent(); MOZ_ASSERT(parent, "nsMenuPopupFrame can't be the root frame"); if (parent) { if (parent->IsPopupSetFrame()) { id = nsIFrame::kPopupList; } else { nsIFrame* firstPopup = parent->GetChildList(nsIFrame::kPopupList).FirstChild(); MOZ_ASSERT( !firstPopup || !firstPopup->GetNextSibling(), "We assume popupList only has one child, but it has more."); id = firstPopup == aChildFrame ? nsIFrame::kPopupList : nsIFrame::kPrincipalList; } } else { id = nsIFrame::kPrincipalList; } } else if (LayoutFrameType::TableColGroup == childType) { id = nsIFrame::kColGroupList; } else if (aChildFrame->IsTableCaption()) { id = nsIFrame::kCaptionList; } else { id = nsIFrame::kPrincipalList; } } #ifdef DEBUG // Verify that the frame is actually in that child list or in the // corresponding overflow list. nsContainerFrame* parent = aChildFrame->GetParent(); bool found = parent->GetChildList(id).ContainsFrame(aChildFrame); if (!found) { found = parent->GetChildList(nsIFrame::kOverflowList) .ContainsFrame(aChildFrame); MOZ_ASSERT(found, "not in child list"); } #endif return id; } static Element* GetPseudo(const nsIContent* aContent, nsAtom* aPseudoProperty) { MOZ_ASSERT(aPseudoProperty == nsGkAtoms::beforePseudoProperty || aPseudoProperty == nsGkAtoms::afterPseudoProperty || aPseudoProperty == nsGkAtoms::markerPseudoProperty); if (!aContent->MayHaveAnonymousChildren()) { return nullptr; } return static_cast(aContent->GetProperty(aPseudoProperty)); } /*static*/ Element* nsLayoutUtils::GetBeforePseudo(const nsIContent* aContent) { return GetPseudo(aContent, nsGkAtoms::beforePseudoProperty); } /*static*/ nsIFrame* nsLayoutUtils::GetBeforeFrame(const nsIContent* aContent) { Element* pseudo = GetBeforePseudo(aContent); return pseudo ? pseudo->GetPrimaryFrame() : nullptr; } /*static*/ Element* nsLayoutUtils::GetAfterPseudo(const nsIContent* aContent) { return GetPseudo(aContent, nsGkAtoms::afterPseudoProperty); } /*static*/ nsIFrame* nsLayoutUtils::GetAfterFrame(const nsIContent* aContent) { Element* pseudo = GetAfterPseudo(aContent); return pseudo ? pseudo->GetPrimaryFrame() : nullptr; } /*static*/ Element* nsLayoutUtils::GetMarkerPseudo(const nsIContent* aContent) { return GetPseudo(aContent, nsGkAtoms::markerPseudoProperty); } /*static*/ nsIFrame* nsLayoutUtils::GetMarkerFrame(const nsIContent* aContent) { Element* pseudo = GetMarkerPseudo(aContent); return pseudo ? pseudo->GetPrimaryFrame() : nullptr; } // static nsIFrame* nsLayoutUtils::GetClosestFrameOfType(nsIFrame* aFrame, LayoutFrameType aFrameType, nsIFrame* aStopAt) { for (nsIFrame* frame = aFrame; frame; frame = frame->GetParent()) { if (frame->Type() == aFrameType) { return frame; } if (frame == aStopAt) { break; } } return nullptr; } /* static */ nsIFrame* nsLayoutUtils::GetPageFrame(nsIFrame* aFrame) { return GetClosestFrameOfType(aFrame, LayoutFrameType::Page); } /* static */ nsIFrame* nsLayoutUtils::GetStyleFrame(nsIFrame* aPrimaryFrame) { if (aPrimaryFrame->IsTableWrapperFrame()) { nsIFrame* inner = aPrimaryFrame->PrincipalChildList().FirstChild(); // inner may be null, if aPrimaryFrame is mid-destruction return inner; } return aPrimaryFrame; } const nsIFrame* nsLayoutUtils::GetStyleFrame(const nsIFrame* aPrimaryFrame) { return nsLayoutUtils::GetStyleFrame(const_cast(aPrimaryFrame)); } nsIFrame* nsLayoutUtils::GetStyleFrame(const nsIContent* aContent) { nsIFrame* frame = aContent->GetPrimaryFrame(); if (!frame) { return nullptr; } return nsLayoutUtils::GetStyleFrame(frame); } /* static */ nsIFrame* nsLayoutUtils::GetPrimaryFrameFromStyleFrame(nsIFrame* aStyleFrame) { nsIFrame* parent = aStyleFrame->GetParent(); return parent && parent->IsTableWrapperFrame() ? parent : aStyleFrame; } /* static */ const nsIFrame* nsLayoutUtils::GetPrimaryFrameFromStyleFrame( const nsIFrame* aStyleFrame) { return nsLayoutUtils::GetPrimaryFrameFromStyleFrame( const_cast(aStyleFrame)); } /*static*/ bool nsLayoutUtils::IsPrimaryStyleFrame(const nsIFrame* aFrame) { if (aFrame->IsTableWrapperFrame()) { return false; } const nsIFrame* parent = aFrame->GetParent(); if (parent && parent->IsTableWrapperFrame()) { return parent->PrincipalChildList().FirstChild() == aFrame; } return aFrame->IsPrimaryFrame(); } nsIFrame* nsLayoutUtils::GetFloatFromPlaceholder(nsIFrame* aFrame) { NS_ASSERTION(aFrame->IsPlaceholderFrame(), "Must have a placeholder here"); if (aFrame->GetStateBits() & PLACEHOLDER_FOR_FLOAT) { nsIFrame* outOfFlowFrame = nsPlaceholderFrame::GetRealFrameForPlaceholder(aFrame); NS_ASSERTION(outOfFlowFrame && outOfFlowFrame->IsFloating(), "How did that happen?"); return outOfFlowFrame; } return nullptr; } // static nsIFrame* nsLayoutUtils::GetCrossDocParentFrame(const nsIFrame* aFrame, nsPoint* aExtraOffset) { nsIFrame* p = aFrame->GetParent(); if (p) { return p; } nsView* v = aFrame->GetView(); if (!v) { return nullptr; } v = v->GetParent(); // anonymous inner view if (!v) { return nullptr; } v = v->GetParent(); // subdocumentframe's view if (!v) { return nullptr; } p = v->GetFrame(); if (p && aExtraOffset) { nsSubDocumentFrame* subdocumentFrame = do_QueryFrame(p); MOZ_ASSERT(subdocumentFrame); *aExtraOffset += subdocumentFrame->GetExtraOffset(); } return p; } // static bool nsLayoutUtils::IsProperAncestorFrameCrossDoc(nsIFrame* aAncestorFrame, nsIFrame* aFrame, nsIFrame* aCommonAncestor) { if (aFrame == aAncestorFrame) return false; return IsAncestorFrameCrossDoc(aAncestorFrame, aFrame, aCommonAncestor); } // static bool nsLayoutUtils::IsAncestorFrameCrossDoc(const nsIFrame* aAncestorFrame, const nsIFrame* aFrame, const nsIFrame* aCommonAncestor) { for (const nsIFrame* f = aFrame; f != aCommonAncestor; f = GetCrossDocParentFrame(f)) { if (f == aAncestorFrame) return true; } return aCommonAncestor == aAncestorFrame; } // static bool nsLayoutUtils::IsProperAncestorFrame(const nsIFrame* aAncestorFrame, const nsIFrame* aFrame, const nsIFrame* aCommonAncestor) { if (aFrame == aAncestorFrame) return false; for (const nsIFrame* f = aFrame; f != aCommonAncestor; f = f->GetParent()) { if (f == aAncestorFrame) return true; } return aCommonAncestor == aAncestorFrame; } // static int32_t nsLayoutUtils::DoCompareTreePosition( nsIContent* aContent1, nsIContent* aContent2, int32_t aIf1Ancestor, int32_t aIf2Ancestor, const nsIContent* aCommonAncestor) { MOZ_ASSERT(aIf1Ancestor == -1 || aIf1Ancestor == 0 || aIf1Ancestor == 1); MOZ_ASSERT(aIf2Ancestor == -1 || aIf2Ancestor == 0 || aIf2Ancestor == 1); MOZ_ASSERT(aContent1, "aContent1 must not be null"); MOZ_ASSERT(aContent2, "aContent2 must not be null"); AutoTArray content1Ancestors; nsINode* c1; for (c1 = aContent1; c1 && c1 != aCommonAncestor; c1 = c1->GetParentOrShadowHostNode()) { content1Ancestors.AppendElement(c1); } if (!c1 && aCommonAncestor) { // So, it turns out aCommonAncestor was not an ancestor of c1. Oops. // Never mind. We can continue as if aCommonAncestor was null. aCommonAncestor = nullptr; } AutoTArray content2Ancestors; nsINode* c2; for (c2 = aContent2; c2 && c2 != aCommonAncestor; c2 = c2->GetParentOrShadowHostNode()) { content2Ancestors.AppendElement(c2); } if (!c2 && aCommonAncestor) { // So, it turns out aCommonAncestor was not an ancestor of c2. // We need to retry with no common ancestor hint. return DoCompareTreePosition(aContent1, aContent2, aIf1Ancestor, aIf2Ancestor, nullptr); } int last1 = content1Ancestors.Length() - 1; int last2 = content2Ancestors.Length() - 1; nsINode* content1Ancestor = nullptr; nsINode* content2Ancestor = nullptr; while (last1 >= 0 && last2 >= 0 && ((content1Ancestor = content1Ancestors.ElementAt(last1)) == (content2Ancestor = content2Ancestors.ElementAt(last2)))) { last1--; last2--; } if (last1 < 0) { if (last2 < 0) { NS_ASSERTION(aContent1 == aContent2, "internal error?"); return 0; } // aContent1 is an ancestor of aContent2 return aIf1Ancestor; } if (last2 < 0) { // aContent2 is an ancestor of aContent1 return aIf2Ancestor; } // content1Ancestor != content2Ancestor, so they must be siblings with the // same parent nsINode* parent = content1Ancestor->GetParentOrShadowHostNode(); #ifdef DEBUG // TODO: remove the uglyness, see bug 598468. NS_ASSERTION(gPreventAssertInCompareTreePosition || parent, "no common ancestor at all???"); #endif // DEBUG if (!parent) { // different documents?? return 0; } int32_t index1 = parent->ComputeIndexOf(content1Ancestor); int32_t index2 = parent->ComputeIndexOf(content2Ancestor); // None of the nodes are anonymous, just do a regular comparison. if (index1 >= 0 && index2 >= 0) { return index1 - index2; } // Otherwise handle pseudo-element and anonymous content ordering. // // ::marker -> ::before -> anon siblings -> regular siblings -> ::after auto PseudoIndex = [](const nsINode* aNode, int32_t aNodeIndex) -> int32_t { if (aNodeIndex >= 0) { return 1; // Not a pseudo. } if (aNode->IsContent()) { if (aNode->AsContent()->IsGeneratedContentContainerForMarker()) { return -2; } if (aNode->AsContent()->IsGeneratedContentContainerForBefore()) { return -1; } if (aNode->AsContent()->IsGeneratedContentContainerForAfter()) { return 2; } } return 0; }; return PseudoIndex(content1Ancestor, index1) - PseudoIndex(content2Ancestor, index2); } // static nsIFrame* nsLayoutUtils::FillAncestors(nsIFrame* aFrame, nsIFrame* aStopAtAncestor, nsTArray* aAncestors) { while (aFrame && aFrame != aStopAtAncestor) { aAncestors->AppendElement(aFrame); aFrame = nsLayoutUtils::GetParentOrPlaceholderFor(aFrame); } return aFrame; } // Return true if aFrame1 is after aFrame2 static bool IsFrameAfter(nsIFrame* aFrame1, nsIFrame* aFrame2) { nsIFrame* f = aFrame2; do { f = f->GetNextSibling(); if (f == aFrame1) return true; } while (f); return false; } // static int32_t nsLayoutUtils::DoCompareTreePosition(nsIFrame* aFrame1, nsIFrame* aFrame2, int32_t aIf1Ancestor, int32_t aIf2Ancestor, nsIFrame* aCommonAncestor) { MOZ_ASSERT(aIf1Ancestor == -1 || aIf1Ancestor == 0 || aIf1Ancestor == 1); MOZ_ASSERT(aIf2Ancestor == -1 || aIf2Ancestor == 0 || aIf2Ancestor == 1); MOZ_ASSERT(aFrame1, "aFrame1 must not be null"); MOZ_ASSERT(aFrame2, "aFrame2 must not be null"); AutoTArray frame2Ancestors; nsIFrame* nonCommonAncestor = FillAncestors(aFrame2, aCommonAncestor, &frame2Ancestors); return DoCompareTreePosition(aFrame1, aFrame2, frame2Ancestors, aIf1Ancestor, aIf2Ancestor, nonCommonAncestor ? aCommonAncestor : nullptr); } // static int32_t nsLayoutUtils::DoCompareTreePosition( nsIFrame* aFrame1, nsIFrame* aFrame2, nsTArray& aFrame2Ancestors, int32_t aIf1Ancestor, int32_t aIf2Ancestor, nsIFrame* aCommonAncestor) { MOZ_ASSERT(aIf1Ancestor == -1 || aIf1Ancestor == 0 || aIf1Ancestor == 1); MOZ_ASSERT(aIf2Ancestor == -1 || aIf2Ancestor == 0 || aIf2Ancestor == 1); MOZ_ASSERT(aFrame1, "aFrame1 must not be null"); MOZ_ASSERT(aFrame2, "aFrame2 must not be null"); nsPresContext* presContext = aFrame1->PresContext(); if (presContext != aFrame2->PresContext()) { NS_ERROR("no common ancestor at all, different documents"); return 0; } AutoTArray frame1Ancestors; if (aCommonAncestor && !FillAncestors(aFrame1, aCommonAncestor, &frame1Ancestors)) { // We reached the root of the frame tree ... if aCommonAncestor was set, // it is wrong return DoCompareTreePosition(aFrame1, aFrame2, aIf1Ancestor, aIf2Ancestor, nullptr); } int32_t last1 = int32_t(frame1Ancestors.Length()) - 1; int32_t last2 = int32_t(aFrame2Ancestors.Length()) - 1; while (last1 >= 0 && last2 >= 0 && frame1Ancestors[last1] == aFrame2Ancestors[last2]) { last1--; last2--; } if (last1 < 0) { if (last2 < 0) { NS_ASSERTION(aFrame1 == aFrame2, "internal error?"); return 0; } // aFrame1 is an ancestor of aFrame2 return aIf1Ancestor; } if (last2 < 0) { // aFrame2 is an ancestor of aFrame1 return aIf2Ancestor; } nsIFrame* ancestor1 = frame1Ancestors[last1]; nsIFrame* ancestor2 = aFrame2Ancestors[last2]; // Now we should be able to walk sibling chains to find which one is first if (IsFrameAfter(ancestor2, ancestor1)) return -1; if (IsFrameAfter(ancestor1, ancestor2)) return 1; NS_WARNING("Frames were in different child lists???"); return 0; } // static nsIFrame* nsLayoutUtils::GetLastSibling(nsIFrame* aFrame) { if (!aFrame) { return nullptr; } nsIFrame* next; while ((next = aFrame->GetNextSibling()) != nullptr) { aFrame = next; } return aFrame; } // static nsView* nsLayoutUtils::FindSiblingViewFor(nsView* aParentView, nsIFrame* aFrame) { nsIFrame* parentViewFrame = aParentView->GetFrame(); nsIContent* parentViewContent = parentViewFrame ? parentViewFrame->GetContent() : nullptr; for (nsView* insertBefore = aParentView->GetFirstChild(); insertBefore; insertBefore = insertBefore->GetNextSibling()) { nsIFrame* f = insertBefore->GetFrame(); if (!f) { // this view could be some anonymous view attached to a meaningful parent for (nsView* searchView = insertBefore->GetParent(); searchView; searchView = searchView->GetParent()) { f = searchView->GetFrame(); if (f) { break; } } NS_ASSERTION(f, "Can't find a frame anywhere!"); } if (!f || !aFrame->GetContent() || !f->GetContent() || CompareTreePosition(aFrame->GetContent(), f->GetContent(), parentViewContent) > 0) { // aFrame's content is after f's content (or we just don't know), // so put our view before f's view return insertBefore; } } return nullptr; } // static nsIScrollableFrame* nsLayoutUtils::GetScrollableFrameFor( const nsIFrame* aScrolledFrame) { nsIFrame* frame = aScrolledFrame->GetParent(); nsIScrollableFrame* sf = do_QueryFrame(frame); return (sf && sf->GetScrolledFrame() == aScrolledFrame) ? sf : nullptr; } /* static */ SideBits nsLayoutUtils::GetSideBitsForFixedPositionContent( const nsIFrame* aFixedPosFrame) { return GetSideBitsAndAdjustAnchorForFixedPositionContent( nullptr, aFixedPosFrame, nullptr, nullptr); } /* static */ SideBits nsLayoutUtils::GetSideBitsAndAdjustAnchorForFixedPositionContent( const nsIFrame* aViewportFrame, const nsIFrame* aFixedPosFrame, LayerPoint* aAnchor, const Rect* aAnchorRect) { SideBits sides = SideBits::eNone; if (aFixedPosFrame != aViewportFrame) { const nsStylePosition* position = aFixedPosFrame->StylePosition(); if (!position->mOffset.Get(eSideRight).IsAuto()) { sides |= SideBits::eRight; if (!position->mOffset.Get(eSideLeft).IsAuto()) { sides |= SideBits::eLeft; if (aAnchor) { aAnchor->x = aAnchorRect->x + aAnchorRect->width / 2.f; } } else { if (aAnchor) { aAnchor->x = aAnchorRect->XMost(); } } } else if (!position->mOffset.Get(eSideLeft).IsAuto()) { sides |= SideBits::eLeft; } if (!position->mOffset.Get(eSideBottom).IsAuto()) { sides |= SideBits::eBottom; if (!position->mOffset.Get(eSideTop).IsAuto()) { sides |= SideBits::eTop; if (aAnchor) { aAnchor->y = aAnchorRect->y + aAnchorRect->height / 2.f; } } else { if (aAnchor) { aAnchor->y = aAnchorRect->YMost(); } } } else if (!position->mOffset.Get(eSideTop).IsAuto()) { sides |= SideBits::eTop; } } return sides; } /* static */ void nsLayoutUtils::SetFixedPositionLayerData( Layer* aLayer, const nsIFrame* aViewportFrame, const nsRect& aAnchorRect, const nsIFrame* aFixedPosFrame, nsPresContext* aPresContext, const ContainerLayerParameters& aContainerParameters) { // Find out the rect of the viewport frame relative to the reference frame. // This, in conjunction with the container scale, will correspond to the // coordinate-space of the built layer. float factor = aPresContext->AppUnitsPerDevPixel(); Rect anchorRect(NSAppUnitsToFloatPixels(aAnchorRect.x, factor) * aContainerParameters.mXScale, NSAppUnitsToFloatPixels(aAnchorRect.y, factor) * aContainerParameters.mYScale, NSAppUnitsToFloatPixels(aAnchorRect.width, factor) * aContainerParameters.mXScale, NSAppUnitsToFloatPixels(aAnchorRect.height, factor) * aContainerParameters.mYScale); // Need to transform anchorRect from the container layer's coordinate system // into aLayer's coordinate system. Matrix transform2d; if (aLayer->GetTransform().Is2D(&transform2d)) { transform2d.Invert(); anchorRect = transform2d.TransformBounds(anchorRect); } else { NS_ERROR( "3D transform found between fixedpos content and its viewport (should " "never happen)"); anchorRect = Rect(0, 0, 0, 0); } // Work out the anchor point for this fixed position layer. We assume that // any positioning set (left/top/right/bottom) indicates that the // corresponding side of its container should be the anchor point, // defaulting to top-left. LayerPoint anchor(anchorRect.x, anchorRect.y); SideBits sides = GetSideBitsAndAdjustAnchorForFixedPositionContent( aViewportFrame, aFixedPosFrame, &anchor, &anchorRect); ViewID id = ScrollIdForRootScrollFrame(aPresContext); aLayer->SetFixedPositionData(id, anchor, sides); } ScrollableLayerGuid::ViewID nsLayoutUtils::ScrollIdForRootScrollFrame( nsPresContext* aPresContext) { ViewID id = ScrollableLayerGuid::NULL_SCROLL_ID; if (nsIFrame* rootScrollFrame = aPresContext->PresShell()->GetRootScrollFrame()) { if (nsIContent* content = rootScrollFrame->GetContent()) { id = FindOrCreateIDFor(content); } } return id; } bool nsLayoutUtils::ViewportHasDisplayPort(nsPresContext* aPresContext) { nsIFrame* rootScrollFrame = aPresContext->PresShell()->GetRootScrollFrame(); return rootScrollFrame && nsLayoutUtils::HasDisplayPort(rootScrollFrame->GetContent()); } bool nsLayoutUtils::IsFixedPosFrameInDisplayPort(const nsIFrame* aFrame) { // Fixed-pos frames are parented by the viewport frame or the page content // frame. We'll assume that printing/print preview don't have displayports for // their pages! nsIFrame* parent = aFrame->GetParent(); if (!parent || parent->GetParent() || aFrame->StyleDisplay()->mPosition != NS_STYLE_POSITION_FIXED) { return false; } return ViewportHasDisplayPort(aFrame->PresContext()); } // static nsIScrollableFrame* nsLayoutUtils::GetNearestScrollableFrameForDirection( nsIFrame* aFrame, Direction aDirection) { NS_ASSERTION( aFrame, "GetNearestScrollableFrameForDirection expects a non-null frame"); for (nsIFrame* f = aFrame; f; f = nsLayoutUtils::GetCrossDocParentFrame(f)) { nsIScrollableFrame* scrollableFrame = do_QueryFrame(f); if (scrollableFrame) { ScrollStyles ss = scrollableFrame->GetScrollStyles(); uint32_t directions = scrollableFrame->GetAvailableScrollingDirections(); if (aDirection == eVertical ? (ss.mVertical != StyleOverflow::Hidden && (directions & nsIScrollableFrame::VERTICAL)) : (ss.mHorizontal != StyleOverflow::Hidden && (directions & nsIScrollableFrame::HORIZONTAL))) return scrollableFrame; } } return nullptr; } // static nsIScrollableFrame* nsLayoutUtils::GetNearestScrollableFrame(nsIFrame* aFrame, uint32_t aFlags) { NS_ASSERTION(aFrame, "GetNearestScrollableFrame expects a non-null frame"); for (nsIFrame* f = aFrame; f; f = (aFlags & SCROLLABLE_SAME_DOC) ? f->GetParent() : nsLayoutUtils::GetCrossDocParentFrame(f)) { nsIScrollableFrame* scrollableFrame = do_QueryFrame(f); if (scrollableFrame) { if (aFlags & SCROLLABLE_ONLY_ASYNC_SCROLLABLE) { if (scrollableFrame->WantAsyncScroll()) { return scrollableFrame; } } else { ScrollStyles ss = scrollableFrame->GetScrollStyles(); if ((aFlags & SCROLLABLE_INCLUDE_HIDDEN) || ss.mVertical != StyleOverflow::Hidden || ss.mHorizontal != StyleOverflow::Hidden) { return scrollableFrame; } } if (aFlags & SCROLLABLE_ALWAYS_MATCH_ROOT) { PresShell* presShell = f->PresShell(); if (presShell->GetRootScrollFrame() == f && presShell->GetDocument() && presShell->GetDocument()->IsRootDisplayDocument()) { return scrollableFrame; } } } if ((aFlags & SCROLLABLE_FIXEDPOS_FINDS_ROOT) && f->StyleDisplay()->mPosition == NS_STYLE_POSITION_FIXED && nsLayoutUtils::IsReallyFixedPos(f)) { return f->PresShell()->GetRootScrollFrameAsScrollable(); } } return nullptr; } // static nsRect nsLayoutUtils::GetScrolledRect(nsIFrame* aScrolledFrame, const nsRect& aScrolledFrameOverflowArea, const nsSize& aScrollPortSize, uint8_t aDirection) { WritingMode wm = aScrolledFrame->GetWritingMode(); // Potentially override the frame's direction to use the direction found // by ScrollFrameHelper::GetScrolledFrameDir() wm.SetDirectionFromBidiLevel(aDirection == NS_STYLE_DIRECTION_RTL ? 1 : 0); nscoord x1 = aScrolledFrameOverflowArea.x, x2 = aScrolledFrameOverflowArea.XMost(), y1 = aScrolledFrameOverflowArea.y, y2 = aScrolledFrameOverflowArea.YMost(); bool horizontal = !wm.IsVertical(); // Clamp the horizontal start-edge (x1 or x2, depending whether the logical // axis that corresponds to horizontal progresses from L-R or R-L). // In horizontal writing mode, we need to check IsInlineReversed() to see // which side to clamp; in vertical mode, it depends on the block direction. if ((horizontal && !wm.IsInlineReversed()) || wm.IsVerticalLR()) { if (x1 < 0) { x1 = 0; } } else { if (x2 > aScrollPortSize.width) { x2 = aScrollPortSize.width; } // When the scrolled frame chooses a size larger than its available width // (because its padding alone is larger than the available width), we need // to keep the start-edge of the scroll frame anchored to the start-edge of // the scrollport. // When the scrolled frame is RTL, this means moving it in our left-based // coordinate system, so we need to compensate for its extra width here by // effectively repositioning the frame. nscoord extraWidth = std::max(0, aScrolledFrame->GetSize().width - aScrollPortSize.width); x2 += extraWidth; } // Similarly, clamp the vertical start-edge. // In horizontal writing mode, the block direction is always top-to-bottom; // in vertical writing mode, we need to check IsInlineReversed(). if (horizontal || !wm.IsInlineReversed()) { if (y1 < 0) { y1 = 0; } } else { if (y2 > aScrollPortSize.height) { y2 = aScrollPortSize.height; } nscoord extraHeight = std::max(0, aScrolledFrame->GetSize().height - aScrollPortSize.height); y2 += extraHeight; } return nsRect(x1, y1, x2 - x1, y2 - y1); } // static bool nsLayoutUtils::HasPseudoStyle(nsIContent* aContent, ComputedStyle* aComputedStyle, PseudoStyleType aPseudoElement, nsPresContext* aPresContext) { MOZ_ASSERT(aPresContext, "Must have a prescontext"); RefPtr pseudoContext; if (aContent) { pseudoContext = aPresContext->StyleSet()->ProbePseudoElementStyle( *aContent->AsElement(), aPseudoElement, aComputedStyle); } return pseudoContext != nullptr; } nsPoint nsLayoutUtils::GetDOMEventCoordinatesRelativeTo(Event* aDOMEvent, nsIFrame* aFrame) { if (!aDOMEvent) return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); WidgetEvent* event = aDOMEvent->WidgetEventPtr(); if (!event) return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); return GetEventCoordinatesRelativeTo(event, aFrame); } nsPoint nsLayoutUtils::GetEventCoordinatesRelativeTo(const WidgetEvent* aEvent, nsIFrame* aFrame) { if (!aEvent || (aEvent->mClass != eMouseEventClass && aEvent->mClass != eMouseScrollEventClass && aEvent->mClass != eWheelEventClass && aEvent->mClass != eDragEventClass && aEvent->mClass != eSimpleGestureEventClass && aEvent->mClass != ePointerEventClass && aEvent->mClass != eGestureNotifyEventClass && aEvent->mClass != eTouchEventClass && aEvent->mClass != eQueryContentEventClass)) return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); return GetEventCoordinatesRelativeTo(aEvent, aEvent->AsGUIEvent()->mRefPoint, aFrame); } nsPoint nsLayoutUtils::GetEventCoordinatesRelativeTo( const WidgetEvent* aEvent, const LayoutDeviceIntPoint& aPoint, nsIFrame* aFrame) { if (!aFrame) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsIWidget* widget = aEvent->AsGUIEvent()->mWidget; if (!widget) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } return GetEventCoordinatesRelativeTo(widget, aPoint, aFrame); } nsPoint nsLayoutUtils::GetEventCoordinatesRelativeTo( nsIWidget* aWidget, const LayoutDeviceIntPoint& aPoint, nsIFrame* aFrame) { if (!aFrame || !aWidget) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsView* view = aFrame->GetView(); if (view) { nsIWidget* frameWidget = view->GetWidget(); if (frameWidget && frameWidget == aWidget) { // Special case this cause it happens a lot. // This also fixes bug 664707, events in the extra-special case of select // dropdown popups that are transformed. nsPresContext* presContext = aFrame->PresContext(); nsPoint pt(presContext->DevPixelsToAppUnits(aPoint.x), presContext->DevPixelsToAppUnits(aPoint.y)); pt = pt - view->ViewToWidgetOffset(); pt = pt.RemoveResolution( GetCurrentAPZResolutionScale(presContext->PresShell())); return pt; } } /* If we walk up the frame tree and discover that any of the frames are * transformed, we need to do extra work to convert from the global * space to the local space. */ nsIFrame* rootFrame = aFrame; bool transformFound = false; for (nsIFrame* f = aFrame; f; f = GetCrossDocParentFrame(f)) { if (f->IsTransformed()) { transformFound = true; } rootFrame = f; } nsView* rootView = rootFrame->GetView(); if (!rootView) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsPoint widgetToView = TranslateWidgetToView(rootFrame->PresContext(), aWidget, aPoint, rootView); if (widgetToView == nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE)) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } // Convert from root document app units to app units of the document aFrame // is in. int32_t rootAPD = rootFrame->PresContext()->AppUnitsPerDevPixel(); int32_t localAPD = aFrame->PresContext()->AppUnitsPerDevPixel(); widgetToView = widgetToView.ScaleToOtherAppUnits(rootAPD, localAPD); PresShell* presShell = aFrame->PresShell(); // XXX Bug 1224748 - Update nsLayoutUtils functions to correctly handle // PresShell resolution widgetToView = widgetToView.RemoveResolution(GetCurrentAPZResolutionScale(presShell)); /* If we encountered a transform, we can't do simple arithmetic to figure * out how to convert back to aFrame's coordinates and must use the CTM. */ if (transformFound || nsSVGUtils::IsInSVGTextSubtree(aFrame)) { return TransformRootPointToFrame(aFrame, widgetToView); } /* Otherwise, all coordinate systems are translations of one another, * so we can just subtract out the difference. */ return widgetToView - aFrame->GetOffsetToCrossDoc(rootFrame); } nsIFrame* nsLayoutUtils::GetPopupFrameForEventCoordinates( nsPresContext* aPresContext, const WidgetEvent* aEvent) { #ifdef MOZ_XUL nsXULPopupManager* pm = nsXULPopupManager::GetInstance(); if (!pm) { return nullptr; } nsTArray popups; pm->GetVisiblePopups(popups); uint32_t i; // Search from top to bottom for (i = 0; i < popups.Length(); i++) { nsIFrame* popup = popups[i]; if (popup->PresContext()->GetRootPresContext() == aPresContext && popup->GetScrollableOverflowRect().Contains( GetEventCoordinatesRelativeTo(aEvent, popup))) { return popup; } } #endif return nullptr; } void nsLayoutUtils::GetContainerAndOffsetAtEvent(PresShell* aPresShell, const WidgetEvent* aEvent, nsIContent** aContainer, int32_t* aOffset) { MOZ_ASSERT(aContainer || aOffset); if (aContainer) { *aContainer = nullptr; } if (aOffset) { *aOffset = 0; } if (!aPresShell) { return; } aPresShell->FlushPendingNotifications(FlushType::Layout); RefPtr presContext = aPresShell->GetPresContext(); if (!presContext) { return; } nsIFrame* targetFrame = presContext->EventStateManager()->GetEventTarget(); if (!targetFrame) { return; } nsPoint point = nsLayoutUtils::GetEventCoordinatesRelativeTo(aEvent, targetFrame); if (aContainer) { // TODO: This result may be useful to change to Selection. However, this // may return improper node (e.g., native anonymous node) for the // Selection. Perhaps, this should take Selection optionally and // if it's specified, needs to check if it's proper for the // Selection. nsCOMPtr container = targetFrame->GetContentOffsetsFromPoint(point).content; if (container && (!container->ChromeOnlyAccess() || nsContentUtils::CanAccessNativeAnon())) { container.forget(aContainer); } } if (aOffset) { *aOffset = targetFrame->GetContentOffsetsFromPoint(point).offset; } } static void ConstrainToCoordValues(float& aStart, float& aSize) { MOZ_ASSERT(aSize >= 0); // Here we try to make sure that the resulting nsRect will continue to cover // as much of the area that was covered by the original gfx Rect as possible. // We clamp the bounds of the rect to {nscoord_MIN,nscoord_MAX} since // nsRect::X/Y() and nsRect::XMost/YMost() can't return values outwith this // range: float end = aStart + aSize; aStart = clamped(aStart, float(nscoord_MIN), float(nscoord_MAX)); end = clamped(end, float(nscoord_MIN), float(nscoord_MAX)); aSize = end - aStart; // We must also clamp aSize to {0,nscoord_MAX} since nsRect::Width/Height() // can't return a value greater than nscoord_MAX. If aSize is greater than // nscoord_MAX then we reduce it to nscoord_MAX while keeping the rect // centered: if (aSize > float(nscoord_MAX)) { float excess = aSize - float(nscoord_MAX); excess /= 2; aStart += excess; aSize = (float)nscoord_MAX; } } /** * Given a gfxFloat, constrains its value to be between nscoord_MIN and * nscoord_MAX. * * @param aVal The value to constrain (in/out) */ static void ConstrainToCoordValues(gfxFloat& aVal) { if (aVal <= nscoord_MIN) aVal = nscoord_MIN; else if (aVal >= nscoord_MAX) aVal = nscoord_MAX; } static void ConstrainToCoordValues(gfxFloat& aStart, gfxFloat& aSize) { gfxFloat max = aStart + aSize; // Clamp the end points to within nscoord range ConstrainToCoordValues(aStart); ConstrainToCoordValues(max); aSize = max - aStart; // If the width if still greater than the max nscoord, then bring both // endpoints in by the same amount until it fits. if (aSize > nscoord_MAX) { gfxFloat excess = aSize - nscoord_MAX; excess /= 2; aStart += excess; aSize = nscoord_MAX; } else if (aSize < nscoord_MIN) { gfxFloat excess = aSize - nscoord_MIN; excess /= 2; aStart -= excess; aSize = nscoord_MIN; } } nsRect nsLayoutUtils::RoundGfxRectToAppRect(const Rect& aRect, float aFactor) { // Get a new Rect whose units are app units by scaling by the specified // factor. Rect scaledRect = aRect; scaledRect.ScaleRoundOut(aFactor); // We now need to constrain our results to the max and min values for coords. ConstrainToCoordValues(scaledRect.x, scaledRect.width); ConstrainToCoordValues(scaledRect.y, scaledRect.height); // Now typecast everything back. This is guaranteed to be safe. if (aRect.IsEmpty()) { return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()), 0, 0); } else { return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()), nscoord(scaledRect.Width()), nscoord(scaledRect.Height())); } } nsRect nsLayoutUtils::RoundGfxRectToAppRect(const gfxRect& aRect, float aFactor) { // Get a new gfxRect whose units are app units by scaling by the specified // factor. gfxRect scaledRect = aRect; scaledRect.ScaleRoundOut(aFactor); // We now need to constrain our results to the max and min values for coords. ConstrainToCoordValues(scaledRect.x, scaledRect.width); ConstrainToCoordValues(scaledRect.y, scaledRect.height); // Now typecast everything back. This is guaranteed to be safe. if (aRect.IsEmpty()) { return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()), 0, 0); } else { return nsRect(nscoord(scaledRect.X()), nscoord(scaledRect.Y()), nscoord(scaledRect.Width()), nscoord(scaledRect.Height())); } } nsRegion nsLayoutUtils::RoundedRectIntersectRect(const nsRect& aRoundedRect, const nscoord aRadii[8], const nsRect& aContainedRect) { // rectFullHeight and rectFullWidth together will approximately contain // the total area of the frame minus the rounded corners. nsRect rectFullHeight = aRoundedRect; nscoord xDiff = std::max(aRadii[eCornerTopLeftX], aRadii[eCornerBottomLeftX]); rectFullHeight.x += xDiff; rectFullHeight.width -= std::max(aRadii[eCornerTopRightX], aRadii[eCornerBottomRightX]) + xDiff; nsRect r1; r1.IntersectRect(rectFullHeight, aContainedRect); nsRect rectFullWidth = aRoundedRect; nscoord yDiff = std::max(aRadii[eCornerTopLeftY], aRadii[eCornerTopRightY]); rectFullWidth.y += yDiff; rectFullWidth.height -= std::max(aRadii[eCornerBottomLeftY], aRadii[eCornerBottomRightY]) + yDiff; nsRect r2; r2.IntersectRect(rectFullWidth, aContainedRect); nsRegion result; result.Or(r1, r2); return result; } nsIntRegion nsLayoutUtils::RoundedRectIntersectIntRect( const nsIntRect& aRoundedRect, const RectCornerRadii& aCornerRadii, const nsIntRect& aContainedRect) { // rectFullHeight and rectFullWidth together will approximately contain // the total area of the frame minus the rounded corners. nsIntRect rectFullHeight = aRoundedRect; uint32_t xDiff = std::max(aCornerRadii.TopLeft().width, aCornerRadii.BottomLeft().width); rectFullHeight.x += xDiff; rectFullHeight.width -= std::max(aCornerRadii.TopRight().width, aCornerRadii.BottomRight().width) + xDiff; nsIntRect r1; r1.IntersectRect(rectFullHeight, aContainedRect); nsIntRect rectFullWidth = aRoundedRect; uint32_t yDiff = std::max(aCornerRadii.TopLeft().height, aCornerRadii.TopRight().height); rectFullWidth.y += yDiff; rectFullWidth.height -= std::max(aCornerRadii.BottomLeft().height, aCornerRadii.BottomRight().height) + yDiff; nsIntRect r2; r2.IntersectRect(rectFullWidth, aContainedRect); nsIntRegion result; result.Or(r1, r2); return result; } // Helper for RoundedRectIntersectsRect. static bool CheckCorner(nscoord aXOffset, nscoord aYOffset, nscoord aXRadius, nscoord aYRadius) { MOZ_ASSERT(aXOffset > 0 && aYOffset > 0, "must not pass nonpositives to CheckCorner"); MOZ_ASSERT(aXRadius >= 0 && aYRadius >= 0, "must not pass negatives to CheckCorner"); // Avoid floating point math unless we're either (1) within the // quarter-ellipse area at the rounded corner or (2) outside the // rounding. if (aXOffset >= aXRadius || aYOffset >= aYRadius) return true; // Convert coordinates to a unit circle with (0,0) as the center of // curvature, and see if we're inside the circle or outside. float scaledX = float(aXRadius - aXOffset) / float(aXRadius); float scaledY = float(aYRadius - aYOffset) / float(aYRadius); return scaledX * scaledX + scaledY * scaledY < 1.0f; } bool nsLayoutUtils::RoundedRectIntersectsRect(const nsRect& aRoundedRect, const nscoord aRadii[8], const nsRect& aTestRect) { if (!aTestRect.Intersects(aRoundedRect)) return false; // distances from this edge of aRoundedRect to opposite edge of aTestRect, // which we know are positive due to the Intersects check above. nsMargin insets; insets.top = aTestRect.YMost() - aRoundedRect.y; insets.right = aRoundedRect.XMost() - aTestRect.x; insets.bottom = aRoundedRect.YMost() - aTestRect.y; insets.left = aTestRect.XMost() - aRoundedRect.x; // Check whether the bottom-right corner of aTestRect is inside the // top left corner of aBounds when rounded by aRadii, etc. If any // corner is not, then fail; otherwise succeed. return CheckCorner(insets.left, insets.top, aRadii[eCornerTopLeftX], aRadii[eCornerTopLeftY]) && CheckCorner(insets.right, insets.top, aRadii[eCornerTopRightX], aRadii[eCornerTopRightY]) && CheckCorner(insets.right, insets.bottom, aRadii[eCornerBottomRightX], aRadii[eCornerBottomRightY]) && CheckCorner(insets.left, insets.bottom, aRadii[eCornerBottomLeftX], aRadii[eCornerBottomLeftY]); } nsRect nsLayoutUtils::MatrixTransformRect(const nsRect& aBounds, const Matrix4x4& aMatrix, float aFactor) { RectDouble image = RectDouble(NSAppUnitsToDoublePixels(aBounds.x, aFactor), NSAppUnitsToDoublePixels(aBounds.y, aFactor), NSAppUnitsToDoublePixels(aBounds.width, aFactor), NSAppUnitsToDoublePixels(aBounds.height, aFactor)); RectDouble maxBounds = RectDouble( double(nscoord_MIN) / aFactor * 0.5, double(nscoord_MIN) / aFactor * 0.5, double(nscoord_MAX) / aFactor, double(nscoord_MAX) / aFactor); image = aMatrix.TransformAndClipBounds(image, maxBounds); return RoundGfxRectToAppRect(ThebesRect(image), aFactor); } nsRect nsLayoutUtils::MatrixTransformRect(const nsRect& aBounds, const Matrix4x4Flagged& aMatrix, float aFactor) { RectDouble image = RectDouble(NSAppUnitsToDoublePixels(aBounds.x, aFactor), NSAppUnitsToDoublePixels(aBounds.y, aFactor), NSAppUnitsToDoublePixels(aBounds.width, aFactor), NSAppUnitsToDoublePixels(aBounds.height, aFactor)); RectDouble maxBounds = RectDouble( double(nscoord_MIN) / aFactor * 0.5, double(nscoord_MIN) / aFactor * 0.5, double(nscoord_MAX) / aFactor, double(nscoord_MAX) / aFactor); image = aMatrix.TransformAndClipBounds(image, maxBounds); return RoundGfxRectToAppRect(ThebesRect(image), aFactor); } nsPoint nsLayoutUtils::MatrixTransformPoint(const nsPoint& aPoint, const Matrix4x4& aMatrix, float aFactor) { gfxPoint image = gfxPoint(NSAppUnitsToFloatPixels(aPoint.x, aFactor), NSAppUnitsToFloatPixels(aPoint.y, aFactor)); image = aMatrix.TransformPoint(image); return nsPoint(NSFloatPixelsToAppUnits(float(image.x), aFactor), NSFloatPixelsToAppUnits(float(image.y), aFactor)); } void nsLayoutUtils::PostTranslate(Matrix4x4& aTransform, const nsPoint& aOrigin, float aAppUnitsPerPixel, bool aRounded) { Point3D gfxOrigin = Point3D(NSAppUnitsToFloatPixels(aOrigin.x, aAppUnitsPerPixel), NSAppUnitsToFloatPixels(aOrigin.y, aAppUnitsPerPixel), 0.0f); if (aRounded) { gfxOrigin.x = NS_round(gfxOrigin.x); gfxOrigin.y = NS_round(gfxOrigin.y); } aTransform.PostTranslate(gfxOrigin); } // We want to this return true for the scroll frame, but not the // scrolled frame (which has the same content). bool nsLayoutUtils::FrameHasDisplayPort(nsIFrame* aFrame, const nsIFrame* aScrolledFrame) { if (!aFrame->GetContent() || !HasDisplayPort(aFrame->GetContent())) { return false; } nsIScrollableFrame* sf = do_QueryFrame(aFrame); if (sf) { if (aScrolledFrame && aScrolledFrame != sf->GetScrolledFrame()) { return false; } return true; } return false; } Matrix4x4Flagged nsLayoutUtils::GetTransformToAncestor( const nsIFrame* aFrame, const nsIFrame* aAncestor, uint32_t aFlags, nsIFrame** aOutAncestor) { nsIFrame* parent; Matrix4x4Flagged ctm; if (aFrame == aAncestor) { return ctm; } ctm = aFrame->GetTransformMatrix(aAncestor, &parent, aFlags); while (parent && parent != aAncestor && (!(aFlags & nsIFrame::STOP_AT_STACKING_CONTEXT_AND_DISPLAY_PORT) || (!parent->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) && !parent->IsStackingContext() && !FrameHasDisplayPort(parent)))) { if (!parent->Extend3DContext()) { ctm.ProjectTo2D(); } ctm = ctm * parent->GetTransformMatrix(aAncestor, &parent, aFlags); } if (aOutAncestor) { *aOutAncestor = parent; } return ctm; } gfxSize nsLayoutUtils::GetTransformToAncestorScale(nsIFrame* aFrame) { Matrix4x4Flagged transform = GetTransformToAncestor( aFrame, nsLayoutUtils::GetDisplayRootFrame(aFrame)); Matrix transform2D; if (transform.Is2D(&transform2D)) { return ThebesMatrix(transform2D).ScaleFactors(true); } return gfxSize(1, 1); } static Matrix4x4Flagged GetTransformToAncestorExcludingAnimated( nsIFrame* aFrame, const nsIFrame* aAncestor) { nsIFrame* parent; Matrix4x4Flagged ctm; if (aFrame == aAncestor) { return ctm; } if (ActiveLayerTracker::IsScaleSubjectToAnimation(aFrame)) { return ctm; } ctm = aFrame->GetTransformMatrix(aAncestor, &parent); while (parent && parent != aAncestor) { if (ActiveLayerTracker::IsScaleSubjectToAnimation(parent)) { return Matrix4x4Flagged(); } if (!parent->Extend3DContext()) { ctm.ProjectTo2D(); } ctm = ctm * parent->GetTransformMatrix(aAncestor, &parent); } return ctm; } gfxSize nsLayoutUtils::GetTransformToAncestorScaleExcludingAnimated( nsIFrame* aFrame) { Matrix4x4Flagged transform = GetTransformToAncestorExcludingAnimated( aFrame, nsLayoutUtils::GetDisplayRootFrame(aFrame)); Matrix transform2D; if (transform.Is2D(&transform2D)) { return ThebesMatrix(transform2D).ScaleFactors(true); } return gfxSize(1, 1); } nsIFrame* nsLayoutUtils::FindNearestCommonAncestorFrame(nsIFrame* aFrame1, nsIFrame* aFrame2) { AutoTArray ancestors1; AutoTArray ancestors2; nsIFrame* commonAncestor = nullptr; if (aFrame1->PresContext() == aFrame2->PresContext()) { commonAncestor = aFrame1->PresShell()->GetRootFrame(); } for (nsIFrame* f = aFrame1; f != commonAncestor; f = nsLayoutUtils::GetCrossDocParentFrame(f)) { ancestors1.AppendElement(f); } for (nsIFrame* f = aFrame2; f != commonAncestor; f = nsLayoutUtils::GetCrossDocParentFrame(f)) { ancestors2.AppendElement(f); } uint32_t minLengths = std::min(ancestors1.Length(), ancestors2.Length()); for (uint32_t i = 1; i <= minLengths; ++i) { if (ancestors1[ancestors1.Length() - i] == ancestors2[ancestors2.Length() - i]) { commonAncestor = ancestors1[ancestors1.Length() - i]; } else { break; } } return commonAncestor; } nsLayoutUtils::TransformResult nsLayoutUtils::TransformPoints( nsIFrame* aFromFrame, nsIFrame* aToFrame, uint32_t aPointCount, CSSPoint* aPoints) { nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame); if (!nearestCommonAncestor) { return NO_COMMON_ANCESTOR; } Matrix4x4Flagged downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor); if (downToDest.IsSingular()) { return NONINVERTIBLE_TRANSFORM; } downToDest.Invert(); Matrix4x4Flagged upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor); CSSToLayoutDeviceScale devPixelsPerCSSPixelFromFrame = aFromFrame->PresContext()->CSSToDevPixelScale(); CSSToLayoutDeviceScale devPixelsPerCSSPixelToFrame = aToFrame->PresContext()->CSSToDevPixelScale(); for (uint32_t i = 0; i < aPointCount; ++i) { LayoutDevicePoint devPixels = aPoints[i] * devPixelsPerCSSPixelFromFrame; // What should the behaviour be if some of the points aren't invertible // and others are? Just assume all points are for now. Point toDevPixels = downToDest .ProjectPoint( (upToAncestor.TransformPoint(Point(devPixels.x, devPixels.y)))) .As2DPoint(); // Divide here so that when the devPixelsPerCSSPixels are the same, we get // the correct answer instead of some inaccuracy multiplying a number by its // reciprocal. aPoints[i] = LayoutDevicePoint(toDevPixels.x, toDevPixels.y) / devPixelsPerCSSPixelToFrame; } return TRANSFORM_SUCCEEDED; } nsLayoutUtils::TransformResult nsLayoutUtils::TransformPoint( nsIFrame* aFromFrame, nsIFrame* aToFrame, nsPoint& aPoint) { nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame); if (!nearestCommonAncestor) { return NO_COMMON_ANCESTOR; } Matrix4x4Flagged downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor); if (downToDest.IsSingular()) { return NONINVERTIBLE_TRANSFORM; } downToDest.Invert(); Matrix4x4Flagged upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor); float devPixelsPerAppUnitFromFrame = 1.0f / aFromFrame->PresContext()->AppUnitsPerDevPixel(); float devPixelsPerAppUnitToFrame = 1.0f / aToFrame->PresContext()->AppUnitsPerDevPixel(); Point4D toDevPixels = downToDest.ProjectPoint(upToAncestor.TransformPoint( Point(aPoint.x * devPixelsPerAppUnitFromFrame, aPoint.y * devPixelsPerAppUnitFromFrame))); if (!toDevPixels.HasPositiveWCoord()) { // Not strictly true, but we failed to get a valid point in this // coordinate space. return NONINVERTIBLE_TRANSFORM; } aPoint.x = NSToCoordRound(toDevPixels.x / devPixelsPerAppUnitToFrame); aPoint.y = NSToCoordRound(toDevPixels.y / devPixelsPerAppUnitToFrame); return TRANSFORM_SUCCEEDED; } nsLayoutUtils::TransformResult nsLayoutUtils::TransformRect( nsIFrame* aFromFrame, nsIFrame* aToFrame, nsRect& aRect) { nsIFrame* nearestCommonAncestor = FindNearestCommonAncestorFrame(aFromFrame, aToFrame); if (!nearestCommonAncestor) { return NO_COMMON_ANCESTOR; } Matrix4x4Flagged downToDest = GetTransformToAncestor(aToFrame, nearestCommonAncestor); if (downToDest.IsSingular()) { return NONINVERTIBLE_TRANSFORM; } downToDest.Invert(); Matrix4x4Flagged upToAncestor = GetTransformToAncestor(aFromFrame, nearestCommonAncestor); float devPixelsPerAppUnitFromFrame = 1.0f / aFromFrame->PresContext()->AppUnitsPerDevPixel(); float devPixelsPerAppUnitToFrame = 1.0f / aToFrame->PresContext()->AppUnitsPerDevPixel(); gfx::Rect toDevPixels = downToDest.ProjectRectBounds( upToAncestor.ProjectRectBounds( gfx::Rect(aRect.x * devPixelsPerAppUnitFromFrame, aRect.y * devPixelsPerAppUnitFromFrame, aRect.width * devPixelsPerAppUnitFromFrame, aRect.height * devPixelsPerAppUnitFromFrame), Rect(-std::numeric_limits::max() * 0.5f, -std::numeric_limits::max() * 0.5f, std::numeric_limits::max(), std::numeric_limits::max())), Rect(-std::numeric_limits::max() * devPixelsPerAppUnitFromFrame * 0.5f, -std::numeric_limits::max() * devPixelsPerAppUnitFromFrame * 0.5f, std::numeric_limits::max() * devPixelsPerAppUnitFromFrame, std::numeric_limits::max() * devPixelsPerAppUnitFromFrame)); aRect.x = NSToCoordRound(toDevPixels.x / devPixelsPerAppUnitToFrame); aRect.y = NSToCoordRound(toDevPixels.y / devPixelsPerAppUnitToFrame); aRect.width = NSToCoordRound(toDevPixels.width / devPixelsPerAppUnitToFrame); aRect.height = NSToCoordRound(toDevPixels.height / devPixelsPerAppUnitToFrame); return TRANSFORM_SUCCEEDED; } nsRect nsLayoutUtils::GetRectRelativeToFrame(Element* aElement, nsIFrame* aFrame) { if (!aElement || !aFrame) { return nsRect(); } nsIFrame* frame = aElement->GetPrimaryFrame(); if (!frame) { return nsRect(); } nsRect rect = frame->GetRectRelativeToSelf(); nsLayoutUtils::TransformResult rv = nsLayoutUtils::TransformRect(frame, aFrame, rect); if (rv != nsLayoutUtils::TRANSFORM_SUCCEEDED) { return nsRect(); } return rect; } bool nsLayoutUtils::ContainsPoint(const nsRect& aRect, const nsPoint& aPoint, nscoord aInflateSize) { nsRect rect = aRect; rect.Inflate(aInflateSize); return rect.Contains(aPoint); } nsRect nsLayoutUtils::ClampRectToScrollFrames(nsIFrame* aFrame, const nsRect& aRect) { nsIFrame* closestScrollFrame = nsLayoutUtils::GetClosestFrameOfType(aFrame, LayoutFrameType::Scroll); nsRect resultRect = aRect; while (closestScrollFrame) { nsIScrollableFrame* sf = do_QueryFrame(closestScrollFrame); nsRect scrollPortRect = sf->GetScrollPortRect(); nsLayoutUtils::TransformRect(closestScrollFrame, aFrame, scrollPortRect); resultRect = resultRect.Intersect(scrollPortRect); // Check whether aRect is visible in the scroll frame or not. if (resultRect.IsEmpty()) { break; } // Get next ancestor scroll frame. closestScrollFrame = nsLayoutUtils::GetClosestFrameOfType( closestScrollFrame->GetParent(), LayoutFrameType::Scroll); } return resultRect; } bool nsLayoutUtils::GetLayerTransformForFrame(nsIFrame* aFrame, Matrix4x4Flagged* aTransform) { // FIXME/bug 796690: we can sometimes compute a transform in these // cases, it just increases complexity considerably. Punt for now. if (aFrame->Extend3DContext() || aFrame->HasTransformGetter()) { return false; } nsIFrame* root = nsLayoutUtils::GetDisplayRootFrame(aFrame); if (root->HasAnyStateBits(NS_FRAME_UPDATE_LAYER_TREE)) { // Content may have been invalidated, so we can't reliably compute // the "layer transform" in general. return false; } // If the caller doesn't care about the value, early-return to skip // overhead below. if (!aTransform) { return true; } nsDisplayListBuilder builder(root, nsDisplayListBuilderMode::TransformComputation, false /*don't build caret*/); builder.BeginFrame(); nsDisplayList list; nsDisplayTransform* item = MakeDisplayItem(&builder, aFrame, &list, nsRect(), 0); MOZ_ASSERT(item); *aTransform = item->GetTransform(); item->Destroy(&builder); builder.EndFrame(); return true; } static bool TransformGfxPointFromAncestor(nsIFrame* aFrame, const Point& aPoint, nsIFrame* aAncestor, Point* aOut) { Matrix4x4Flagged ctm = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestor); ctm.Invert(); Point4D point = ctm.ProjectPoint(aPoint); if (!point.HasPositiveWCoord()) { return false; } *aOut = point.As2DPoint(); return true; } static Rect TransformGfxRectToAncestor( const nsIFrame* aFrame, const Rect& aRect, const nsIFrame* aAncestor, bool* aPreservesAxisAlignedRectangles = nullptr, Maybe* aMatrixCache = nullptr, bool aStopAtStackingContextAndDisplayPortAndOOFFrame = false, nsIFrame** aOutAncestor = nullptr) { Matrix4x4Flagged ctm; if (aMatrixCache && *aMatrixCache) { // We are given a matrix to use, so use it ctm = aMatrixCache->value(); } else { // Else, compute it uint32_t flags = 0; if (aStopAtStackingContextAndDisplayPortAndOOFFrame) { flags |= nsIFrame::STOP_AT_STACKING_CONTEXT_AND_DISPLAY_PORT; } ctm = nsLayoutUtils::GetTransformToAncestor(aFrame, aAncestor, flags, aOutAncestor); if (aMatrixCache) { // and put it in the cache, if provided *aMatrixCache = Some(ctm); } } // Fill out the axis-alignment flag if (aPreservesAxisAlignedRectangles) { Matrix matrix2d; *aPreservesAxisAlignedRectangles = ctm.Is2D(&matrix2d) && matrix2d.PreservesAxisAlignedRectangles(); } const nsIFrame* ancestor = aOutAncestor ? *aOutAncestor : aAncestor; float factor = ancestor->PresContext()->AppUnitsPerDevPixel(); Rect maxBounds = Rect(float(nscoord_MIN) / factor * 0.5, float(nscoord_MIN) / factor * 0.5, float(nscoord_MAX) / factor, float(nscoord_MAX) / factor); return ctm.TransformAndClipBounds(aRect, maxBounds); } static SVGTextFrame* GetContainingSVGTextFrame(const nsIFrame* aFrame) { if (!nsSVGUtils::IsInSVGTextSubtree(aFrame)) { return nullptr; } return static_cast(nsLayoutUtils::GetClosestFrameOfType( aFrame->GetParent(), LayoutFrameType::SVGText)); } nsPoint nsLayoutUtils::TransformAncestorPointToFrame(nsIFrame* aFrame, const nsPoint& aPoint, nsIFrame* aAncestor) { SVGTextFrame* text = GetContainingSVGTextFrame(aFrame); float factor = aFrame->PresContext()->AppUnitsPerDevPixel(); Point result(NSAppUnitsToFloatPixels(aPoint.x, factor), NSAppUnitsToFloatPixels(aPoint.y, factor)); if (text) { if (!TransformGfxPointFromAncestor(text, result, aAncestor, &result)) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } result = text->TransformFramePointToTextChild(result, aFrame); } else { if (!TransformGfxPointFromAncestor(aFrame, result, nullptr, &result)) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } } return nsPoint(NSFloatPixelsToAppUnits(float(result.x), factor), NSFloatPixelsToAppUnits(float(result.y), factor)); } nsRect nsLayoutUtils::TransformFrameRectToAncestor( const nsIFrame* aFrame, const nsRect& aRect, const nsIFrame* aAncestor, bool* aPreservesAxisAlignedRectangles /* = nullptr */, Maybe* aMatrixCache /* = nullptr */, bool aStopAtStackingContextAndDisplayPortAndOOFFrame /* = false */, nsIFrame** aOutAncestor /* = nullptr */) { SVGTextFrame* text = GetContainingSVGTextFrame(aFrame); float srcAppUnitsPerDevPixel = aFrame->PresContext()->AppUnitsPerDevPixel(); Rect result; if (text) { result = ToRect(text->TransformFrameRectFromTextChild(aRect, aFrame)); // |result| from TransformFrameRectFromTextChild() is in user space (css // pixel), should convert to device pixel float devPixelPerCSSPixel = float(AppUnitsPerCSSPixel()) / srcAppUnitsPerDevPixel; result.Scale(devPixelPerCSSPixel); result = TransformGfxRectToAncestor( text, result, aAncestor, nullptr, aMatrixCache, aStopAtStackingContextAndDisplayPortAndOOFFrame, aOutAncestor); // TransformFrameRectFromTextChild could involve any kind of transform, we // could drill down into it to get an answer out of it but we don't yet. if (aPreservesAxisAlignedRectangles) *aPreservesAxisAlignedRectangles = false; } else { result = Rect(NSAppUnitsToFloatPixels(aRect.x, srcAppUnitsPerDevPixel), NSAppUnitsToFloatPixels(aRect.y, srcAppUnitsPerDevPixel), NSAppUnitsToFloatPixels(aRect.width, srcAppUnitsPerDevPixel), NSAppUnitsToFloatPixels(aRect.height, srcAppUnitsPerDevPixel)); result = TransformGfxRectToAncestor( aFrame, result, aAncestor, aPreservesAxisAlignedRectangles, aMatrixCache, aStopAtStackingContextAndDisplayPortAndOOFFrame, aOutAncestor); } float destAppUnitsPerDevPixel = aAncestor->PresContext()->AppUnitsPerDevPixel(); return nsRect( NSFloatPixelsToAppUnits(float(result.x), destAppUnitsPerDevPixel), NSFloatPixelsToAppUnits(float(result.y), destAppUnitsPerDevPixel), NSFloatPixelsToAppUnits(float(result.width), destAppUnitsPerDevPixel), NSFloatPixelsToAppUnits(float(result.height), destAppUnitsPerDevPixel)); } static LayoutDeviceIntPoint GetWidgetOffset(nsIWidget* aWidget, nsIWidget*& aRootWidget) { LayoutDeviceIntPoint offset(0, 0); while ((aWidget->WindowType() == eWindowType_child || aWidget->IsPlugin())) { nsIWidget* parent = aWidget->GetParent(); if (!parent) { break; } LayoutDeviceIntRect bounds = aWidget->GetBounds(); offset += bounds.TopLeft(); aWidget = parent; } aRootWidget = aWidget; return offset; } LayoutDeviceIntPoint nsLayoutUtils::WidgetToWidgetOffset(nsIWidget* aFrom, nsIWidget* aTo) { nsIWidget* fromRoot; LayoutDeviceIntPoint fromOffset = GetWidgetOffset(aFrom, fromRoot); nsIWidget* toRoot; LayoutDeviceIntPoint toOffset = GetWidgetOffset(aTo, toRoot); if (fromRoot == toRoot) { return fromOffset - toOffset; } return aFrom->WidgetToScreenOffset() - aTo->WidgetToScreenOffset(); } nsPoint nsLayoutUtils::TranslateWidgetToView(nsPresContext* aPresContext, nsIWidget* aWidget, const LayoutDeviceIntPoint& aPt, nsView* aView) { nsPoint viewOffset; nsIWidget* viewWidget = aView->GetNearestWidget(&viewOffset); if (!viewWidget) { return nsPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } LayoutDeviceIntPoint widgetPoint = aPt + WidgetToWidgetOffset(aWidget, viewWidget); nsPoint widgetAppUnits(aPresContext->DevPixelsToAppUnits(widgetPoint.x), aPresContext->DevPixelsToAppUnits(widgetPoint.y)); return widgetAppUnits - viewOffset; } LayoutDeviceIntPoint nsLayoutUtils::TranslateViewToWidget( nsPresContext* aPresContext, nsView* aView, nsPoint aPt, nsIWidget* aWidget) { nsPoint viewOffset; nsIWidget* viewWidget = aView->GetNearestWidget(&viewOffset); if (!viewWidget) { return LayoutDeviceIntPoint(NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE); } nsPoint pt = (aPt + viewOffset) .ApplyResolution( GetCurrentAPZResolutionScale(aPresContext->PresShell())); LayoutDeviceIntPoint relativeToViewWidget( aPresContext->AppUnitsToDevPixels(pt.x), aPresContext->AppUnitsToDevPixels(pt.y)); return relativeToViewWidget + WidgetToWidgetOffset(viewWidget, aWidget); } // Combine aNewBreakType with aOrigBreakType, but limit the break types // to StyleClear::Left, Right, Both. StyleClear nsLayoutUtils::CombineBreakType(StyleClear aOrigBreakType, StyleClear aNewBreakType) { StyleClear breakType = aOrigBreakType; switch (breakType) { case StyleClear::Left: if (StyleClear::Right == aNewBreakType || StyleClear::Both == aNewBreakType) { breakType = StyleClear::Both; } break; case StyleClear::Right: if (StyleClear::Left == aNewBreakType || StyleClear::Both == aNewBreakType) { breakType = StyleClear::Both; } break; case StyleClear::None: if (StyleClear::Left == aNewBreakType || StyleClear::Right == aNewBreakType || StyleClear::Both == aNewBreakType) { breakType = aNewBreakType; } break; default: break; } return breakType; } #ifdef MOZ_DUMP_PAINTING # include static bool gDumpEventList = false; // nsLayoutUtils::PaintFrame() can call itself recursively, so rather than // maintaining a single paint count, we need a stack. StaticAutoPtr> gPaintCountStack; struct AutoNestedPaintCount { AutoNestedPaintCount() { gPaintCountStack->AppendElement(0); } ~AutoNestedPaintCount() { gPaintCountStack->RemoveLastElement(); } }; #endif nsIFrame* nsLayoutUtils::GetFrameForPoint( nsIFrame* aFrame, nsPoint aPt, EnumSet aOptions) { AUTO_PROFILER_LABEL("nsLayoutUtils::GetFrameForPoint", LAYOUT); nsresult rv; AutoTArray outFrames; rv = GetFramesForArea(aFrame, nsRect(aPt, nsSize(1, 1)), outFrames, aOptions); NS_ENSURE_SUCCESS(rv, nullptr); return outFrames.Length() ? outFrames.ElementAt(0) : nullptr; } nsresult nsLayoutUtils::GetFramesForArea( nsIFrame* aFrame, const nsRect& aRect, nsTArray& aOutFrames, EnumSet aOptions) { AUTO_PROFILER_LABEL("nsLayoutUtils::GetFramesForArea", LAYOUT); nsDisplayListBuilder builder(aFrame, nsDisplayListBuilderMode::EventDelivery, false); builder.BeginFrame(); nsDisplayList list; if (aOptions.contains(FrameForPointOption::IgnorePaintSuppression)) { builder.IgnorePaintSuppression(); } if (aOptions.contains(FrameForPointOption::IgnoreRootScrollFrame)) { nsIFrame* rootScrollFrame = aFrame->PresShell()->GetRootScrollFrame(); if (rootScrollFrame) { builder.SetIgnoreScrollFrame(rootScrollFrame); } } if (aOptions.contains(FrameForPointOption::IgnoreCrossDoc)) { builder.SetDescendIntoSubdocuments(false); } builder.SetHitTestIsForVisibility( aOptions.contains(FrameForPointOption::OnlyVisible)); builder.EnterPresShell(aFrame); builder.SetVisibleRect(aRect); builder.SetDirtyRect(aRect); aFrame->BuildDisplayListForStackingContext(&builder, &list); builder.LeavePresShell(aFrame, nullptr); #ifdef MOZ_DUMP_PAINTING if (gDumpEventList) { fprintf_stderr(stderr, "Event handling --- (%d,%d):\n", aRect.x, aRect.y); std::stringstream ss; nsFrame::PrintDisplayList(&builder, list, ss); print_stderr(ss); } #endif nsDisplayItem::HitTestState hitTestState; list.HitTest(&builder, aRect, &hitTestState, &aOutFrames); list.DeleteAll(&builder); builder.EndFrame(); return NS_OK; } // aScrollFrameAsScrollable must be non-nullptr and queryable to an nsIFrame FrameMetrics nsLayoutUtils::CalculateBasicFrameMetrics( nsIScrollableFrame* aScrollFrame) { nsIFrame* frame = do_QueryFrame(aScrollFrame); MOZ_ASSERT(frame); // Calculate the metrics necessary for calculating the displayport. // This code has a lot in common with the code in ComputeFrameMetrics(); // we may want to refactor this at some point. FrameMetrics metrics; nsPresContext* presContext = frame->PresContext(); PresShell* presShell = presContext->PresShell(); CSSToLayoutDeviceScale deviceScale = presContext->CSSToDevPixelScale(); float resolution = 1.0f; if (frame == presShell->GetRootScrollFrame()) { // Only the root scrollable frame for a given presShell should pick up // the presShell's resolution. All the other frames are 1.0. resolution = presShell->GetResolution(); } // Note: unlike in ComputeFrameMetrics(), we don't know the full cumulative // resolution including FrameMetrics::mExtraResolution, because layout hasn't // chosen a resolution to paint at yet. However, the display port calculation // divides out mExtraResolution anyways, so we get the correct result by // setting the mCumulativeResolution to everything except the extra resolution // and leaving mExtraResolution at 1. LayoutDeviceToLayerScale2D cumulativeResolution( presShell->GetCumulativeResolution() * nsLayoutUtils::GetTransformToAncestorScale(frame)); LayerToParentLayerScale layerToParentLayerScale(1.0f); metrics.SetDevPixelsPerCSSPixel(deviceScale); metrics.SetPresShellResolution(resolution); metrics.SetCumulativeResolution(cumulativeResolution); metrics.SetZoom(deviceScale * cumulativeResolution * layerToParentLayerScale); // Only the size of the composition bounds is relevant to the // displayport calculation, not its origin. nsSize compositionSize = nsLayoutUtils::CalculateCompositionSizeForFrame(frame); LayoutDeviceToParentLayerScale2D compBoundsScale; if (frame == presShell->GetRootScrollFrame() && presContext->IsRootContentDocument()) { if (presContext->GetParentPresContext()) { float res = presContext->GetParentPresContext() ->PresShell() ->GetCumulativeResolution(); compBoundsScale = LayoutDeviceToParentLayerScale2D(LayoutDeviceToParentLayerScale(res)); } } else { compBoundsScale = cumulativeResolution * layerToParentLayerScale; } metrics.SetCompositionBounds( LayoutDeviceRect::FromAppUnits(nsRect(nsPoint(0, 0), compositionSize), presContext->AppUnitsPerDevPixel()) * compBoundsScale); metrics.SetRootCompositionSize( nsLayoutUtils::CalculateRootCompositionSize(frame, false, metrics)); metrics.SetScrollOffset( CSSPoint::FromAppUnits(aScrollFrame->GetScrollPosition())); metrics.SetScrollableRect(CSSRect::FromAppUnits( nsLayoutUtils::CalculateScrollableRectForFrame(aScrollFrame, nullptr))); return metrics; } bool nsLayoutUtils::CalculateAndSetDisplayPortMargins( nsIScrollableFrame* aScrollFrame, RepaintMode aRepaintMode) { nsIFrame* frame = do_QueryFrame(aScrollFrame); MOZ_ASSERT(frame); nsIContent* content = frame->GetContent(); MOZ_ASSERT(content); FrameMetrics metrics = CalculateBasicFrameMetrics(aScrollFrame); ScreenMargin displayportMargins = apz::CalculatePendingDisplayPort(metrics, ParentLayerPoint(0.0f, 0.0f)); PresShell* presShell = frame->PresContext()->GetPresShell(); return nsLayoutUtils::SetDisplayPortMargins( content, presShell, displayportMargins, 0, aRepaintMode); } bool nsLayoutUtils::MaybeCreateDisplayPort(nsDisplayListBuilder* aBuilder, nsIFrame* aScrollFrame, RepaintMode aRepaintMode) { nsIContent* content = aScrollFrame->GetContent(); nsIScrollableFrame* scrollableFrame = do_QueryFrame(aScrollFrame); if (!content || !scrollableFrame) { return false; } bool haveDisplayPort = HasDisplayPort(content); // We perform an optimization where we ensure that at least one // async-scrollable frame (i.e. one that WantsAsyncScroll()) has a // displayport. If that's not the case yet, and we are async-scrollable, we // will get a displayport. if (aBuilder->IsPaintingToWindow() && nsLayoutUtils::AsyncPanZoomEnabled(aScrollFrame) && !aBuilder->HaveScrollableDisplayPort() && scrollableFrame->WantAsyncScroll()) { // If we don't already have a displayport, calculate and set one. if (!haveDisplayPort) { CalculateAndSetDisplayPortMargins(scrollableFrame, aRepaintMode); #ifdef DEBUG haveDisplayPort = HasDisplayPort(content); MOZ_ASSERT(haveDisplayPort, "should have a displayport after having just set it"); #endif } // Record that the we now have a scrollable display port. aBuilder->SetHaveScrollableDisplayPort(); return true; } return false; } nsIScrollableFrame* nsLayoutUtils::GetAsyncScrollableAncestorFrame( nsIFrame* aTarget) { uint32_t flags = nsLayoutUtils::SCROLLABLE_ALWAYS_MATCH_ROOT | nsLayoutUtils::SCROLLABLE_ONLY_ASYNC_SCROLLABLE | nsLayoutUtils::SCROLLABLE_FIXEDPOS_FINDS_ROOT; return nsLayoutUtils::GetNearestScrollableFrame(aTarget, flags); } void nsLayoutUtils::SetZeroMarginDisplayPortOnAsyncScrollableAncestors( nsIFrame* aFrame) { nsIFrame* frame = aFrame; while (frame) { frame = nsLayoutUtils::GetCrossDocParentFrame(frame); if (!frame) { break; } nsIScrollableFrame* scrollAncestor = GetAsyncScrollableAncestorFrame(frame); if (!scrollAncestor) { break; } frame = do_QueryFrame(scrollAncestor); MOZ_ASSERT(frame); MOZ_ASSERT(scrollAncestor->WantAsyncScroll() || frame->PresShell()->GetRootScrollFrame() == frame); if (nsLayoutUtils::AsyncPanZoomEnabled(frame) && !nsLayoutUtils::HasDisplayPort(frame->GetContent())) { nsLayoutUtils::SetDisplayPortMargins(frame->GetContent(), frame->PresShell(), ScreenMargin(), 0, RepaintMode::Repaint); } } } bool nsLayoutUtils::MaybeCreateDisplayPortInFirstScrollFrameEncountered( nsIFrame* aFrame, nsDisplayListBuilder* aBuilder) { nsIScrollableFrame* sf = do_QueryFrame(aFrame); if (sf) { if (MaybeCreateDisplayPort(aBuilder, aFrame, RepaintMode::Repaint)) { return true; } } if (aFrame->IsPlaceholderFrame()) { nsPlaceholderFrame* placeholder = static_cast(aFrame); if (MaybeCreateDisplayPortInFirstScrollFrameEncountered( placeholder->GetOutOfFlowFrame(), aBuilder)) { return true; } } if (aFrame->IsSubDocumentFrame()) { PresShell* presShell = static_cast(aFrame) ->GetSubdocumentPresShellForPainting(0); nsIFrame* root = presShell ? presShell->GetRootFrame() : nullptr; if (root) { if (MaybeCreateDisplayPortInFirstScrollFrameEncountered(root, aBuilder)) { return true; } } } if (aFrame->IsDeckFrame()) { // only descend the visible card of a decks nsIFrame* child = static_cast(aFrame)->GetSelectedBox(); if (child) { return MaybeCreateDisplayPortInFirstScrollFrameEncountered(child, aBuilder); } } for (nsIFrame* child : aFrame->PrincipalChildList()) { if (MaybeCreateDisplayPortInFirstScrollFrameEncountered(child, aBuilder)) { return true; } } return false; } void nsLayoutUtils::ExpireDisplayPortOnAsyncScrollableAncestor( nsIFrame* aFrame) { nsIFrame* frame = aFrame; while (frame) { frame = nsLayoutUtils::GetCrossDocParentFrame(frame); if (!frame) { break; } nsIScrollableFrame* scrollAncestor = GetAsyncScrollableAncestorFrame(frame); if (!scrollAncestor) { break; } frame = do_QueryFrame(scrollAncestor); MOZ_ASSERT(frame); if (!frame) { break; } MOZ_ASSERT(scrollAncestor->WantAsyncScroll() || frame->PresShell()->GetRootScrollFrame() == frame); if (nsLayoutUtils::HasDisplayPort(frame->GetContent())) { scrollAncestor->TriggerDisplayPortExpiration(); // Stop after the first trigger. If it failed, there's no point in // continuing because all the rest of the frames we encounter are going // to be ancestors of |scrollAncestor| which will keep its displayport. // If the trigger succeeded, we stop because when the trigger executes // it will call this function again to trigger the next ancestor up the // chain. break; } } } void nsLayoutUtils::AddExtraBackgroundItems(nsDisplayListBuilder* aBuilder, nsDisplayList* aList, nsIFrame* aFrame, const nsRect& aCanvasArea, const nsRegion& aVisibleRegion, nscolor aBackstop) { LayoutFrameType frameType = aFrame->Type(); nsPresContext* presContext = aFrame->PresContext(); PresShell* presShell = presContext->PresShell(); // For the viewport frame in print preview/page layout we want to paint // the grey background behind the page, not the canvas color. if (frameType == LayoutFrameType::Viewport && nsLayoutUtils::NeedsPrintPreviewBackground(presContext)) { nsRect bounds = nsRect(aBuilder->ToReferenceFrame(aFrame), aFrame->GetSize()); nsDisplayListBuilder::AutoBuildingDisplayList buildingDisplayList( aBuilder, aFrame, bounds, bounds); presShell->AddPrintPreviewBackgroundItem(aBuilder, aList, aFrame, bounds); } else if (frameType != LayoutFrameType::Page) { // For printing, this function is first called on an nsPageFrame, which // creates a display list with a PageContent item. The PageContent item's // paint function calls this function on the nsPageFrame's child which is // an nsPageContentFrame. We only want to add the canvas background color // item once, for the nsPageContentFrame. // Add the canvas background color to the bottom of the list. This // happens after we've built the list so that AddCanvasBackgroundColorItem // can monkey with the contents if necessary. nsRect canvasArea = aVisibleRegion.GetBounds(); canvasArea.IntersectRect(aCanvasArea, canvasArea); nsDisplayListBuilder::AutoBuildingDisplayList buildingDisplayList( aBuilder, aFrame, canvasArea, canvasArea); presShell->AddCanvasBackgroundColorItem(aBuilder, aList, aFrame, canvasArea, aBackstop); } } /** * Returns a retained display list builder for frame |aFrame|. If there is no * retained display list builder property set for the frame, and if the flag * |aRetainingEnabled| is true, a new retained display list builder is created, * stored as a property for the frame, and returned. */ static RetainedDisplayListBuilder* GetOrCreateRetainedDisplayListBuilder( nsIFrame* aFrame, bool aRetainingEnabled, bool aBuildCaret) { RetainedDisplayListBuilder* retainedBuilder = aFrame->GetProperty(RetainedDisplayListBuilder::Cached()); if (retainedBuilder) { return retainedBuilder; } if (aRetainingEnabled) { retainedBuilder = new RetainedDisplayListBuilder( aFrame, nsDisplayListBuilderMode::Painting, aBuildCaret); aFrame->SetProperty(RetainedDisplayListBuilder::Cached(), retainedBuilder); } return retainedBuilder; } // #define PRINT_HITTESTINFO_STATS #ifdef PRINT_HITTESTINFO_STATS void PrintHitTestInfoStatsInternal(nsDisplayList* aList, int& aTotal, int& aHitTest, int& aVisible, int& aSpecial) { for (nsDisplayItem* i = aList->GetBottom(); i; i = i->GetAbove()) { aTotal++; if (i->GetChildren()) { PrintHitTestInfoStatsInternal(i->GetChildren(), aTotal, aHitTest, aVisible, aSpecial); } if (i->GetType() == DisplayItemType::TYPE_COMPOSITOR_HITTEST_INFO) { aHitTest++; const auto& hitTestInfo = static_cast(i)->HitTestFlags(); if (hitTestInfo.size() > 1) { aSpecial++; continue; } if (hitTestInfo == CompositorHitTestVisibleToHit) { aVisible++; continue; } aSpecial++; } } } void PrintHitTestInfoStats(nsDisplayList* aList) { int total = 0; int hitTest = 0; int visible = 0; int special = 0; PrintHitTestInfoStatsInternal(aList, total, hitTest, visible, special); double ratio = (double)hitTest / (double)total; printf( "List %p: total items: %d, hit test items: %d, ratio: %f, visible: %d, " "special: %d\n", aList, total, hitTest, ratio, visible, special); } #endif // Apply a batch of effects updates generated during a paint to their // respective remote browsers. static void ApplyEffectsUpdates( const nsDataHashtable, EffectsInfo>& aUpdates) { for (auto iter = aUpdates.ConstIter(); !iter.Done(); iter.Next()) { auto browser = iter.Key(); auto update = iter.Data(); browser->UpdateEffects(update); } } static void LogPaintedPixelCount(LayerManager* aLayerManager, const TimeStamp aPaintStart) { static std::vector> history; const TimeStamp now = TimeStamp::Now(); const double rasterizeTime = (now - aPaintStart).ToMilliseconds(); const uint32_t pixelCount = aLayerManager->GetAndClearPaintedPixelCount(); if (pixelCount) { history.push_back(std::make_pair(now, pixelCount)); } uint32_t paintedInLastSecond = 0; for (auto i = history.begin(); i != history.end(); i++) { if ((now - i->first).ToMilliseconds() > 1000.0f) { // more than 1000ms ago, don't count it continue; } if (paintedInLastSecond == 0) { // This is the first one in the last 1000ms, so drop everything earlier history.erase(history.begin(), i); i = history.begin(); } paintedInLastSecond += i->second; MOZ_ASSERT(paintedInLastSecond); // all historical pixel counts are > 0 } printf_stderr("Painted %u pixels in %fms (%u in the last 1000ms)\n", pixelCount, rasterizeTime, paintedInLastSecond); } static void DumpBeforePaintDisplayList(UniquePtr& aStream, nsDisplayListBuilder* aBuilder, nsDisplayList* aList, const nsRect& aVisibleRect) { #ifdef MOZ_DUMP_PAINTING if (gfxEnv::DumpPaintToFile()) { nsCString string("dump-"); // Include the process ID in the dump file name, to make sure that in an // e10s setup different processes don't clobber each other's dump files. string.AppendInt(getpid()); for (int paintCount : *gPaintCountStack) { string.AppendLiteral("-"); string.AppendInt(paintCount); } string.AppendLiteral(".html"); gfxUtils::sDumpPaintFile = fopen(string.BeginReading(), "w"); } else { gfxUtils::sDumpPaintFile = stderr; } if (gfxEnv::DumpPaintToFile()) { *aStream << ""; } #endif *aStream << nsPrintfCString( "Painting --- before optimization (dirty %d,%d,%d,%d):\n", aVisibleRect.x, aVisibleRect.y, aVisibleRect.width, aVisibleRect.height) .get(); nsFrame::PrintDisplayList(aBuilder, *aList, *aStream, gfxEnv::DumpPaintToFile()); if (gfxEnv::DumpPaint() || gfxEnv::DumpPaintItems()) { // Flush stream now to avoid reordering dump output relative to // messages dumped by PaintRoot below. fprint_stderr(gfxUtils::sDumpPaintFile, *aStream); aStream = MakeUnique(); } } static void DumpAfterPaintDisplayList(UniquePtr& aStream, nsDisplayListBuilder* aBuilder, nsDisplayList* aList, LayerManager* aManager) { *aStream << "Painting --- after optimization:\n"; nsFrame::PrintDisplayList(aBuilder, *aList, *aStream, gfxEnv::DumpPaintToFile()); *aStream << "Painting --- layer tree:\n"; if (aManager) { FrameLayerBuilder::DumpRetainedLayerTree(aManager, *aStream, gfxEnv::DumpPaintToFile()); } fprint_stderr(gfxUtils::sDumpPaintFile, *aStream); #ifdef MOZ_DUMP_PAINTING if (gfxEnv::DumpPaintToFile()) { *aStream << ""; } if (gfxEnv::DumpPaintToFile()) { fclose(gfxUtils::sDumpPaintFile); } #endif std::stringstream lsStream; nsFrame::PrintDisplayList(aBuilder, *aList, lsStream); if (aManager->GetRoot()) { aManager->GetRoot()->SetDisplayListLog(lsStream.str().c_str()); } } struct TemporaryDisplayListBuilder { TemporaryDisplayListBuilder(nsIFrame* aFrame, nsDisplayListBuilderMode aBuilderMode, const bool aBuildCaret) : mBuilder(aFrame, aBuilderMode, aBuildCaret) {} ~TemporaryDisplayListBuilder() { mList.DeleteAll(&mBuilder); } nsDisplayListBuilder mBuilder; nsDisplayList mList; RetainedDisplayListMetrics mMetrics; }; nsresult nsLayoutUtils::PaintFrame(gfxContext* aRenderingContext, nsIFrame* aFrame, const nsRegion& aDirtyRegion, nscolor aBackstop, nsDisplayListBuilderMode aBuilderMode, PaintFrameFlags aFlags) { AUTO_PROFILER_LABEL("nsLayoutUtils::PaintFrame", GRAPHICS); #ifdef MOZ_DUMP_PAINTING if (!gPaintCountStack) { gPaintCountStack = new nsTArray(); ClearOnShutdown(&gPaintCountStack); gPaintCountStack->AppendElement(0); } ++gPaintCountStack->LastElement(); AutoNestedPaintCount nestedPaintCount; #endif if (aFlags & PaintFrameFlags::WidgetLayers) { nsView* view = aFrame->GetView(); if (!(view && view->GetWidget() && GetDisplayRootFrame(aFrame) == aFrame)) { aFlags &= ~PaintFrameFlags::WidgetLayers; NS_ASSERTION(aRenderingContext, "need a rendering context"); } } nsPresContext* presContext = aFrame->PresContext(); PresShell* presShell = presContext->PresShell(); nsRootPresContext* rootPresContext = presContext->GetRootPresContext(); if (!rootPresContext) { return NS_OK; } TimeStamp startBuildDisplayList = TimeStamp::Now(); const bool buildCaret = !(aFlags & PaintFrameFlags::HideCaret); const bool isForPainting = (aFlags & PaintFrameFlags::WidgetLayers) && aBuilderMode == nsDisplayListBuilderMode::Painting; // Only allow retaining for painting when preffed on, and for root frames // (since the modified frame tracking is per-root-frame). const bool retainingEnabled = isForPainting && AreRetainedDisplayListsEnabled() && !aFrame->GetParent(); RetainedDisplayListBuilder* retainedBuilder = GetOrCreateRetainedDisplayListBuilder(aFrame, retainingEnabled, buildCaret); // Only use the retained display list builder if the retaining is currently // enabled. This check is needed because it is possible that the pref has been // disabled after creating the retained display list builder. const bool useRetainedBuilder = retainedBuilder && retainingEnabled; Maybe temporaryBuilder; nsDisplayListBuilder* builder = nullptr; nsDisplayList* list = nullptr; RetainedDisplayListMetrics* metrics = nullptr; if (useRetainedBuilder) { builder = retainedBuilder->Builder(); list = retainedBuilder->List(); metrics = retainedBuilder->Metrics(); } else { temporaryBuilder.emplace(aFrame, aBuilderMode, buildCaret); builder = &temporaryBuilder->mBuilder; list = &temporaryBuilder->mList; metrics = &temporaryBuilder->mMetrics; } MOZ_ASSERT(builder && list && metrics); // Retained builder exists, but display list retaining is disabled. if (!useRetainedBuilder && retainedBuilder) { // Clear the modified frames lists and frame properties. retainedBuilder->ClearFramesWithProps(); // Clear the retained display list. retainedBuilder->List()->DeleteAll(retainedBuilder->Builder()); } metrics->Reset(); metrics->StartBuild(); builder->BeginFrame(); if (aFlags & PaintFrameFlags::InTransform) { builder->SetInTransform(true); } if (aFlags & PaintFrameFlags::SyncDecodeImages) { builder->SetSyncDecodeImages(true); } if (aFlags & (PaintFrameFlags::WidgetLayers | PaintFrameFlags::ToWindow)) { builder->SetPaintingToWindow(true); } if (aFlags & PaintFrameFlags::ForWebRender) { builder->SetPaintingForWebRender(true); } if (aFlags & PaintFrameFlags::IgnoreSuppression) { builder->IgnorePaintSuppression(); } if (nsIDocShell* doc = presContext->GetDocShell()) { bool isActive = false; doc->GetIsActive(&isActive); builder->SetInActiveDocShell(isActive); } nsRect rootVisualOverflow = aFrame->GetVisualOverflowRectRelativeToSelf(); // If we are in a remote browser, then apply clipping from ancestor browsers if (BrowserChild* browserChild = BrowserChild::GetFrom(presShell)) { Maybe unscaledVisibleRect = browserChild->GetVisibleRect(); if (unscaledVisibleRect) { CSSRect visibleRect = *unscaledVisibleRect / presContext->CSSToDevPixelScale(); rootVisualOverflow.IntersectRect(rootVisualOverflow, CSSPixel::ToAppUnits(visibleRect)); } } nsIFrame* rootScrollFrame = presShell->GetRootScrollFrame(); if (rootScrollFrame && !aFrame->GetParent()) { nsIScrollableFrame* rootScrollableFrame = presShell->GetRootScrollFrameAsScrollable(); MOZ_ASSERT(rootScrollableFrame); nsRect displayPortBase = rootVisualOverflow; nsRect temp = displayPortBase; Unused << rootScrollableFrame->DecideScrollableLayer( builder, &displayPortBase, &temp, /* aSetBase = */ true); } nsRegion visibleRegion; if (aFlags & PaintFrameFlags::WidgetLayers) { // This layer tree will be reused, so we'll need to calculate it // for the whole "visible" area of the window // // |ignoreViewportScrolling| and |usingDisplayPort| are persistent // document-rendering state. We rely on PresShell to flush // retained layers as needed when that persistent state changes. visibleRegion = rootVisualOverflow; } else { visibleRegion = aDirtyRegion; } // If the root has embedded plugins, flag the builder so we know we'll need // to update plugin geometry after painting. if ((aFlags & PaintFrameFlags::WidgetLayers) && !(aFlags & PaintFrameFlags::DocumentRelative) && rootPresContext->NeedToComputePluginGeometryUpdates()) { builder->SetWillComputePluginGeometry(true); // Disable partial updates for this paint as the list we're about to // build has plugin-specific differences that won't trigger invalidations. builder->SetDisablePartialUpdates(true); } nsRect canvasArea(nsPoint(0, 0), aFrame->GetSize()); bool ignoreViewportScrolling = !aFrame->GetParent() && presShell->IgnoringViewportScrolling(); if (ignoreViewportScrolling && rootScrollFrame) { nsIScrollableFrame* rootScrollableFrame = presShell->GetRootScrollFrameAsScrollable(); if (aFlags & PaintFrameFlags::DocumentRelative) { // Make visibleRegion and aRenderingContext relative to the // scrolled frame instead of the root frame. nsPoint pos = rootScrollableFrame->GetScrollPosition(); visibleRegion.MoveBy(-pos); if (aRenderingContext) { gfxPoint devPixelOffset = nsLayoutUtils::PointToGfxPoint( pos, presContext->AppUnitsPerDevPixel()); aRenderingContext->SetMatrixDouble( aRenderingContext->CurrentMatrixDouble().PreTranslate( devPixelOffset)); } } builder->SetIgnoreScrollFrame(rootScrollFrame); nsCanvasFrame* canvasFrame = do_QueryFrame(rootScrollableFrame->GetScrolledFrame()); if (canvasFrame) { // Use UnionRect here to ensure that areas where the scrollbars // were are still filled with the background color. canvasArea.UnionRect( canvasArea, canvasFrame->CanvasArea() + builder->ToReferenceFrame(canvasFrame)); } } builder->ClearHaveScrollableDisplayPort(); if (builder->IsPaintingToWindow()) { MaybeCreateDisplayPortInFirstScrollFrameEncountered(aFrame, builder); } nsRect visibleRect = visibleRegion.GetBounds(); PartialUpdateResult updateState = PartialUpdateResult::Failed; { AUTO_PROFILER_LABEL_CATEGORY_PAIR(GRAPHICS_DisplayListBuilding); AUTO_PROFILER_TRACING_MARKER("Paint", "DisplayList", GRAPHICS); PerfStats::AutoMetricRecording autoRecording; PaintTelemetry::AutoRecord record(PaintTelemetry::Metric::DisplayList); { // If a scrollable container layer is created in // nsDisplayList::PaintForFrame, it will be the scroll parent for display // items that are built in the BuildDisplayListForStackingContext call // below. We need to set the scroll parent on the display list builder // while we build those items, so that they can pick up their scroll // parent's id. ViewID id = ScrollableLayerGuid::NULL_SCROLL_ID; if (ignoreViewportScrolling && presContext->IsRootContentDocument()) { if (nsIFrame* rootScrollFrame = presShell->GetRootScrollFrame()) { if (nsIContent* content = rootScrollFrame->GetContent()) { id = nsLayoutUtils::FindOrCreateIDFor(content); } } } else if (presShell->GetDocument() && presShell->GetDocument()->IsRootDisplayDocument() && !presShell->GetRootScrollFrame()) { // In cases where the root document is a XUL document, we want to take // the ViewID from the root element, as that will be the ViewID of the // root APZC in the tree. Skip doing this in cases where we know // nsGfxScrollFrame::BuilDisplayList will do it instead. if (dom::Element* element = presShell->GetDocument()->GetDocumentElement()) { id = nsLayoutUtils::FindOrCreateIDFor(element); } // In some cases we get a root document here on an APZ-enabled window // that doesn't have the root displayport initialized yet, even though // the ChromeProcessController is supposed to do it when the widget is // created. This can happen simply because the ChromeProcessController // does it on the next spin of the event loop, and we can trigger a // paint synchronously after window creation but before that runs. In // that case we should initialize the root displayport here before we do // the paint. } else if (XRE_IsParentProcess() && presContext->IsRoot() && presShell->GetDocument() != nullptr && presShell->GetRootScrollFrame() != nullptr && nsLayoutUtils::UsesAsyncScrolling( presShell->GetRootScrollFrame())) { if (dom::Element* element = presShell->GetDocument()->GetDocumentElement()) { if (!nsLayoutUtils::HasDisplayPort(element)) { APZCCallbackHelper::InitializeRootDisplayport(presShell); } } } nsDisplayListBuilder::AutoCurrentScrollParentIdSetter idSetter(builder, id); builder->SetVisibleRect(visibleRect); builder->SetIsBuilding(true); builder->SetAncestorHasApzAwareEventHandler( gfxPlatform::AsyncPanZoomEnabled() && nsLayoutUtils::HasDocumentLevelListenersForApzAwareEvents(presShell)); DisplayListChecker beforeMergeChecker; DisplayListChecker toBeMergedChecker; DisplayListChecker afterMergeChecker; // If a pref is toggled that adds or removes display list items, // we need to rebuild the display list. The pref may be toggled // manually by the user, or during test setup. bool shouldAttemptPartialUpdate = useRetainedBuilder; if (builder->ShouldRebuildDisplayListDueToPrefChange()) { shouldAttemptPartialUpdate = false; } // Attempt to do a partial build and merge into the existing list. // This calls BuildDisplayListForStacking context on a subset of the // viewport. if (shouldAttemptPartialUpdate) { if (StaticPrefs::layout_display_list_retain_verify()) { beforeMergeChecker.Set(list, "BM"); } updateState = retainedBuilder->AttemptPartialUpdate( aBackstop, beforeMergeChecker ? &toBeMergedChecker : nullptr); if ((updateState != PartialUpdateResult::Failed) && beforeMergeChecker) { afterMergeChecker.Set(list, "AM"); } metrics->EndPartialBuild(updateState); } else { // Partial updates are disabled. metrics->mPartialUpdateResult = PartialUpdateResult::Failed; metrics->mPartialUpdateFailReason = PartialUpdateFailReason::Disabled; } // Rebuild the full display list if the partial display list build failed, // or if the merge checker is used. bool doFullRebuild = updateState == PartialUpdateResult::Failed || afterMergeChecker; if (StaticPrefs::layout_display_list_build_twice()) { // Build display list twice to compare partial and full display list // build times. metrics->StartBuild(); doFullRebuild = true; } if (doFullRebuild) { list->DeleteAll(builder); list->RestoreState(); builder->ClearRetainedWindowRegions(); builder->ClearWillChangeBudgets(); builder->EnterPresShell(aFrame); builder->SetDirtyRect(visibleRect); aFrame->BuildDisplayListForStackingContext(builder, list); AddExtraBackgroundItems(builder, list, aFrame, canvasArea, visibleRegion, aBackstop); builder->LeavePresShell(aFrame, list); metrics->EndFullBuild(); updateState = PartialUpdateResult::Updated; if (afterMergeChecker) { DisplayListChecker nonRetainedChecker(list, "NR"); std::stringstream ss; ss << "**** Differences between retained-after-merged (AM) and " << "non-retained (NR) display lists:"; if (!nonRetainedChecker.CompareList(afterMergeChecker, ss)) { ss << "\n\n*** non-retained display items:"; nonRetainedChecker.Dump(ss); ss << "\n\n*** before-merge retained display items:"; beforeMergeChecker.Dump(ss); ss << "\n\n*** to-be-merged retained display items:"; toBeMergedChecker.Dump(ss); ss << "\n\n*** after-merge retained display items:"; afterMergeChecker.Dump(ss); fprintf(stderr, "%s\n\n", ss.str().c_str()); #ifdef DEBUG_FRAME_DUMP fprintf(stderr, "*** Frame tree:\n"); aFrame->DumpFrameTree(); #endif } } } } builder->SetIsBuilding(false); builder->IncrementPresShellPaintCount(presShell); } if (StaticPrefs::layers_acceleration_draw_fps()) { RefPtr lm = builder->GetWidgetLayerManager(); PaintTiming* pt = ClientLayerManager::MaybeGetPaintTiming(lm); if (pt) { pt->dlMs() = static_cast(metrics->mPartialBuildDuration); pt->dl2Ms() = static_cast(metrics->mFullBuildDuration); } } MOZ_ASSERT(updateState != PartialUpdateResult::Failed); builder->Check(); Telemetry::AccumulateTimeDelta(Telemetry::PAINT_BUILD_DISPLAYLIST_TIME, startBuildDisplayList); bool consoleNeedsDisplayList = (gfxUtils::DumpDisplayList() || gfxEnv::DumpPaint()) && builder->IsInActiveDocShell(); #ifdef MOZ_DUMP_PAINTING FILE* savedDumpFile = gfxUtils::sDumpPaintFile; #endif UniquePtr ss; if (consoleNeedsDisplayList) { ss = MakeUnique(); DumpBeforePaintDisplayList(ss, builder, list, visibleRect); } uint32_t flags = nsDisplayList::PAINT_DEFAULT; if (aFlags & PaintFrameFlags::WidgetLayers) { flags |= nsDisplayList::PAINT_USE_WIDGET_LAYERS; if (!(aFlags & PaintFrameFlags::DocumentRelative)) { nsIWidget* widget = aFrame->GetNearestWidget(); if (widget) { // If we're finished building display list items for painting of the // outermost pres shell, notify the widget about any toolbars we've // encountered. widget->UpdateThemeGeometries(builder->GetThemeGeometries()); } } } if (aFlags & PaintFrameFlags::ExistingTransaction) { flags |= nsDisplayList::PAINT_EXISTING_TRANSACTION; } if (aFlags & PaintFrameFlags::NoComposite) { flags |= nsDisplayList::PAINT_NO_COMPOSITE; } if (aFlags & PaintFrameFlags::Compressed) { flags |= nsDisplayList::PAINT_COMPRESSED; } if (updateState == PartialUpdateResult::NoChange && !aRenderingContext) { flags |= nsDisplayList::PAINT_IDENTICAL_DISPLAY_LIST; } #ifdef PRINT_HITTESTINFO_STATS if (XRE_IsContentProcess()) { PrintHitTestInfoStats(list); } #endif TimeStamp paintStart = TimeStamp::Now(); RefPtr layerManager = list->PaintRoot(builder, aRenderingContext, flags); Telemetry::AccumulateTimeDelta(Telemetry::PAINT_RASTERIZE_TIME, paintStart); presShell->EndPaint(); builder->Check(); if (StaticPrefs::gfx_logging_painted_pixel_count_enabled()) { LogPaintedPixelCount(layerManager, paintStart); } if (consoleNeedsDisplayList) { DumpAfterPaintDisplayList(ss, builder, list, layerManager); } #ifdef MOZ_DUMP_PAINTING gfxUtils::sDumpPaintFile = savedDumpFile; #endif if (StaticPrefs::layers_dump_client_layers()) { std::stringstream ss; FrameLayerBuilder::DumpRetainedLayerTree(layerManager, ss, false); print_stderr(ss); } // Update the widget's opaque region information. This sets // glass boundaries on Windows. Also set up the window dragging region // and plugin clip regions and bounds. if ((aFlags & PaintFrameFlags::WidgetLayers) && !(aFlags & PaintFrameFlags::DocumentRelative)) { nsIWidget* widget = aFrame->GetNearestWidget(); if (widget) { nsRegion opaqueRegion; opaqueRegion.And(builder->GetWindowExcludeGlassRegion(), builder->GetWindowOpaqueRegion()); widget->UpdateOpaqueRegion(LayoutDeviceIntRegion::FromUnknownRegion( opaqueRegion.ToNearestPixels(presContext->AppUnitsPerDevPixel()))); widget->UpdateWindowDraggingRegion(builder->GetWindowDraggingRegion()); } } if (builder->WillComputePluginGeometry()) { // For single process compute and apply plugin geometry updates to plugin // windows, then request composition. For content processes skip eveything // except requesting composition. Geometry updates were calculated and // shipped to the chrome process in nsDisplayList when the layer // transaction completed. if (XRE_IsParentProcess()) { rootPresContext->ComputePluginGeometryUpdates(aFrame, builder, list); // We're not going to get a WillPaintWindow event here if we didn't do // widget invalidation, so just apply the plugin geometry update here // instead. We could instead have the compositor send back an equivalent // to WillPaintWindow, but it should be close enough to now not to matter. if (layerManager && !layerManager->NeedsWidgetInvalidation()) { rootPresContext->ApplyPluginGeometryUpdates(); } } // We told the compositor thread not to composite when it received the // transaction because we wanted to update plugins first. Schedule the // composite now. if (layerManager) { layerManager->ScheduleComposite(); } // Disable partial updates for the following paint as well, as we now have // a plugin-specific display list. builder->SetDisablePartialUpdates(true); } // Apply effects updates if we were actually painting if (isForPainting) { ApplyEffectsUpdates(builder->GetEffectUpdates()); } builder->Check(); { AUTO_PROFILER_TRACING_MARKER("Paint", "DisplayListResources", GRAPHICS); builder->EndFrame(); if (!useRetainedBuilder) { temporaryBuilder.reset(); } } #if 0 if (XRE_IsParentProcess()) { if (metrics->mPartialUpdateResult == PartialUpdateResult::Failed) { printf("DL partial update failed: %s, Frame: %p\n", metrics->FailReasonString(), aFrame); } else { printf( "DL partial build success!" " new: %d, reused: %d, rebuilt: %d, removed: %d, total: %d\n", metrics->mNewItems, metrics->mReusedItems, metrics->mRebuiltItems, metrics->mRemovedItems, metrics->mTotalItems); } } #endif return NS_OK; } /** * Uses a binary search for find where the cursor falls in the line of text * It also keeps track of the part of the string that has already been measured * so it doesn't have to keep measuring the same text over and over * * @param "aBaseWidth" contains the width in twips of the portion * of the text that has already been measured, and aBaseInx contains * the index of the text that has already been measured. * * @param aTextWidth returns the (in twips) the length of the text that falls * before the cursor aIndex contains the index of the text where the cursor * falls */ bool nsLayoutUtils::BinarySearchForPosition( DrawTarget* aDrawTarget, nsFontMetrics& aFontMetrics, const char16_t* aText, int32_t aBaseWidth, int32_t aBaseInx, int32_t aStartInx, int32_t aEndInx, int32_t aCursorPos, int32_t& aIndex, int32_t& aTextWidth) { int32_t range = aEndInx - aStartInx; if ((range == 1) || (range == 2 && NS_IS_HIGH_SURROGATE(aText[aStartInx]))) { aIndex = aStartInx + aBaseInx; aTextWidth = nsLayoutUtils::AppUnitWidthOfString(aText, aIndex, aFontMetrics, aDrawTarget); return true; } int32_t inx = aStartInx + (range / 2); // Make sure we don't leave a dangling low surrogate if (NS_IS_HIGH_SURROGATE(aText[inx - 1])) inx++; int32_t textWidth = nsLayoutUtils::AppUnitWidthOfString( aText, inx, aFontMetrics, aDrawTarget); int32_t fullWidth = aBaseWidth + textWidth; if (fullWidth == aCursorPos) { aTextWidth = textWidth; aIndex = inx; return true; } else if (aCursorPos < fullWidth) { aTextWidth = aBaseWidth; if (BinarySearchForPosition(aDrawTarget, aFontMetrics, aText, aBaseWidth, aBaseInx, aStartInx, inx, aCursorPos, aIndex, aTextWidth)) { return true; } } else { aTextWidth = fullWidth; if (BinarySearchForPosition(aDrawTarget, aFontMetrics, aText, aBaseWidth, aBaseInx, inx, aEndInx, aCursorPos, aIndex, aTextWidth)) { return true; } } return false; } void nsLayoutUtils::AddBoxesForFrame(nsIFrame* aFrame, nsLayoutUtils::BoxCallback* aCallback) { auto pseudoType = aFrame->Style()->GetPseudoType(); if (pseudoType == PseudoStyleType::tableWrapper) { AddBoxesForFrame(aFrame->PrincipalChildList().FirstChild(), aCallback); if (aCallback->mIncludeCaptionBoxForTable) { nsIFrame* kid = aFrame->GetChildList(nsIFrame::kCaptionList).FirstChild(); if (kid) { AddBoxesForFrame(kid, aCallback); } } } else if (pseudoType == PseudoStyleType::mozBlockInsideInlineWrapper || pseudoType == PseudoStyleType::mozMathMLAnonymousBlock || pseudoType == PseudoStyleType::mozXULAnonymousBlock) { for (nsIFrame* kid : aFrame->PrincipalChildList()) { AddBoxesForFrame(kid, aCallback); } } else { aCallback->AddBox(aFrame); } } void nsLayoutUtils::GetAllInFlowBoxes(nsIFrame* aFrame, BoxCallback* aCallback) { while (aFrame) { AddBoxesForFrame(aFrame, aCallback); aFrame = nsLayoutUtils::GetNextContinuationOrIBSplitSibling(aFrame); } } nsIFrame* nsLayoutUtils::GetFirstNonAnonymousFrame(nsIFrame* aFrame) { while (aFrame) { auto pseudoType = aFrame->Style()->GetPseudoType(); if (pseudoType == PseudoStyleType::tableWrapper) { nsIFrame* f = GetFirstNonAnonymousFrame(aFrame->PrincipalChildList().FirstChild()); if (f) { return f; } nsIFrame* kid = aFrame->GetChildList(nsIFrame::kCaptionList).FirstChild(); if (kid) { f = GetFirstNonAnonymousFrame(kid); if (f) { return f; } } } else if (pseudoType == PseudoStyleType::mozBlockInsideInlineWrapper || pseudoType == PseudoStyleType::mozMathMLAnonymousBlock || pseudoType == PseudoStyleType::mozXULAnonymousBlock) { for (nsIFrame* kid : aFrame->PrincipalChildList()) { nsIFrame* f = GetFirstNonAnonymousFrame(kid); if (f) { return f; } } } else { return aFrame; } aFrame = nsLayoutUtils::GetNextContinuationOrIBSplitSibling(aFrame); } return nullptr; } struct BoxToRect : public nsLayoutUtils::BoxCallback { const nsIFrame* mRelativeTo; nsLayoutUtils::RectCallback* mCallback; uint32_t mFlags; BoxToRect(const nsIFrame* aRelativeTo, nsLayoutUtils::RectCallback* aCallback, uint32_t aFlags) : mRelativeTo(aRelativeTo), mCallback(aCallback), mFlags(aFlags) {} virtual void AddBox(nsIFrame* aFrame) override { nsRect r; nsIFrame* outer = nsSVGUtils::GetOuterSVGFrameAndCoveredRegion(aFrame, &r); if (!outer) { outer = aFrame; switch (mFlags & nsLayoutUtils::RECTS_WHICH_BOX_MASK) { case nsLayoutUtils::RECTS_USE_CONTENT_BOX: r = aFrame->GetContentRectRelativeToSelf(); break; case nsLayoutUtils::RECTS_USE_PADDING_BOX: r = aFrame->GetPaddingRectRelativeToSelf(); break; case nsLayoutUtils::RECTS_USE_MARGIN_BOX: r = aFrame->GetMarginRectRelativeToSelf(); break; default: // Use the border box r = aFrame->GetRectRelativeToSelf(); } } if (mFlags & nsLayoutUtils::RECTS_ACCOUNT_FOR_TRANSFORMS) { r = nsLayoutUtils::TransformFrameRectToAncestor(outer, r, mRelativeTo); } else { r += outer->GetOffsetTo(mRelativeTo); } mCallback->AddRect(r); } }; struct MOZ_RAII BoxToRectAndText : public BoxToRect { Sequence* mTextList; BoxToRectAndText(const nsIFrame* aRelativeTo, nsLayoutUtils::RectCallback* aCallback, Sequence* aTextList, uint32_t aFlags) : BoxToRect(aRelativeTo, aCallback, aFlags), mTextList(aTextList) {} static void AccumulateText(nsIFrame* aFrame, nsAString& aResult) { MOZ_ASSERT(aFrame); // Get all the text in aFrame and child frames, while respecting // the content offsets in each of the nsTextFrames. if (aFrame->IsTextFrame()) { nsTextFrame* textFrame = static_cast(aFrame); nsIFrame::RenderedText renderedText = textFrame->GetRenderedText( textFrame->GetContentOffset(), textFrame->GetContentOffset() + textFrame->GetContentLength(), nsIFrame::TextOffsetType::OffsetsInContentText, nsIFrame::TrailingWhitespace::DontTrim); aResult.Append(renderedText.mString); } for (nsIFrame* child = aFrame->PrincipalChildList().FirstChild(); child; child = child->GetNextSibling()) { AccumulateText(child, aResult); } } virtual void AddBox(nsIFrame* aFrame) override { BoxToRect::AddBox(aFrame); if (mTextList) { nsString* textForFrame = mTextList->AppendElement(fallible); if (textForFrame) { AccumulateText(aFrame, *textForFrame); } } } }; void nsLayoutUtils::GetAllInFlowRects(nsIFrame* aFrame, const nsIFrame* aRelativeTo, RectCallback* aCallback, uint32_t aFlags) { BoxToRect converter(aRelativeTo, aCallback, aFlags); GetAllInFlowBoxes(aFrame, &converter); } void nsLayoutUtils::GetAllInFlowRectsAndTexts(nsIFrame* aFrame, const nsIFrame* aRelativeTo, RectCallback* aCallback, Sequence* aTextList, uint32_t aFlags) { BoxToRectAndText converter(aRelativeTo, aCallback, aTextList, aFlags); GetAllInFlowBoxes(aFrame, &converter); } nsLayoutUtils::RectAccumulator::RectAccumulator() : mSeenFirstRect(false) {} void nsLayoutUtils::RectAccumulator::AddRect(const nsRect& aRect) { mResultRect.UnionRect(mResultRect, aRect); if (!mSeenFirstRect) { mSeenFirstRect = true; mFirstRect = aRect; } } nsLayoutUtils::RectListBuilder::RectListBuilder(DOMRectList* aList) : mRectList(aList) {} void nsLayoutUtils::RectListBuilder::AddRect(const nsRect& aRect) { RefPtr rect = new DOMRect(mRectList); rect->SetLayoutRect(aRect); mRectList->Append(rect); } nsIFrame* nsLayoutUtils::GetContainingBlockForClientRect(nsIFrame* aFrame) { return aFrame->PresShell()->GetRootFrame(); } nsRect nsLayoutUtils::GetAllInFlowRectsUnion(nsIFrame* aFrame, const nsIFrame* aRelativeTo, uint32_t aFlags) { RectAccumulator accumulator; GetAllInFlowRects(aFrame, aRelativeTo, &accumulator, aFlags); return accumulator.mResultRect.IsEmpty() ? accumulator.mFirstRect : accumulator.mResultRect; } nsRect nsLayoutUtils::GetTextShadowRectsUnion( const nsRect& aTextAndDecorationsRect, nsIFrame* aFrame, uint32_t aFlags) { const nsStyleText* textStyle = aFrame->StyleText(); auto shadows = textStyle->mTextShadow.AsSpan(); if (shadows.IsEmpty()) { return aTextAndDecorationsRect; } nsRect resultRect = aTextAndDecorationsRect; int32_t A2D = aFrame->PresContext()->AppUnitsPerDevPixel(); for (auto& shadow : shadows) { nsMargin blur = nsContextBoxBlur::GetBlurRadiusMargin(shadow.blur.ToAppUnits(), A2D); if ((aFlags & EXCLUDE_BLUR_SHADOWS) && blur != nsMargin(0, 0, 0, 0)) continue; nsRect tmpRect(aTextAndDecorationsRect); tmpRect.MoveBy( nsPoint(shadow.horizontal.ToAppUnits(), shadow.vertical.ToAppUnits())); tmpRect.Inflate(blur); resultRect.UnionRect(resultRect, tmpRect); } return resultRect; } enum ObjectDimensionType { eWidth, eHeight }; static nscoord ComputeMissingDimension( const nsSize& aDefaultObjectSize, const AspectRatio& aIntrinsicRatio, const Maybe& aSpecifiedWidth, const Maybe& aSpecifiedHeight, ObjectDimensionType aDimensionToCompute) { // The "default sizing algorithm" computes the missing dimension as follows: // (source: http://dev.w3.org/csswg/css-images-3/#default-sizing ) // 1. "If the object has an intrinsic aspect ratio, the missing dimension of // the concrete object size is calculated using the intrinsic aspect // ratio and the present dimension." if (aIntrinsicRatio) { // Fill in the missing dimension using the intrinsic aspect ratio. if (aDimensionToCompute == eWidth) { return aIntrinsicRatio.ApplyTo(*aSpecifiedHeight); } return aIntrinsicRatio.Inverted().ApplyTo(*aSpecifiedWidth); } // 2. "Otherwise, if the missing dimension is present in the object's // intrinsic dimensions, [...]" // NOTE: *Skipping* this case, because we already know it's not true -- we're // in this function because the missing dimension is *not* present in // the object's intrinsic dimensions. // 3. "Otherwise, the missing dimension of the concrete object size is taken // from the default object size. " return (aDimensionToCompute == eWidth) ? aDefaultObjectSize.width : aDefaultObjectSize.height; } /* * This computes & returns the concrete object size of replaced content, if * that content were to be rendered with "object-fit: none". (Or, if the * element has neither an intrinsic height nor width, this method returns an * empty Maybe<> object.) * * As specced... * http://dev.w3.org/csswg/css-images-3/#valdef-object-fit-none * ..we use "the default sizing algorithm with no specified size, * and a default object size equal to the replaced element's used width and * height." * * The default sizing algorithm is described here: * http://dev.w3.org/csswg/css-images-3/#default-sizing * Quotes in the function-impl are taken from that ^ spec-text. * * Per its final bulleted section: since there's no specified size, * we run the default sizing algorithm using the object's intrinsic size in * place of the specified size. But if the object has neither an intrinsic * height nor an intrinsic width, then we instead return without populating our * outparam, and we let the caller figure out the size (using a contain * constraint). */ static Maybe MaybeComputeObjectFitNoneSize( const nsSize& aDefaultObjectSize, const IntrinsicSize& aIntrinsicSize, const AspectRatio& aIntrinsicRatio) { // "If the object has an intrinsic height or width, its size is resolved as // if its intrinsic dimensions were given as the specified size." // // So, first we check if we have an intrinsic height and/or width: const Maybe& specifiedWidth = aIntrinsicSize.width; const Maybe& specifiedHeight = aIntrinsicSize.height; Maybe noneSize; // (the value we'll return) if (specifiedWidth || specifiedHeight) { // We have at least one specified dimension; use whichever dimension is // specified, and compute the other one using our intrinsic ratio, or (if // no valid ratio) using the default object size. noneSize.emplace(); noneSize->width = specifiedWidth ? *specifiedWidth : ComputeMissingDimension(aDefaultObjectSize, aIntrinsicRatio, specifiedWidth, specifiedHeight, eWidth); noneSize->height = specifiedHeight ? *specifiedHeight : ComputeMissingDimension(aDefaultObjectSize, aIntrinsicRatio, specifiedWidth, specifiedHeight, eHeight); } // [else:] "Otherwise [if there's neither an intrinsic height nor width], its // size is resolved as a contain constraint against the default object size." // We'll let our caller do that, to share code & avoid redundant // computations; so, we return w/out populating noneSize. return noneSize; } // Computes the concrete object size to render into, as described at // http://dev.w3.org/csswg/css-images-3/#concrete-size-resolution static nsSize ComputeConcreteObjectSize(const nsSize& aConstraintSize, const IntrinsicSize& aIntrinsicSize, const AspectRatio& aIntrinsicRatio, StyleObjectFit aObjectFit) { // Handle default behavior (filling the container) w/ fast early return. // (Also: if there's no valid intrinsic ratio, then we have the "fill" // behavior & just use the constraint size.) if (MOZ_LIKELY(aObjectFit == StyleObjectFit::Fill) || !aIntrinsicRatio) { return aConstraintSize; } // The type of constraint to compute (cover/contain), if needed: Maybe fitType; Maybe noneSize; if (aObjectFit == StyleObjectFit::None || aObjectFit == StyleObjectFit::ScaleDown) { noneSize = MaybeComputeObjectFitNoneSize(aConstraintSize, aIntrinsicSize, aIntrinsicRatio); if (!noneSize || aObjectFit == StyleObjectFit::ScaleDown) { // Need to compute a 'CONTAIN' constraint (either for the 'none' size // itself, or for comparison w/ the 'none' size to resolve 'scale-down'.) fitType.emplace(nsImageRenderer::CONTAIN); } } else if (aObjectFit == StyleObjectFit::Cover) { fitType.emplace(nsImageRenderer::COVER); } else if (aObjectFit == StyleObjectFit::Contain) { fitType.emplace(nsImageRenderer::CONTAIN); } Maybe constrainedSize; if (fitType) { constrainedSize.emplace(nsImageRenderer::ComputeConstrainedSize( aConstraintSize, aIntrinsicRatio, *fitType)); } // Now, we should have all the sizing information that we need. switch (aObjectFit) { // skipping StyleObjectFit::Fill; we handled it w/ early-return. case StyleObjectFit::Contain: case StyleObjectFit::Cover: MOZ_ASSERT(constrainedSize); return *constrainedSize; case StyleObjectFit::None: if (noneSize) { return *noneSize; } MOZ_ASSERT(constrainedSize); return *constrainedSize; case StyleObjectFit::ScaleDown: MOZ_ASSERT(constrainedSize); if (noneSize) { constrainedSize->width = std::min(constrainedSize->width, noneSize->width); constrainedSize->height = std::min(constrainedSize->height, noneSize->height); } return *constrainedSize; default: MOZ_ASSERT_UNREACHABLE("Unexpected enum value for 'object-fit'"); return aConstraintSize; // fall back to (default) 'fill' behavior } } // (Helper for HasInitialObjectFitAndPosition, to check // each "object-position" coord.) static bool IsCoord50Pct(const LengthPercentage& aCoord) { return aCoord.ConvertsToPercentage() && aCoord.ToPercentage() == 0.5f; } // Indicates whether the given nsStylePosition has the initial values // for the "object-fit" and "object-position" properties. static bool HasInitialObjectFitAndPosition(const nsStylePosition* aStylePos) { const Position& objectPos = aStylePos->mObjectPosition; return aStylePos->mObjectFit == StyleObjectFit::Fill && IsCoord50Pct(objectPos.horizontal) && IsCoord50Pct(objectPos.vertical); } /* static */ nsRect nsLayoutUtils::ComputeObjectDestRect(const nsRect& aConstraintRect, const IntrinsicSize& aIntrinsicSize, const AspectRatio& aIntrinsicRatio, const nsStylePosition* aStylePos, nsPoint* aAnchorPoint) { // Step 1: Figure out our "concrete object size" // (the size of the region we'll actually draw our image's pixels into). nsSize concreteObjectSize = ComputeConcreteObjectSize(aConstraintRect.Size(), aIntrinsicSize, aIntrinsicRatio, aStylePos->mObjectFit); // Step 2: Figure out how to align that region in the element's content-box. nsPoint imageTopLeftPt, imageAnchorPt; nsImageRenderer::ComputeObjectAnchorPoint( aStylePos->mObjectPosition, aConstraintRect.Size(), concreteObjectSize, &imageTopLeftPt, &imageAnchorPt); // Right now, we're with respect to aConstraintRect's top-left point. We add // that point here, to convert to the same broader coordinate space that // aConstraintRect is in. imageTopLeftPt += aConstraintRect.TopLeft(); imageAnchorPt += aConstraintRect.TopLeft(); if (aAnchorPoint) { // Special-case: if our "object-fit" and "object-position" properties have // their default values ("object-fit: fill; object-position:50% 50%"), then // we'll override the calculated imageAnchorPt, and instead use the // object's top-left corner. // // This special case is partly for backwards compatibility (since // traditionally we've pixel-aligned the top-left corner of e.g. // elements), and partly because ComputeSnappedDrawingParameters produces // less error if the anchor point is at the top-left corner. So, all other // things being equal, we prefer that code path with less error. if (HasInitialObjectFitAndPosition(aStylePos)) { *aAnchorPoint = imageTopLeftPt; } else { *aAnchorPoint = imageAnchorPt; } } return nsRect(imageTopLeftPt, concreteObjectSize); } already_AddRefed nsLayoutUtils::GetFontMetricsForFrame( const nsIFrame* aFrame, float aInflation) { ComputedStyle* computedStyle = aFrame->Style(); uint8_t variantWidth = NS_FONT_VARIANT_WIDTH_NORMAL; if (computedStyle->IsTextCombined()) { MOZ_ASSERT(aFrame->IsTextFrame()); auto textFrame = static_cast(aFrame); auto clusters = textFrame->CountGraphemeClusters(); if (clusters == 2) { variantWidth = NS_FONT_VARIANT_WIDTH_HALF; } else if (clusters == 3) { variantWidth = NS_FONT_VARIANT_WIDTH_THIRD; } else if (clusters == 4) { variantWidth = NS_FONT_VARIANT_WIDTH_QUARTER; } } return GetFontMetricsForComputedStyle(computedStyle, aFrame->PresContext(), aInflation, variantWidth); } already_AddRefed nsLayoutUtils::GetFontMetricsForComputedStyle( ComputedStyle* aComputedStyle, nsPresContext* aPresContext, float aInflation, uint8_t aVariantWidth) { WritingMode wm(aComputedStyle); const nsStyleFont* styleFont = aComputedStyle->StyleFont(); nsFontMetrics::Params params; params.language = styleFont->mLanguage; params.explicitLanguage = styleFont->mExplicitLanguage; params.orientation = wm.IsVertical() && !wm.IsSideways() ? nsFontMetrics::eVertical : nsFontMetrics::eHorizontal; // pass the user font set object into the device context to // pass along to CreateFontGroup params.userFontSet = aPresContext->GetUserFontSet(); params.textPerf = aPresContext->GetTextPerfMetrics(); params.featureValueLookup = aPresContext->GetFontFeatureValuesLookup(); // When aInflation is 1.0 and we don't require width variant, avoid // making a local copy of the nsFont. // This also avoids running font.size through floats when it is large, // which would be lossy. Fortunately, in such cases, aInflation is // guaranteed to be 1.0f. if (aInflation == 1.0f && aVariantWidth == NS_FONT_VARIANT_WIDTH_NORMAL) { return aPresContext->DeviceContext()->GetMetricsFor(styleFont->mFont, params); } nsFont font = styleFont->mFont; font.size = NSToCoordRound(font.size * aInflation); font.variantWidth = aVariantWidth; return aPresContext->DeviceContext()->GetMetricsFor(font, params); } nsIFrame* nsLayoutUtils::FindChildContainingDescendant( nsIFrame* aParent, nsIFrame* aDescendantFrame) { nsIFrame* result = aDescendantFrame; while (result) { nsIFrame* parent = result->GetParent(); if (parent == aParent) { break; } // The frame is not an immediate child of aParent so walk up another level result = parent; } return result; } nsBlockFrame* nsLayoutUtils::FindNearestBlockAncestor(nsIFrame* aFrame) { nsIFrame* nextAncestor; for (nextAncestor = aFrame->GetParent(); nextAncestor; nextAncestor = nextAncestor->GetParent()) { nsBlockFrame* block = do_QueryFrame(nextAncestor); if (block) return block; } return nullptr; } nsIFrame* nsLayoutUtils::GetNonGeneratedAncestor(nsIFrame* aFrame) { if (!(aFrame->GetStateBits() & NS_FRAME_GENERATED_CONTENT)) return aFrame; nsIFrame* f = aFrame; do { f = GetParentOrPlaceholderFor(f); } while (f->GetStateBits() & NS_FRAME_GENERATED_CONTENT); return f; } nsIFrame* nsLayoutUtils::GetParentOrPlaceholderFor(const nsIFrame* aFrame) { if ((aFrame->GetStateBits() & NS_FRAME_OUT_OF_FLOW) && !aFrame->GetPrevInFlow()) { return aFrame->GetProperty(nsIFrame::PlaceholderFrameProperty()); } return aFrame->GetParent(); } nsIFrame* nsLayoutUtils::GetParentOrPlaceholderForCrossDoc(nsIFrame* aFrame) { nsIFrame* f = GetParentOrPlaceholderFor(aFrame); if (f) return f; return GetCrossDocParentFrame(aFrame); } nsIFrame* nsLayoutUtils::GetDisplayListParent(nsIFrame* aFrame) { if (aFrame->GetStateBits() & NS_FRAME_IS_PUSHED_FLOAT) { return aFrame->GetParent(); } return nsLayoutUtils::GetParentOrPlaceholderForCrossDoc(aFrame); } nsIFrame* nsLayoutUtils::GetPrevContinuationOrIBSplitSibling( const nsIFrame* aFrame) { if (nsIFrame* result = aFrame->GetPrevContinuation()) { return result; } if (aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) { // We are the first frame in the continuation chain. Get the ib-split prev // sibling property stored in us. return aFrame->GetProperty(nsIFrame::IBSplitPrevSibling()); } return nullptr; } nsIFrame* nsLayoutUtils::GetNextContinuationOrIBSplitSibling( const nsIFrame* aFrame) { if (nsIFrame* result = aFrame->GetNextContinuation()) { return result; } if (aFrame->HasAnyStateBits(NS_FRAME_PART_OF_IBSPLIT)) { // We only store the ib-split sibling annotation with the first frame in the // continuation chain. return aFrame->FirstContinuation()->GetProperty(nsIFrame::IBSplitSibling()); } return nullptr; } nsIFrame* nsLayoutUtils::FirstContinuationOrIBSplitSibling( const nsIFrame* aFrame) { nsIFrame* result = aFrame->FirstContinuation(); if (result->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) { while (auto* f = result->GetProperty(nsIFrame::IBSplitPrevSibling())) { result = f; } } return result; } nsIFrame* nsLayoutUtils::LastContinuationOrIBSplitSibling( const nsIFrame* aFrame) { nsIFrame* result = aFrame->FirstContinuation(); if (result->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) { while (auto* f = result->GetProperty(nsIFrame::IBSplitSibling())) { result = f; } } return result->LastContinuation(); } bool nsLayoutUtils::IsFirstContinuationOrIBSplitSibling( const nsIFrame* aFrame) { if (aFrame->GetPrevContinuation()) { return false; } if ((aFrame->GetStateBits() & NS_FRAME_PART_OF_IBSPLIT) && aFrame->GetProperty(nsIFrame::IBSplitPrevSibling())) { return false; } return true; } bool nsLayoutUtils::IsViewportScrollbarFrame(nsIFrame* aFrame) { if (!aFrame) return false; nsIFrame* rootScrollFrame = aFrame->PresShell()->GetRootScrollFrame(); if (!rootScrollFrame) return false; nsIScrollableFrame* rootScrollableFrame = do_QueryFrame(rootScrollFrame); NS_ASSERTION(rootScrollableFrame, "The root scorollable frame is null"); if (!IsProperAncestorFrame(rootScrollFrame, aFrame)) return false; nsIFrame* rootScrolledFrame = rootScrollableFrame->GetScrolledFrame(); return !(rootScrolledFrame == aFrame || IsProperAncestorFrame(rootScrolledFrame, aFrame)); } /** * Use only for paddings / widths / heights, since it clamps negative calc() to * 0. */ template static bool GetAbsoluteCoord(const LengthPercentageLike& aStyle, nscoord& aResult) { if (!aStyle.ConvertsToLength()) { return false; } aResult = std::max(0, aStyle.ToLength()); return true; } static nscoord GetBSizeTakenByBoxSizing(StyleBoxSizing aBoxSizing, nsIFrame* aFrame, bool aHorizontalAxis, bool aIgnorePadding); static bool GetPercentBSize(const LengthPercentage& aStyle, nsIFrame* aFrame, bool aHorizontalAxis, nscoord& aResult); // Only call on style coords for which GetAbsoluteCoord returned false. template static bool GetPercentBSize(const SizeOrMaxSize& aStyle, nsIFrame* aFrame, bool aHorizontalAxis, nscoord& aResult) { if (!aStyle.IsLengthPercentage()) { return false; } return GetPercentBSize(aStyle.AsLengthPercentage(), aFrame, aHorizontalAxis, aResult); } static bool GetPercentBSize(const LengthPercentage& aStyle, nsIFrame* aFrame, bool aHorizontalAxis, nscoord& aResult) { if (!aStyle.HasPercent()) { return false; } MOZ_ASSERT(!aStyle.ConvertsToLength(), "GetAbsoluteCoord should have handled this"); // During reflow, nsHTMLScrollFrame::ReflowScrolledFrame uses // SetComputedHeight on the reflow input for its child to propagate its // computed height to the scrolled content. So here we skip to the scroll // frame that contains this scrolled content in order to get the same // behavior as layout when computing percentage heights. nsIFrame* f = aFrame->GetContainingBlock(nsIFrame::SKIP_SCROLLED_FRAME); if (!f) { MOZ_ASSERT_UNREACHABLE("top of frame tree not a containing block"); return false; } WritingMode wm = f->GetWritingMode(); const nsStylePosition* pos = f->StylePosition(); const auto& bSizeCoord = pos->BSize(wm); nscoord h; if (!GetAbsoluteCoord(bSizeCoord, h) && !GetPercentBSize(bSizeCoord, f, aHorizontalAxis, h)) { NS_ASSERTION(bSizeCoord.IsAuto() || bSizeCoord.IsExtremumLength() || bSizeCoord.HasPercent(), "unknown block-size unit"); LayoutFrameType fType = f->Type(); if (fType != LayoutFrameType::Viewport && fType != LayoutFrameType::Canvas && fType != LayoutFrameType::PageContent) { // There's no basis for the percentage height, so it acts like auto. // Should we consider a max-height < min-height pair a basis for // percentage heights? The spec is somewhat unclear, and not doing // so is simpler and avoids troubling discontinuities in behavior, // so I'll choose not to. -LDB return false; } NS_ASSERTION( bSizeCoord.IsAuto() || bSizeCoord.IsExtremumLength(), "Unexpected block-size unit for viewport or canvas or page-content"); // For the viewport, canvas, and page-content kids, the percentage // basis is just the parent block-size. h = f->BSize(wm); if (h == NS_UNCONSTRAINEDSIZE) { // We don't have a percentage basis after all return false; } } const auto& maxBSizeCoord = pos->MaxBSize(wm); nscoord maxh; if (GetAbsoluteCoord(maxBSizeCoord, maxh) || GetPercentBSize(maxBSizeCoord, f, aHorizontalAxis, maxh)) { if (maxh < h) h = maxh; } else { NS_ASSERTION(maxBSizeCoord.IsNone() || maxBSizeCoord.IsExtremumLength() || maxBSizeCoord.HasPercent(), "unknown max block-size unit"); } const auto& minBSizeCoord = pos->MinBSize(wm); nscoord minh; if (GetAbsoluteCoord(minBSizeCoord, minh) || GetPercentBSize(minBSizeCoord, f, aHorizontalAxis, minh)) { if (minh > h) h = minh; } else { NS_ASSERTION(minBSizeCoord.IsAuto() || minBSizeCoord.IsExtremumLength() || minBSizeCoord.HasPercent(), "unknown min block-size unit"); } // Now adjust h for box-sizing styles on the parent. We never ignore padding // here. That could conceivably cause some problems with fieldsets (which are // the one place that wants to ignore padding), but solving that here without // hardcoding a check for f being a fieldset-content frame is a bit of a pain. nscoord bSizeTakenByBoxSizing = GetBSizeTakenByBoxSizing(pos->mBoxSizing, f, aHorizontalAxis, false); h = std::max(0, h - bSizeTakenByBoxSizing); aResult = std::max(aStyle.Resolve(h), 0); return true; } // Return true if aStyle can be resolved to a definite value and if so // return that value in aResult. static bool GetDefiniteSize(const LengthPercentage& aStyle, nsIFrame* aFrame, bool aIsInlineAxis, const Maybe& aPercentageBasis, nscoord* aResult) { if (aStyle.ConvertsToLength()) { *aResult = aStyle.ToLength(); return true; } if (!aPercentageBasis) { return false; } auto wm = aFrame->GetWritingMode(); nscoord pb = aIsInlineAxis ? aPercentageBasis.value().ISize(wm) : aPercentageBasis.value().BSize(wm); if (pb == NS_UNCONSTRAINEDSIZE) { return false; } *aResult = std::max(0, aStyle.Resolve(pb)); return true; } // Return true if aStyle can be resolved to a definite value and if so // return that value in aResult. template static bool GetDefiniteSize(const SizeOrMaxSize& aStyle, nsIFrame* aFrame, bool aIsInlineAxis, const Maybe& aPercentageBasis, nscoord* aResult) { if (!aStyle.IsLengthPercentage()) { return false; } return GetDefiniteSize(aStyle.AsLengthPercentage(), aFrame, aIsInlineAxis, aPercentageBasis, aResult); } // // NOTE: this function will be replaced by GetDefiniteSizeTakenByBoxSizing (bug // 1363918). Please do not add new uses of this function. // // Get the amount of vertical space taken out of aFrame's content area due to // its borders and paddings given the box-sizing value in aBoxSizing. We don't // get aBoxSizing from the frame because some callers want to compute this for // specific box-sizing values. aHorizontalAxis is true if our inline direction // is horisontal and our block direction is vertical. aIgnorePadding is true if // padding should be ignored. static nscoord GetBSizeTakenByBoxSizing(StyleBoxSizing aBoxSizing, nsIFrame* aFrame, bool aHorizontalAxis, bool aIgnorePadding) { nscoord bSizeTakenByBoxSizing = 0; if (aBoxSizing == StyleBoxSizing::Border) { const nsStyleBorder* styleBorder = aFrame->StyleBorder(); bSizeTakenByBoxSizing += aHorizontalAxis ? styleBorder->GetComputedBorder().TopBottom() : styleBorder->GetComputedBorder().LeftRight(); if (!aIgnorePadding) { const auto& stylePadding = aFrame->StylePadding()->mPadding; const LengthPercentage& paddingStart = stylePadding.Get(aHorizontalAxis ? eSideTop : eSideLeft); const LengthPercentage& paddingEnd = stylePadding.Get(aHorizontalAxis ? eSideBottom : eSideRight); nscoord pad; // XXXbz Calling GetPercentBSize on padding values looks bogus, since // percent padding is always a percentage of the inline-size of the // containing block. We should perhaps just treat non-absolute paddings // here as 0 instead, except that in some cases the width may in fact be // known. See bug 1231059. if (GetAbsoluteCoord(paddingStart, pad) || GetPercentBSize(paddingStart, aFrame, aHorizontalAxis, pad)) { bSizeTakenByBoxSizing += pad; } if (GetAbsoluteCoord(paddingEnd, pad) || GetPercentBSize(paddingEnd, aFrame, aHorizontalAxis, pad)) { bSizeTakenByBoxSizing += pad; } } } return bSizeTakenByBoxSizing; } // Get the amount of space taken out of aFrame's content area due to its // borders and paddings given the box-sizing value in aBoxSizing. We don't // get aBoxSizing from the frame because some callers want to compute this for // specific box-sizing values. // aIsInlineAxis is true if we're computing for aFrame's inline axis. // aIgnorePadding is true if padding should be ignored. static nscoord GetDefiniteSizeTakenByBoxSizing( StyleBoxSizing aBoxSizing, nsIFrame* aFrame, bool aIsInlineAxis, bool aIgnorePadding, const Maybe& aPercentageBasis) { nscoord sizeTakenByBoxSizing = 0; if (MOZ_UNLIKELY(aBoxSizing == StyleBoxSizing::Border)) { const bool isHorizontalAxis = aIsInlineAxis == !aFrame->GetWritingMode().IsVertical(); const nsStyleBorder* styleBorder = aFrame->StyleBorder(); sizeTakenByBoxSizing = isHorizontalAxis ? styleBorder->GetComputedBorder().LeftRight() : styleBorder->GetComputedBorder().TopBottom(); if (!aIgnorePadding) { const auto& stylePadding = aFrame->StylePadding()->mPadding; const LengthPercentage& pStart = stylePadding.Get(isHorizontalAxis ? eSideLeft : eSideTop); const LengthPercentage& pEnd = stylePadding.Get(isHorizontalAxis ? eSideRight : eSideBottom); nscoord pad; // XXXbz Calling GetPercentBSize on padding values looks bogus, since // percent padding is always a percentage of the inline-size of the // containing block. We should perhaps just treat non-absolute paddings // here as 0 instead, except that in some cases the width may in fact be // known. See bug 1231059. if (GetDefiniteSize(pStart, aFrame, aIsInlineAxis, aPercentageBasis, &pad) || (aPercentageBasis.isNothing() && GetPercentBSize(pStart, aFrame, isHorizontalAxis, pad))) { sizeTakenByBoxSizing += pad; } if (GetDefiniteSize(pEnd, aFrame, aIsInlineAxis, aPercentageBasis, &pad) || (aPercentageBasis.isNothing() && GetPercentBSize(pEnd, aFrame, isHorizontalAxis, pad))) { sizeTakenByBoxSizing += pad; } } } return sizeTakenByBoxSizing; } // Handles only max-content and min-content, and // -moz-fit-content for min-width and max-width, since the others // (-moz-fit-content for width, and -moz-available) have no effect on // intrinsic widths. enum eWidthProperty { PROP_WIDTH, PROP_MAX_WIDTH, PROP_MIN_WIDTH }; static bool GetIntrinsicCoord(StyleExtremumLength aStyle, gfxContext* aRenderingContext, nsIFrame* aFrame, eWidthProperty aProperty, nscoord& aResult) { MOZ_ASSERT(aProperty == PROP_WIDTH || aProperty == PROP_MAX_WIDTH || aProperty == PROP_MIN_WIDTH, "unexpected property"); if (aStyle == StyleExtremumLength::MozAvailable) return false; if (aStyle == StyleExtremumLength::MozFitContent) { if (aProperty == PROP_WIDTH) return false; // handle like 'width: auto' if (aProperty == PROP_MAX_WIDTH) // constrain large 'width' values down to max-content aStyle = StyleExtremumLength::MaxContent; else // constrain small 'width' or 'max-width' values up to min-content aStyle = StyleExtremumLength::MinContent; } NS_ASSERTION(aStyle == StyleExtremumLength::MinContent || aStyle == StyleExtremumLength::MaxContent, "should have reduced everything remaining to one of these"); // If aFrame is a container for font size inflation, then shrink // wrapping inside of it should not apply font size inflation. AutoMaybeDisableFontInflation an(aFrame); if (aStyle == StyleExtremumLength::MaxContent) aResult = aFrame->GetPrefISize(aRenderingContext); else aResult = aFrame->GetMinISize(aRenderingContext); return true; } template static bool GetIntrinsicCoord(const SizeOrMaxSize& aStyle, gfxContext* aRenderingContext, nsIFrame* aFrame, eWidthProperty aProperty, nscoord& aResult) { if (!aStyle.IsExtremumLength()) { return false; } return GetIntrinsicCoord(aStyle.AsExtremumLength(), aRenderingContext, aFrame, aProperty, aResult); } #undef DEBUG_INTRINSIC_WIDTH #ifdef DEBUG_INTRINSIC_WIDTH static int32_t gNoiseIndent = 0; #endif // Return true for form controls whose minimum intrinsic inline-size // shrinks to 0 when they have a percentage inline-size (but not // percentage max-inline-size). (Proper replaced elements, whose // intrinsic minimium inline-size shrinks to 0 for both percentage // inline-size and percentage max-inline-size, are handled elsewhere.) inline static bool FormControlShrinksForPercentISize(nsIFrame* aFrame) { if (!aFrame->IsFrameOfType(nsIFrame::eReplaced)) { // Quick test to reject most frames. return false; } LayoutFrameType fType = aFrame->Type(); if (fType == LayoutFrameType::Meter || fType == LayoutFrameType::Progress || fType == LayoutFrameType::Range) { // progress, meter and range do have this shrinking behavior // FIXME: Maybe these should be nsIFormControlFrame? return true; } if (!static_cast(do_QueryFrame(aFrame))) { // Not a form control. This includes fieldsets, which do not // shrink. return false; } if (fType == LayoutFrameType::GfxButtonControl || fType == LayoutFrameType::HTMLButtonControl) { // Buttons don't have this shrinking behavior. (Note that color // inputs do, even though they inherit from button, so we can't use // do_QueryFrame here.) return false; } return true; } // https://drafts.csswg.org/css-sizing-3/#percentage-sizing // Return true if the above spec's rule for replaced boxes applies. // XXX bug 1463700 will make this match the spec... static bool IsReplacedBoxResolvedAgainstZero( nsIFrame* aFrame, const StyleSize& aStyleSize, const StyleMaxSize& aStyleMaxSize) { const bool sizeHasPercent = aStyleSize.HasPercent(); return ((sizeHasPercent || aStyleMaxSize.HasPercent()) && aFrame->IsFrameOfType(nsIFrame::eReplacedSizing)) || (sizeHasPercent && FormControlShrinksForPercentISize(aFrame)); } /** * Add aOffsets which describes what to add on outside of the content box * aContentSize (controlled by 'box-sizing') and apply min/max properties. * We have to account for these properties after getting all the offsets * (margin, border, padding) because percentages do not operate linearly. * Doing this is ok because although percentages aren't handled linearly, * they are handled monotonically. * * @param aContentSize the content size calculated so far (@see IntrinsicForContainer) * @param aContentMinSize ditto min content size * @param aStyleSize a 'width' or 'height' property value * @param aFixedMinSize if aStyleMinSize is a definite size then this points to * the value, otherwise nullptr * @param aStyleMinSize a 'min-width' or 'min-height' property value * @param aFixedMaxSize if aStyleMaxSize is a definite size then this points to * the value, otherwise nullptr * @param aStyleMaxSize a 'max-width' or 'max-height' property value * @param aFlags same as for IntrinsicForContainer * @param aContainerWM the container's WM */ static nscoord AddIntrinsicSizeOffset( gfxContext* aRenderingContext, nsIFrame* aFrame, const nsIFrame::IntrinsicSizeOffsetData& aOffsets, nsLayoutUtils::IntrinsicISizeType aType, StyleBoxSizing aBoxSizing, nscoord aContentSize, nscoord aContentMinSize, const StyleSize& aStyleSize, const nscoord* aFixedMinSize, const StyleSize& aStyleMinSize, const nscoord* aFixedMaxSize, const StyleMaxSize& aStyleMaxSize, uint32_t aFlags, PhysicalAxis aAxis) { nscoord result = aContentSize; nscoord min = aContentMinSize; nscoord coordOutsideSize = 0; if (!(aFlags & nsLayoutUtils::IGNORE_PADDING)) { coordOutsideSize += aOffsets.padding; } coordOutsideSize += aOffsets.border; if (aBoxSizing == StyleBoxSizing::Border) { min += coordOutsideSize; result = NSCoordSaturatingAdd(result, coordOutsideSize); coordOutsideSize = 0; } coordOutsideSize += aOffsets.margin; min += coordOutsideSize; result = NSCoordSaturatingAdd(result, coordOutsideSize); nscoord size; if (aType == nsLayoutUtils::MIN_ISIZE && ::IsReplacedBoxResolvedAgainstZero(aFrame, aStyleSize, aStyleMaxSize)) { // XXX bug 1463700: this doesn't handle calc() according to spec result = 0; // let |min| handle padding/border/margin } else if (GetAbsoluteCoord(aStyleSize, size) || GetIntrinsicCoord(aStyleSize, aRenderingContext, aFrame, PROP_WIDTH, size)) { result = size + coordOutsideSize; } nscoord maxSize = aFixedMaxSize ? *aFixedMaxSize : 0; if (aFixedMaxSize || GetIntrinsicCoord(aStyleMaxSize, aRenderingContext, aFrame, PROP_MAX_WIDTH, maxSize)) { maxSize += coordOutsideSize; if (result > maxSize) { result = maxSize; } } nscoord minSize = aFixedMinSize ? *aFixedMinSize : 0; if (aFixedMinSize || GetIntrinsicCoord(aStyleMinSize, aRenderingContext, aFrame, PROP_MIN_WIDTH, minSize)) { minSize += coordOutsideSize; if (result < minSize) { result = minSize; } } if (result < min) { result = min; } const nsStyleDisplay* disp = aFrame->StyleDisplay(); if (aFrame->IsThemed(disp)) { LayoutDeviceIntSize devSize; bool canOverride = true; nsPresContext* pc = aFrame->PresContext(); pc->GetTheme()->GetMinimumWidgetSize(pc, aFrame, disp->mAppearance, &devSize, &canOverride); nscoord themeSize = pc->DevPixelsToAppUnits( aAxis == eAxisVertical ? devSize.height : devSize.width); // GetMinimumWidgetSize() returns a border-box width. themeSize += aOffsets.margin; if (themeSize > result || !canOverride) { result = themeSize; } } return result; } static void AddStateBitToAncestors(nsIFrame* aFrame, nsFrameState aBit) { for (nsIFrame* f = aFrame; f; f = f->GetParent()) { if (f->HasAnyStateBits(aBit)) { break; } f->AddStateBits(aBit); } } /* static */ nscoord nsLayoutUtils::IntrinsicForAxis( PhysicalAxis aAxis, gfxContext* aRenderingContext, nsIFrame* aFrame, IntrinsicISizeType aType, const Maybe& aPercentageBasis, uint32_t aFlags, nscoord aMarginBoxMinSizeClamp) { MOZ_ASSERT(aFrame, "null frame"); MOZ_ASSERT(aFrame->GetParent(), "IntrinsicForAxis called on frame not in tree"); MOZ_ASSERT(aType == MIN_ISIZE || aType == PREF_ISIZE, "bad type"); MOZ_ASSERT(aFrame->GetParent()->Type() != LayoutFrameType::GridContainer || aPercentageBasis.isSome(), "grid layout should always pass a percentage basis"); const bool horizontalAxis = MOZ_LIKELY(aAxis == eAxisHorizontal); #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s %s intrinsic size for container:\n", aType == MIN_ISIZE ? "min" : "pref", horizontalAxis ? "horizontal" : "vertical"); #endif // If aFrame is a container for font size inflation, then shrink // wrapping inside of it should not apply font size inflation. AutoMaybeDisableFontInflation an(aFrame); // We want the size this frame will contribute to the parent's inline-size, // so we work in the parent's writing mode; but if aFrame is orthogonal to // its parent, we'll need to look at its BSize instead of min/pref-ISize. const nsStylePosition* stylePos = aFrame->StylePosition(); StyleBoxSizing boxSizing = stylePos->mBoxSizing; StyleSize styleMinISize = horizontalAxis ? stylePos->mMinWidth : stylePos->mMinHeight; StyleSize styleISize = (aFlags & MIN_INTRINSIC_ISIZE) ? styleMinISize : (horizontalAxis ? stylePos->mWidth : stylePos->mHeight); MOZ_ASSERT(!(aFlags & MIN_INTRINSIC_ISIZE) || styleISize.IsAuto() || styleISize.IsExtremumLength(), "should only use MIN_INTRINSIC_ISIZE for intrinsic values"); StyleMaxSize styleMaxISize = horizontalAxis ? stylePos->mMaxWidth : stylePos->mMaxHeight; PhysicalAxis ourInlineAxis = aFrame->GetWritingMode().PhysicalAxis(eLogicalAxisInline); const bool isInlineAxis = aAxis == ourInlineAxis; auto resetIfKeywords = [](StyleSize& aSize, StyleSize& aMinSize, StyleMaxSize& aMaxSize) { if (aSize.IsExtremumLength()) { aSize = StyleSize::Auto(); } if (aMinSize.IsExtremumLength()) { aMinSize = StyleSize::Auto(); } if (aMaxSize.IsExtremumLength()) { aMaxSize = StyleMaxSize::None(); } }; // According to the spec, max-content and min-content should behave as the // property's initial values in block axis. // It also make senses to use the initial values for -moz-fit-content and // -moz-available for intrinsic size in block axis. Therefore, we reset them // if needed. if (!isInlineAxis) { resetIfKeywords(styleISize, styleMinISize, styleMaxISize); } // We build up two values starting with the content box, and then // adding padding, border and margin. The result is normally // |result|. Then, when we handle 'width', 'min-width', and // 'max-width', we use the results we've been building in |min| as a // minimum, overriding 'min-width'. This ensures two things: // * that we don't let a value of 'box-sizing' specifying a width // smaller than the padding/border inside the box-sizing box give // a content width less than zero // * that we prevent tables from becoming smaller than their // intrinsic minimum width nscoord result = 0, min = 0; nscoord maxISize; bool haveFixedMaxISize = GetAbsoluteCoord(styleMaxISize, maxISize); nscoord minISize; // Treat "min-width: auto" as 0. bool haveFixedMinISize; if (styleMinISize.IsAuto()) { // NOTE: Technically, "auto" is supposed to behave like "min-content" on // flex items. However, we don't need to worry about that here, because // flex items' min-sizes are intentionally ignored until the flex // container explicitly considers them during space distribution. minISize = 0; haveFixedMinISize = true; } else { haveFixedMinISize = GetAbsoluteCoord(styleMinISize, minISize); } // If we have a specified width (or a specified 'min-width' greater // than the specified 'max-width', which works out to the same thing), // don't even bother getting the frame's intrinsic width, because in // this case GetAbsoluteCoord(styleISize, w) will always succeed, so // we'll never need the intrinsic dimensions. if (styleISize.IsExtremumLength() && (styleISize.AsExtremumLength() == StyleExtremumLength::MaxContent || styleISize.AsExtremumLength() == StyleExtremumLength::MinContent)) { MOZ_ASSERT(isInlineAxis); // -moz-fit-content and -moz-available enumerated widths compute intrinsic // widths just like auto. // For max-content and min-content, we handle them like // specified widths, but ignore box-sizing. boxSizing = StyleBoxSizing::Content; } else if (!styleISize.ConvertsToLength() && !(haveFixedMinISize && haveFixedMaxISize && maxISize <= minISize)) { #ifdef DEBUG_INTRINSIC_WIDTH ++gNoiseIndent; #endif if (MOZ_UNLIKELY(!isInlineAxis)) { IntrinsicSize intrinsicSize = aFrame->GetIntrinsicSize(); const auto& intrinsicBSize = horizontalAxis ? intrinsicSize.width : intrinsicSize.height; if (intrinsicBSize) { result = *intrinsicBSize; } else { // We don't have an intrinsic bsize and we need aFrame's block-dir size. if (aFlags & BAIL_IF_REFLOW_NEEDED) { return NS_INTRINSIC_ISIZE_UNKNOWN; } // XXX Unfortunately, we probably don't know this yet, so this is // wrong... but it's not clear what we should do. If aFrame's inline // size hasn't been determined yet, we can't necessarily figure out its // block size either. For now, authors who put orthogonal elements into // things like buttons or table cells may have to explicitly provide // sizes rather than expecting intrinsic sizing to work "perfectly" in // underspecified cases. result = aFrame->BSize(); } } else { result = aType == MIN_ISIZE ? aFrame->GetMinISize(aRenderingContext) : aFrame->GetPrefISize(aRenderingContext); } #ifdef DEBUG_INTRINSIC_WIDTH --gNoiseIndent; nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s %s intrinsic size from frame is %d.\n", aType == MIN_ISIZE ? "min" : "pref", horizontalAxis ? "horizontal" : "vertical", result); #endif // Handle elements with an intrinsic ratio (or size) and a specified // height, min-height, or max-height. // NOTE: We treat "min-height:auto" as "0" for the purpose of this code, // since that's what it means in all cases except for on flex items -- and // even there, we're supposed to ignore it (i.e. treat it as 0) until the // flex container explicitly considers it. StyleSize styleBSize = horizontalAxis ? stylePos->mHeight : stylePos->mWidth; StyleSize styleMinBSize = horizontalAxis ? stylePos->mMinHeight : stylePos->mMinWidth; StyleMaxSize styleMaxBSize = horizontalAxis ? stylePos->mMaxHeight : stylePos->mMaxWidth; // According to the spec, max-content and min-content should behave as the // property's initial values in block axis. // It also make senses to use the initial values for -moz-fit-content and // -moz-available for intrinsic size in block axis. Therefore, we reset them // if needed. if (isInlineAxis) { resetIfKeywords(styleBSize, styleMinBSize, styleMaxBSize); } // FIXME(emilio): Why the minBsize == 0 special-case? Also, shouldn't this // use BehavesLikeInitialValueOnBlockAxis instead? if (!styleBSize.IsAuto() || !(styleMinBSize.IsAuto() || (styleMinBSize.ConvertsToLength() && styleMinBSize.ToLength() == 0)) || !styleMaxBSize.IsNone()) { if (AspectRatio ratio = aFrame->GetIntrinsicRatio()) { // Convert 'ratio' if necessary, so that it's storing ISize/BSize: if (!horizontalAxis) { ratio = ratio.Inverted(); } AddStateBitToAncestors( aFrame, NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE); nscoord bSizeTakenByBoxSizing = GetDefiniteSizeTakenByBoxSizing( boxSizing, aFrame, !isInlineAxis, aFlags & IGNORE_PADDING, aPercentageBasis); // NOTE: This is only the minContentSize if we've been passed // MIN_INTRINSIC_ISIZE (which is fine, because this should only be used // inside a check for that flag). nscoord minContentSize = result; nscoord h; if (GetDefiniteSize(styleBSize, aFrame, !isInlineAxis, aPercentageBasis, &h) || (aPercentageBasis.isNothing() && GetPercentBSize(styleBSize, aFrame, horizontalAxis, h))) { h = std::max(0, h - bSizeTakenByBoxSizing); result = ratio.ApplyTo(h); } if (GetDefiniteSize(styleMaxBSize, aFrame, !isInlineAxis, aPercentageBasis, &h) || (aPercentageBasis.isNothing() && GetPercentBSize(styleMaxBSize, aFrame, horizontalAxis, h))) { h = std::max(0, h - bSizeTakenByBoxSizing); nscoord maxISize = ratio.ApplyTo(h); if (maxISize < result) { result = maxISize; } if (maxISize < minContentSize) { minContentSize = maxISize; } } if (GetDefiniteSize(styleMinBSize, aFrame, !isInlineAxis, aPercentageBasis, &h) || (aPercentageBasis.isNothing() && GetPercentBSize(styleMinBSize, aFrame, horizontalAxis, h))) { h = std::max(0, h - bSizeTakenByBoxSizing); nscoord minISize = ratio.ApplyTo(h); if (minISize > result) { result = minISize; } if (minISize > minContentSize) { minContentSize = minISize; } } if (MOZ_UNLIKELY(aFlags & nsLayoutUtils::MIN_INTRINSIC_ISIZE)) { // This is the 'min-width/height:auto' "transferred size" piece of: // https://www.w3.org/TR/css-flexbox-1/#min-width-automatic-minimum-size // https://drafts.csswg.org/css-grid/#min-size-auto result = std::min(result, minContentSize); } } } } if (aFrame->IsTableFrame()) { // Tables can't shrink smaller than their intrinsic minimum width, // no matter what. min = aFrame->GetMinISize(aRenderingContext); } nscoord pmPercentageBasis = NS_UNCONSTRAINEDSIZE; if (aPercentageBasis.isSome()) { // The padding/margin percentage basis is the inline-size in the parent's // writing-mode. auto childWM = aFrame->GetWritingMode(); pmPercentageBasis = aFrame->GetParent()->GetWritingMode().IsOrthogonalTo(childWM) ? aPercentageBasis->BSize(childWM) : aPercentageBasis->ISize(childWM); } nsIFrame::IntrinsicSizeOffsetData offsets = MOZ_LIKELY(isInlineAxis) ? aFrame->IntrinsicISizeOffsets(pmPercentageBasis) : aFrame->IntrinsicBSizeOffsets(pmPercentageBasis); nscoord contentBoxSize = result; result = AddIntrinsicSizeOffset( aRenderingContext, aFrame, offsets, aType, boxSizing, result, min, styleISize, haveFixedMinISize ? &minISize : nullptr, styleMinISize, haveFixedMaxISize ? &maxISize : nullptr, styleMaxISize, aFlags, aAxis); nscoord overflow = result - aMarginBoxMinSizeClamp; if (MOZ_UNLIKELY(overflow > 0)) { nscoord newContentBoxSize = std::max(nscoord(0), contentBoxSize - overflow); result -= contentBoxSize - newContentBoxSize; } #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s %s intrinsic size for container is %d twips.\n", aType == MIN_ISIZE ? "min" : "pref", horizontalAxis ? "horizontal" : "vertical", result); #endif return result; } /* static */ nscoord nsLayoutUtils::IntrinsicForContainer(gfxContext* aRenderingContext, nsIFrame* aFrame, IntrinsicISizeType aType, uint32_t aFlags) { MOZ_ASSERT(aFrame && aFrame->GetParent()); // We want the size aFrame will contribute to its parent's inline-size. PhysicalAxis axis = aFrame->GetParent()->GetWritingMode().PhysicalAxis(eLogicalAxisInline); return IntrinsicForAxis(axis, aRenderingContext, aFrame, aType, Nothing(), aFlags); } /* static */ nscoord nsLayoutUtils::MinSizeContributionForAxis( PhysicalAxis aAxis, gfxContext* aRC, nsIFrame* aFrame, IntrinsicISizeType aType, const LogicalSize& aPercentageBasis, uint32_t aFlags) { MOZ_ASSERT(aFrame); MOZ_ASSERT(aFrame->IsFlexOrGridItem(), "only grid/flex items have this behavior currently"); #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s min-isize for %s WM:\n", aType == MIN_ISIZE ? "min" : "pref", aWM.IsVertical() ? "vertical" : "horizontal"); #endif // Note: this method is only meant for grid/flex items. const nsStylePosition* const stylePos = aFrame->StylePosition(); StyleSize size = aAxis == eAxisHorizontal ? stylePos->mMinWidth : stylePos->mMinHeight; StyleMaxSize maxSize = aAxis == eAxisHorizontal ? stylePos->mMaxWidth : stylePos->mMaxHeight; auto childWM = aFrame->GetWritingMode(); PhysicalAxis ourInlineAxis = childWM.PhysicalAxis(eLogicalAxisInline); // According to the spec, max-content and min-content should behave as the // property's initial values in block axis. // It also make senses to use the initial values for -moz-fit-content and // -moz-available for intrinsic size in block axis. Therefore, we reset them // if needed. if (aAxis != ourInlineAxis) { if (size.IsExtremumLength()) { size = StyleSize::Auto(); } if (maxSize.IsExtremumLength()) { maxSize = StyleMaxSize::None(); } } nscoord minSize; nscoord* fixedMinSize = nullptr; if (size.IsAuto()) { if (aFrame->StyleDisplay()->mOverflowX == StyleOverflow::Visible) { size = aAxis == eAxisHorizontal ? stylePos->mWidth : stylePos->mHeight; // This is same as above: keywords should behaves as property's initial // values in block axis. if (aAxis != ourInlineAxis && size.IsExtremumLength()) { size = StyleSize::Auto(); } if (GetAbsoluteCoord(size, minSize)) { // We have a definite width/height. This is the "specified size" in: // https://drafts.csswg.org/css-grid/#min-size-auto fixedMinSize = &minSize; } else if (::IsReplacedBoxResolvedAgainstZero(aFrame, size, maxSize)) { // XXX bug 1463700: this doesn't handle calc() according to spec minSize = 0; fixedMinSize = &minSize; } // fall through - the caller will have to deal with "transferred size" } else { // min-[width|height]:auto with overflow != visible computes to zero. minSize = 0; fixedMinSize = &minSize; } } else if (GetAbsoluteCoord(size, minSize)) { fixedMinSize = &minSize; } else if (!size.IsExtremumLength()) { MOZ_ASSERT(size.HasPercent()); minSize = 0; fixedMinSize = &minSize; } if (!fixedMinSize) { // Let the caller deal with the "content size" cases. #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s min-isize is indefinite.\n", aType == MIN_ISIZE ? "min" : "pref"); #endif return NS_UNCONSTRAINEDSIZE; } // If aFrame is a container for font size inflation, then shrink // wrapping inside of it should not apply font size inflation. AutoMaybeDisableFontInflation an(aFrame); // The padding/margin percentage basis is the inline-size in the parent's // writing-mode. nscoord pmPercentageBasis = aFrame->GetParent()->GetWritingMode().IsOrthogonalTo(childWM) ? aPercentageBasis.BSize(childWM) : aPercentageBasis.ISize(childWM); nsIFrame::IntrinsicSizeOffsetData offsets = ourInlineAxis == aAxis ? aFrame->IntrinsicISizeOffsets(pmPercentageBasis) : aFrame->IntrinsicBSizeOffsets(pmPercentageBasis); nscoord result = 0; nscoord min = 0; result = AddIntrinsicSizeOffset( aRC, aFrame, offsets, aType, stylePos->mBoxSizing, result, min, size, fixedMinSize, size, nullptr, maxSize, aFlags, aAxis); #ifdef DEBUG_INTRINSIC_WIDTH nsFrame::IndentBy(stderr, gNoiseIndent); static_cast(aFrame)->ListTag(stderr); printf_stderr(" %s min-isize is %d twips.\n", aType == MIN_ISIZE ? "min" : "pref", result); #endif return result; } /* static */ nscoord nsLayoutUtils::ComputeBSizeDependentValue( nscoord aContainingBlockBSize, const LengthPercentageOrAuto& aCoord) { // XXXldb Some callers explicitly check aContainingBlockBSize // against NS_UNCONSTRAINEDSIZE *and* unit against eStyleUnit_Percent or // calc()s containing percents before calling this function. // However, it would be much more likely to catch problems without // the unit conditions. // XXXldb Many callers pass a non-'auto' containing block height when // according to CSS2.1 they should be passing 'auto'. MOZ_ASSERT( NS_UNCONSTRAINEDSIZE != aContainingBlockBSize || !aCoord.HasPercent(), "unexpected containing block block-size"); if (aCoord.IsAuto()) { return 0; } return aCoord.AsLengthPercentage().Resolve(aContainingBlockBSize); } /* static */ void nsLayoutUtils::MarkDescendantsDirty(nsIFrame* aSubtreeRoot) { AutoTArray subtrees; subtrees.AppendElement(aSubtreeRoot); // dirty descendants, iterating over subtrees that may include // additional subtrees associated with placeholders do { nsIFrame* subtreeRoot = subtrees.PopLastElement(); // Mark all descendants dirty (using an nsTArray stack rather than // recursion). // Note that ReflowInput::InitResizeFlags has some similar // code; see comments there for how and why it differs. AutoTArray stack; stack.AppendElement(subtreeRoot); do { nsIFrame* f = stack.PopLastElement(); f->MarkIntrinsicISizesDirty(); if (f->IsPlaceholderFrame()) { nsIFrame* oof = nsPlaceholderFrame::GetRealFrameForPlaceholder(f); if (!nsLayoutUtils::IsProperAncestorFrame(subtreeRoot, oof)) { // We have another distinct subtree we need to mark. subtrees.AppendElement(oof); } } nsIFrame::ChildListIterator lists(f); for (; !lists.IsDone(); lists.Next()) { nsFrameList::Enumerator childFrames(lists.CurrentList()); for (; !childFrames.AtEnd(); childFrames.Next()) { nsIFrame* kid = childFrames.get(); stack.AppendElement(kid); } } } while (stack.Length() != 0); } while (subtrees.Length() != 0); } /* static */ void nsLayoutUtils::MarkIntrinsicISizesDirtyIfDependentOnBSize( nsIFrame* aFrame) { AutoTArray stack; stack.AppendElement(aFrame); do { nsIFrame* f = stack.PopLastElement(); if (!f->HasAnyStateBits( NS_FRAME_DESCENDANT_INTRINSIC_ISIZE_DEPENDS_ON_BSIZE)) { continue; } f->MarkIntrinsicISizesDirty(); for (nsIFrame::ChildListIterator lists(f); !lists.IsDone(); lists.Next()) { for (nsIFrame* kid : lists.CurrentList()) { stack.AppendElement(kid); } } } while (stack.Length() != 0); } nsSize nsLayoutUtils::ComputeAutoSizeWithIntrinsicDimensions( nscoord minWidth, nscoord minHeight, nscoord maxWidth, nscoord maxHeight, nscoord tentWidth, nscoord tentHeight) { // Now apply min/max-width/height - CSS 2.1 sections 10.4 and 10.7: if (minWidth > maxWidth) maxWidth = minWidth; if (minHeight > maxHeight) maxHeight = minHeight; nscoord heightAtMaxWidth, heightAtMinWidth, widthAtMaxHeight, widthAtMinHeight; if (tentWidth > 0) { heightAtMaxWidth = NSCoordMulDiv(maxWidth, tentHeight, tentWidth); if (heightAtMaxWidth < minHeight) heightAtMaxWidth = minHeight; heightAtMinWidth = NSCoordMulDiv(minWidth, tentHeight, tentWidth); if (heightAtMinWidth > maxHeight) heightAtMinWidth = maxHeight; } else { heightAtMaxWidth = heightAtMinWidth = NS_CSS_MINMAX(tentHeight, minHeight, maxHeight); } if (tentHeight > 0) { widthAtMaxHeight = NSCoordMulDiv(maxHeight, tentWidth, tentHeight); if (widthAtMaxHeight < minWidth) widthAtMaxHeight = minWidth; widthAtMinHeight = NSCoordMulDiv(minHeight, tentWidth, tentHeight); if (widthAtMinHeight > maxWidth) widthAtMinHeight = maxWidth; } else { widthAtMaxHeight = widthAtMinHeight = NS_CSS_MINMAX(tentWidth, minWidth, maxWidth); } // The table at http://www.w3.org/TR/CSS21/visudet.html#min-max-widths : nscoord width, height; if (tentWidth > maxWidth) { if (tentHeight > maxHeight) { if (int64_t(maxWidth) * int64_t(tentHeight) <= int64_t(maxHeight) * int64_t(tentWidth)) { width = maxWidth; height = heightAtMaxWidth; } else { width = widthAtMaxHeight; height = maxHeight; } } else { // This also covers "(w > max-width) and (h < min-height)" since in // that case (max-width/w < 1), and with (h < min-height): // max(max-width * h/w, min-height) == min-height width = maxWidth; height = heightAtMaxWidth; } } else if (tentWidth < minWidth) { if (tentHeight < minHeight) { if (int64_t(minWidth) * int64_t(tentHeight) <= int64_t(minHeight) * int64_t(tentWidth)) { width = widthAtMinHeight; height = minHeight; } else { width = minWidth; height = heightAtMinWidth; } } else { // This also covers "(w < min-width) and (h > max-height)" since in // that case (min-width/w > 1), and with (h > max-height): // min(min-width * h/w, max-height) == max-height width = minWidth; height = heightAtMinWidth; } } else { if (tentHeight > maxHeight) { width = widthAtMaxHeight; height = maxHeight; } else if (tentHeight < minHeight) { width = widthAtMinHeight; height = minHeight; } else { width = tentWidth; height = tentHeight; } } return nsSize(width, height); } /* static */ nscoord nsLayoutUtils::MinISizeFromInline(nsIFrame* aFrame, gfxContext* aRenderingContext) { NS_ASSERTION(!aFrame->IsContainerForFontSizeInflation(), "should not be container for font size inflation"); nsIFrame::InlineMinISizeData data; DISPLAY_MIN_INLINE_SIZE(aFrame, data.mPrevLines); aFrame->AddInlineMinISize(aRenderingContext, &data); data.ForceBreak(); return data.mPrevLines; } /* static */ nscoord nsLayoutUtils::PrefISizeFromInline(nsIFrame* aFrame, gfxContext* aRenderingContext) { NS_ASSERTION(!aFrame->IsContainerForFontSizeInflation(), "should not be container for font size inflation"); nsIFrame::InlinePrefISizeData data; DISPLAY_PREF_INLINE_SIZE(aFrame, data.mPrevLines); aFrame->AddInlinePrefISize(aRenderingContext, &data); data.ForceBreak(); return data.mPrevLines; } static nscolor DarkenColor(nscolor aColor) { uint16_t hue, sat, value; uint8_t alpha; // convert the RBG to HSV so we can get the lightness (which is the v) NS_RGB2HSV(aColor, hue, sat, value, alpha); // The goal here is to send white to black while letting colored // stuff stay colored... So we adopt the following approach. // Something with sat = 0 should end up with value = 0. Something // with a high sat can end up with a high value and it's ok.... At // the same time, we don't want to make things lighter. Do // something simple, since it seems to work. if (value > sat) { value = sat; // convert this color back into the RGB color space. NS_HSV2RGB(aColor, hue, sat, value, alpha); } return aColor; } // Check whether we should darken text/decoration colors. We need to do this if // background images and colors are being suppressed, because that means // light text will not be visible against the (presumed light-colored) // background. static bool ShouldDarkenColors(nsPresContext* aPresContext) { return !aPresContext->GetBackgroundColorDraw() && !aPresContext->GetBackgroundImageDraw(); } nscolor nsLayoutUtils::DarkenColorIfNeeded(nsIFrame* aFrame, nscolor aColor) { if (ShouldDarkenColors(aFrame->PresContext())) { return DarkenColor(aColor); } return aColor; } gfxFloat nsLayoutUtils::GetSnappedBaselineY(nsIFrame* aFrame, gfxContext* aContext, nscoord aY, nscoord aAscent) { gfxFloat appUnitsPerDevUnit = aFrame->PresContext()->AppUnitsPerDevPixel(); gfxFloat baseline = gfxFloat(aY) + aAscent; gfxRect putativeRect(0, baseline / appUnitsPerDevUnit, 1, 1); if (!aContext->UserToDevicePixelSnapped(putativeRect, true)) return baseline; return aContext->DeviceToUser(putativeRect.TopLeft()).y * appUnitsPerDevUnit; } gfxFloat nsLayoutUtils::GetSnappedBaselineX(nsIFrame* aFrame, gfxContext* aContext, nscoord aX, nscoord aAscent) { gfxFloat appUnitsPerDevUnit = aFrame->PresContext()->AppUnitsPerDevPixel(); gfxFloat baseline = gfxFloat(aX) + aAscent; gfxRect putativeRect(baseline / appUnitsPerDevUnit, 0, 1, 1); if (!aContext->UserToDevicePixelSnapped(putativeRect, true)) { return baseline; } return aContext->DeviceToUser(putativeRect.TopLeft()).x * appUnitsPerDevUnit; } // Hard limit substring lengths to 8000 characters ... this lets us statically // size the cluster buffer array in FindSafeLength #define MAX_GFX_TEXT_BUF_SIZE 8000 static int32_t FindSafeLength(const char16_t* aString, uint32_t aLength, uint32_t aMaxChunkLength) { if (aLength <= aMaxChunkLength) return aLength; int32_t len = aMaxChunkLength; // Ensure that we don't break inside a surrogate pair while (len > 0 && NS_IS_LOW_SURROGATE(aString[len])) { len--; } if (len == 0) { // We don't want our caller to go into an infinite loop, so don't // return zero. It's hard to imagine how we could actually get here // unless there are languages that allow clusters of arbitrary size. // If there are and someone feeds us a 500+ character cluster, too // bad. return aMaxChunkLength; } return len; } static int32_t GetMaxChunkLength(nsFontMetrics& aFontMetrics) { return std::min(aFontMetrics.GetMaxStringLength(), MAX_GFX_TEXT_BUF_SIZE); } nscoord nsLayoutUtils::AppUnitWidthOfString(const char16_t* aString, uint32_t aLength, nsFontMetrics& aFontMetrics, DrawTarget* aDrawTarget) { uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); nscoord width = 0; while (aLength > 0) { int32_t len = FindSafeLength(aString, aLength, maxChunkLength); width += aFontMetrics.GetWidth(aString, len, aDrawTarget); aLength -= len; aString += len; } return width; } nscoord nsLayoutUtils::AppUnitWidthOfStringBidi(const char16_t* aString, uint32_t aLength, const nsIFrame* aFrame, nsFontMetrics& aFontMetrics, gfxContext& aContext) { nsPresContext* presContext = aFrame->PresContext(); if (presContext->BidiEnabled()) { nsBidiLevel level = nsBidiPresUtils::BidiLevelFromStyle(aFrame->Style()); return nsBidiPresUtils::MeasureTextWidth( aString, aLength, level, presContext, aContext, aFontMetrics); } aFontMetrics.SetTextRunRTL(false); aFontMetrics.SetVertical(aFrame->GetWritingMode().IsVertical()); aFontMetrics.SetTextOrientation(aFrame->StyleVisibility()->mTextOrientation); return nsLayoutUtils::AppUnitWidthOfString(aString, aLength, aFontMetrics, aContext.GetDrawTarget()); } bool nsLayoutUtils::StringWidthIsGreaterThan(const nsString& aString, nsFontMetrics& aFontMetrics, DrawTarget* aDrawTarget, nscoord aWidth) { const char16_t* string = aString.get(); uint32_t length = aString.Length(); uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); nscoord width = 0; while (length > 0) { int32_t len = FindSafeLength(string, length, maxChunkLength); width += aFontMetrics.GetWidth(string, len, aDrawTarget); if (width > aWidth) { return true; } length -= len; string += len; } return false; } nsBoundingMetrics nsLayoutUtils::AppUnitBoundsOfString( const char16_t* aString, uint32_t aLength, nsFontMetrics& aFontMetrics, DrawTarget* aDrawTarget) { uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); int32_t len = FindSafeLength(aString, aLength, maxChunkLength); // Assign directly in the first iteration. This ensures that // negative ascent/descent can be returned and the left bearing // is properly initialized. nsBoundingMetrics totalMetrics = aFontMetrics.GetBoundingMetrics(aString, len, aDrawTarget); aLength -= len; aString += len; while (aLength > 0) { len = FindSafeLength(aString, aLength, maxChunkLength); nsBoundingMetrics metrics = aFontMetrics.GetBoundingMetrics(aString, len, aDrawTarget); totalMetrics += metrics; aLength -= len; aString += len; } return totalMetrics; } void nsLayoutUtils::DrawString(const nsIFrame* aFrame, nsFontMetrics& aFontMetrics, gfxContext* aContext, const char16_t* aString, int32_t aLength, nsPoint aPoint, ComputedStyle* aComputedStyle, DrawStringFlags aFlags) { nsresult rv = NS_ERROR_FAILURE; // If caller didn't pass a style, use the frame's. if (!aComputedStyle) { aComputedStyle = aFrame->Style(); } if (aFlags & DrawStringFlags::ForceHorizontal) { aFontMetrics.SetVertical(false); } else { aFontMetrics.SetVertical(WritingMode(aComputedStyle).IsVertical()); } aFontMetrics.SetTextOrientation( aComputedStyle->StyleVisibility()->mTextOrientation); nsPresContext* presContext = aFrame->PresContext(); if (presContext->BidiEnabled()) { nsBidiLevel level = nsBidiPresUtils::BidiLevelFromStyle(aComputedStyle); rv = nsBidiPresUtils::RenderText(aString, aLength, level, presContext, *aContext, aContext->GetDrawTarget(), aFontMetrics, aPoint.x, aPoint.y); } if (NS_FAILED(rv)) { aFontMetrics.SetTextRunRTL(false); DrawUniDirString(aString, aLength, aPoint, aFontMetrics, *aContext); } } void nsLayoutUtils::DrawUniDirString(const char16_t* aString, uint32_t aLength, const nsPoint& aPoint, nsFontMetrics& aFontMetrics, gfxContext& aContext) { nscoord x = aPoint.x; nscoord y = aPoint.y; uint32_t maxChunkLength = GetMaxChunkLength(aFontMetrics); if (aLength <= maxChunkLength) { aFontMetrics.DrawString(aString, aLength, x, y, &aContext, aContext.GetDrawTarget()); return; } bool isRTL = aFontMetrics.GetTextRunRTL(); // If we're drawing right to left, we must start at the end. if (isRTL) { x += nsLayoutUtils::AppUnitWidthOfString(aString, aLength, aFontMetrics, aContext.GetDrawTarget()); } while (aLength > 0) { int32_t len = FindSafeLength(aString, aLength, maxChunkLength); nscoord width = aFontMetrics.GetWidth(aString, len, aContext.GetDrawTarget()); if (isRTL) { x -= width; } aFontMetrics.DrawString(aString, len, x, y, &aContext, aContext.GetDrawTarget()); if (!isRTL) { x += width; } aLength -= len; aString += len; } } /* static */ void nsLayoutUtils::PaintTextShadow( const nsIFrame* aFrame, gfxContext* aContext, const nsRect& aTextRect, const nsRect& aDirtyRect, const nscolor& aForegroundColor, TextShadowCallback aCallback, void* aCallbackData) { const nsStyleText* textStyle = aFrame->StyleText(); auto shadows = textStyle->mTextShadow.AsSpan(); if (shadows.IsEmpty()) { return; } // Text shadow happens with the last value being painted at the back, // ie. it is painted first. gfxContext* aDestCtx = aContext; for (auto& shadow : Reversed(shadows)) { nsPoint shadowOffset(shadow.horizontal.ToAppUnits(), shadow.vertical.ToAppUnits()); nscoord blurRadius = std::max(shadow.blur.ToAppUnits(), 0); nsRect shadowRect(aTextRect); shadowRect.MoveBy(shadowOffset); nsPresContext* presCtx = aFrame->PresContext(); nsContextBoxBlur contextBoxBlur; nscolor shadowColor = shadow.color.CalcColor(aForegroundColor); // Webrender just needs the shadow details if (auto* textDrawer = aContext->GetTextDrawer()) { wr::Shadow wrShadow; wrShadow.offset = { presCtx->AppUnitsToFloatDevPixels(shadow.horizontal.ToAppUnits()), presCtx->AppUnitsToFloatDevPixels(shadow.vertical.ToAppUnits())}; wrShadow.blur_radius = presCtx->AppUnitsToFloatDevPixels(blurRadius); wrShadow.color = wr::ToColorF(ToDeviceColor(shadowColor)); // Gecko already inflates the bounding rect of text shadows, // so tell WR not to inflate again. bool inflate = false; textDrawer->AppendShadow(wrShadow, inflate); continue; } gfxContext* shadowContext = contextBoxBlur.Init( shadowRect, 0, blurRadius, presCtx->AppUnitsPerDevPixel(), aDestCtx, aDirtyRect, nullptr, nsContextBoxBlur::DISABLE_HARDWARE_ACCELERATION_BLUR); if (!shadowContext) continue; aDestCtx->Save(); aDestCtx->NewPath(); aDestCtx->SetColor(Color::FromABGR(shadowColor)); // The callback will draw whatever we want to blur as a shadow. aCallback(shadowContext, shadowOffset, shadowColor, aCallbackData); contextBoxBlur.DoPaint(); aDestCtx->Restore(); } } /* static */ nscoord nsLayoutUtils::GetCenteredFontBaseline(nsFontMetrics* aFontMetrics, nscoord aLineHeight, bool aIsInverted) { nscoord fontAscent = aIsInverted ? aFontMetrics->MaxDescent() : aFontMetrics->MaxAscent(); nscoord fontHeight = aFontMetrics->MaxHeight(); nscoord leading = aLineHeight - fontHeight; return fontAscent + leading / 2; } /* static */ bool nsLayoutUtils::GetFirstLineBaseline(WritingMode aWritingMode, const nsIFrame* aFrame, nscoord* aResult) { LinePosition position; if (!GetFirstLinePosition(aWritingMode, aFrame, &position)) return false; *aResult = position.mBaseline; return true; } /* static */ bool nsLayoutUtils::GetFirstLinePosition(WritingMode aWM, const nsIFrame* aFrame, LinePosition* aResult) { if (aFrame->StyleDisplay()->IsContainLayout()) { return false; } const nsBlockFrame* block = do_QueryFrame(aFrame); if (!block) { // For the first-line baseline we also have to check for a table, and if // so, use the baseline of its first row. LayoutFrameType fType = aFrame->Type(); if (fType == LayoutFrameType::TableWrapper || fType == LayoutFrameType::FlexContainer || fType == LayoutFrameType::GridContainer) { if ((fType == LayoutFrameType::GridContainer && aFrame->HasAnyStateBits(NS_STATE_GRID_SYNTHESIZE_BASELINE)) || (fType == LayoutFrameType::FlexContainer && aFrame->HasAnyStateBits(NS_STATE_FLEX_SYNTHESIZE_BASELINE)) || (fType == LayoutFrameType::TableWrapper && static_cast(aFrame)->GetRowCount() == 0)) { // empty grid/flex/table container aResult->mBStart = 0; aResult->mBaseline = aFrame->SynthesizeBaselineBOffsetFromBorderBox( aWM, BaselineSharingGroup::First); aResult->mBEnd = aFrame->BSize(aWM); return true; } aResult->mBStart = 0; aResult->mBaseline = aFrame->GetLogicalBaseline(aWM); // This is what we want for the list bullet caller; not sure if // other future callers will want the same. aResult->mBEnd = aFrame->BSize(aWM); return true; } // For first-line baselines, we have to consider scroll frames. if (fType == LayoutFrameType::Scroll) { nsIScrollableFrame* sFrame = do_QueryFrame(const_cast(aFrame)); if (!sFrame) { MOZ_ASSERT_UNREACHABLE("not scroll frame"); } LinePosition kidPosition; if (GetFirstLinePosition(aWM, sFrame->GetScrolledFrame(), &kidPosition)) { // Consider only the border and padding that contributes to the // kid's position, not the scrolling, so we get the initial // position. *aResult = kidPosition + aFrame->GetLogicalUsedBorderAndPadding(aWM).BStart(aWM); return true; } return false; } if (fType == LayoutFrameType::FieldSet || fType == LayoutFrameType::ColumnSet) { LinePosition kidPosition; nsIFrame* kid = aFrame->PrincipalChildList().FirstChild(); // If aFrame is fieldset, kid might be a legend frame here, but that's ok. if (kid && GetFirstLinePosition(aWM, kid, &kidPosition)) { *aResult = kidPosition + kid->GetLogicalNormalPosition(aWM, aFrame->GetSize()).B(aWM); return true; } return false; } // No baseline. return false; } for (nsBlockFrame::ConstLineIterator line = block->LinesBegin(), line_end = block->LinesEnd(); line != line_end; ++line) { if (line->IsBlock()) { nsIFrame* kid = line->mFirstChild; LinePosition kidPosition; if (GetFirstLinePosition(aWM, kid, &kidPosition)) { // XXX Not sure if this is the correct value to use for container // width here. It will only be used in vertical-rl layout, // which we don't have full support and testing for yet. const nsSize& containerSize = line->mContainerSize; *aResult = kidPosition + kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM); return true; } } else { // XXX Is this the right test? We have some bogus empty lines // floating around, but IsEmpty is perhaps too weak. if (line->BSize() != 0 || !line->IsEmpty()) { nscoord bStart = line->BStart(); aResult->mBStart = bStart; aResult->mBaseline = bStart + line->GetLogicalAscent(); aResult->mBEnd = bStart + line->BSize(); return true; } } } return false; } /* static */ bool nsLayoutUtils::GetLastLineBaseline(WritingMode aWM, const nsIFrame* aFrame, nscoord* aResult) { if (aFrame->StyleDisplay()->IsContainLayout()) { return false; } const nsBlockFrame* block = do_QueryFrame(aFrame); if (!block) // No baseline. (We intentionally don't descend into scroll frames.) return false; for (nsBlockFrame::ConstReverseLineIterator line = block->LinesRBegin(), line_end = block->LinesREnd(); line != line_end; ++line) { if (line->IsBlock()) { nsIFrame* kid = line->mFirstChild; nscoord kidBaseline; const nsSize& containerSize = line->mContainerSize; if (GetLastLineBaseline(aWM, kid, &kidBaseline)) { // Ignore relative positioning for baseline calculations *aResult = kidBaseline + kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM); return true; } else if (kid->IsScrollFrame()) { // Defer to nsFrame::GetLogicalBaseline (which synthesizes a baseline // from the margin-box). kidBaseline = kid->GetLogicalBaseline(aWM); *aResult = kidBaseline + kid->GetLogicalNormalPosition(aWM, containerSize).B(aWM); return true; } } else { // XXX Is this the right test? We have some bogus empty lines // floating around, but IsEmpty is perhaps too weak. if (line->BSize() != 0 || !line->IsEmpty()) { *aResult = line->BStart() + line->GetLogicalAscent(); return true; } } } return false; } static nscoord CalculateBlockContentBEnd(WritingMode aWM, nsBlockFrame* aFrame) { MOZ_ASSERT(aFrame, "null ptr"); nscoord contentBEnd = 0; for (nsBlockFrame::LineIterator line = aFrame->LinesBegin(), line_end = aFrame->LinesEnd(); line != line_end; ++line) { if (line->IsBlock()) { nsIFrame* child = line->mFirstChild; const nsSize& containerSize = line->mContainerSize; nscoord offset = child->GetLogicalNormalPosition(aWM, containerSize).B(aWM); contentBEnd = std::max(contentBEnd, nsLayoutUtils::CalculateContentBEnd(aWM, child) + offset); } else { contentBEnd = std::max(contentBEnd, line->BEnd()); } } return contentBEnd; } /* static */ nscoord nsLayoutUtils::CalculateContentBEnd(WritingMode aWM, nsIFrame* aFrame) { MOZ_ASSERT(aFrame, "null ptr"); nscoord contentBEnd = aFrame->BSize(aWM); // We want scrollable overflow rather than visual because this // calculation is intended to affect layout. LogicalSize overflowSize(aWM, aFrame->GetScrollableOverflowRect().Size()); if (overflowSize.BSize(aWM) > contentBEnd) { nsIFrame::ChildListIDs skip = {nsIFrame::kOverflowList, nsIFrame::kExcessOverflowContainersList, nsIFrame::kOverflowOutOfFlowList}; nsBlockFrame* blockFrame = do_QueryFrame(aFrame); if (blockFrame) { contentBEnd = std::max(contentBEnd, CalculateBlockContentBEnd(aWM, blockFrame)); skip += nsIFrame::kPrincipalList; } nsIFrame::ChildListIterator lists(aFrame); for (; !lists.IsDone(); lists.Next()) { if (!skip.contains(lists.CurrentID())) { nsFrameList::Enumerator childFrames(lists.CurrentList()); for (; !childFrames.AtEnd(); childFrames.Next()) { nsIFrame* child = childFrames.get(); nscoord offset = child->GetLogicalNormalPosition(aWM, aFrame->GetSize()).B(aWM); contentBEnd = std::max(contentBEnd, CalculateContentBEnd(aWM, child) + offset); } } } } return contentBEnd; } /* static */ nsIFrame* nsLayoutUtils::GetClosestLayer(nsIFrame* aFrame) { nsIFrame* layer; for (layer = aFrame; layer; layer = layer->GetParent()) { if (layer->IsAbsPosContainingBlock() || (layer->GetParent() && layer->GetParent()->IsScrollFrame())) break; } if (layer) return layer; return aFrame->PresShell()->GetRootFrame(); } SamplingFilter nsLayoutUtils::GetSamplingFilterForFrame(nsIFrame* aForFrame) { SamplingFilter defaultFilter = SamplingFilter::GOOD; ComputedStyle* sc; if (nsCSSRendering::IsCanvasFrame(aForFrame)) { nsCSSRendering::FindBackground(aForFrame, &sc); } else { sc = aForFrame->Style(); } switch (sc->StyleVisibility()->mImageRendering) { case NS_STYLE_IMAGE_RENDERING_OPTIMIZESPEED: return SamplingFilter::POINT; case NS_STYLE_IMAGE_RENDERING_OPTIMIZEQUALITY: return SamplingFilter::LINEAR; case NS_STYLE_IMAGE_RENDERING_CRISP_EDGES: return SamplingFilter::POINT; default: return defaultFilter; } } /** * Given an image being drawn into an appunit coordinate system, and * a point in that coordinate system, map the point back into image * pixel space. * @param aSize the size of the image, in pixels * @param aDest the rectangle that the image is being mapped into * @param aPt a point in the same coordinate system as the rectangle */ static gfxPoint MapToFloatImagePixels(const gfxSize& aSize, const gfxRect& aDest, const gfxPoint& aPt) { return gfxPoint(((aPt.x - aDest.X()) * aSize.width) / aDest.Width(), ((aPt.y - aDest.Y()) * aSize.height) / aDest.Height()); } /** * Given an image being drawn into an pixel-based coordinate system, and * a point in image space, map the point into the pixel-based coordinate * system. * @param aSize the size of the image, in pixels * @param aDest the rectangle that the image is being mapped into * @param aPt a point in image space */ static gfxPoint MapToFloatUserPixels(const gfxSize& aSize, const gfxRect& aDest, const gfxPoint& aPt) { return gfxPoint(aPt.x * aDest.Width() / aSize.width + aDest.X(), aPt.y * aDest.Height() / aSize.height + aDest.Y()); } /* static */ gfxRect nsLayoutUtils::RectToGfxRect(const nsRect& aRect, int32_t aAppUnitsPerDevPixel) { return gfxRect(gfxFloat(aRect.x) / aAppUnitsPerDevPixel, gfxFloat(aRect.y) / aAppUnitsPerDevPixel, gfxFloat(aRect.width) / aAppUnitsPerDevPixel, gfxFloat(aRect.height) / aAppUnitsPerDevPixel); } struct SnappedImageDrawingParameters { // A transform from image space to device space. gfxMatrix imageSpaceToDeviceSpace; // The size at which the image should be drawn (which may not be its // intrinsic size due to, for example, HQ scaling). nsIntSize size; // The region in tiled image space which will be drawn, with an associated // region to which sampling should be restricted. ImageRegion region; // The default viewport size for SVG images, which we use unless a different // one has been explicitly specified. This is the same as |size| except that // it does not take into account any transformation on the gfxContext we're // drawing to - for example, CSS transforms are not taken into account. CSSIntSize svgViewportSize; // Whether there's anything to draw at all. bool shouldDraw; SnappedImageDrawingParameters() : region(ImageRegion::Empty()), shouldDraw(false) {} SnappedImageDrawingParameters(const gfxMatrix& aImageSpaceToDeviceSpace, const nsIntSize& aSize, const ImageRegion& aRegion, const CSSIntSize& aSVGViewportSize) : imageSpaceToDeviceSpace(aImageSpaceToDeviceSpace), size(aSize), region(aRegion), svgViewportSize(aSVGViewportSize), shouldDraw(true) {} }; /** * Given two axis-aligned rectangles, returns the transformation that maps the * first onto the second. * * @param aFrom The rect to be transformed. * @param aTo The rect that aFrom should be mapped onto by the transformation. */ static gfxMatrix TransformBetweenRects(const gfxRect& aFrom, const gfxRect& aTo) { gfxSize scale(aTo.width / aFrom.width, aTo.height / aFrom.height); gfxPoint translation(aTo.x - aFrom.x * scale.width, aTo.y - aFrom.y * scale.height); return gfxMatrix(scale.width, 0, 0, scale.height, translation.x, translation.y); } static nsRect TileNearRect(const nsRect& aAnyTile, const nsRect& aTargetRect) { nsPoint distance = aTargetRect.TopLeft() - aAnyTile.TopLeft(); return aAnyTile + nsPoint(distance.x / aAnyTile.width * aAnyTile.width, distance.y / aAnyTile.height * aAnyTile.height); } static gfxFloat StableRound(gfxFloat aValue) { // Values slightly less than 0.5 should round up like 0.5 would; we're // assuming they were meant to be 0.5. return floor(aValue + 0.5001); } static gfxPoint StableRound(const gfxPoint& aPoint) { return gfxPoint(StableRound(aPoint.x), StableRound(aPoint.y)); } /** * Given a set of input parameters, compute certain output parameters * for drawing an image with the image snapping algorithm. * See https://wiki.mozilla.org/Gecko:Image_Snapping_and_Rendering * * @see nsLayoutUtils::DrawImage() for the descriptions of input parameters */ static SnappedImageDrawingParameters ComputeSnappedImageDrawingParameters( gfxContext* aCtx, int32_t aAppUnitsPerDevPixel, const nsRect aDest, const nsRect aFill, const nsPoint aAnchor, const nsRect aDirty, imgIContainer* aImage, const SamplingFilter aSamplingFilter, uint32_t aImageFlags, ExtendMode aExtendMode) { if (aDest.IsEmpty() || aFill.IsEmpty()) return SnappedImageDrawingParameters(); // Avoid unnecessarily large offsets. bool doTile = !aDest.Contains(aFill); nsRect appUnitDest = doTile ? TileNearRect(aDest, aFill.Intersect(aDirty)) : aDest; nsPoint anchor = aAnchor + (appUnitDest.TopLeft() - aDest.TopLeft()); gfxRect devPixelDest = nsLayoutUtils::RectToGfxRect(appUnitDest, aAppUnitsPerDevPixel); gfxRect devPixelFill = nsLayoutUtils::RectToGfxRect(aFill, aAppUnitsPerDevPixel); gfxRect devPixelDirty = nsLayoutUtils::RectToGfxRect(aDirty, aAppUnitsPerDevPixel); gfxMatrix currentMatrix = aCtx->CurrentMatrixDouble(); gfxRect fill = devPixelFill; gfxRect dest = devPixelDest; bool didSnap; // Snap even if we have a scale in the context. But don't snap if // we have something that's not translation+scale, or if the scale flips in // the X or Y direction, because snapped image drawing can't handle that yet. if (!currentMatrix.HasNonAxisAlignedTransform() && currentMatrix._11 > 0.0 && currentMatrix._22 > 0.0 && aCtx->UserToDevicePixelSnapped(fill, true) && aCtx->UserToDevicePixelSnapped(dest, true)) { // We snapped. On this code path, |fill| and |dest| take into account // currentMatrix's transform. didSnap = true; } else { // We didn't snap. On this code path, |fill| and |dest| do not take into // account currentMatrix's transform. didSnap = false; fill = devPixelFill; dest = devPixelDest; } // If we snapped above, |dest| already takes into account |currentMatrix|'s // scale and has integer coordinates. If not, we need these properties to // compute the optimal drawn image size, so compute |snappedDestSize| here. gfxSize snappedDestSize = dest.Size(); gfxSize scaleFactors = currentMatrix.ScaleFactors(true); if (!didSnap) { snappedDestSize.Scale(scaleFactors.width, scaleFactors.height); snappedDestSize.width = NS_round(snappedDestSize.width); snappedDestSize.height = NS_round(snappedDestSize.height); } // We need to be sure that this is at least one pixel in width and height, // or we'll end up drawing nothing even if we have a nonempty fill. snappedDestSize.width = std::max(snappedDestSize.width, 1.0); snappedDestSize.height = std::max(snappedDestSize.height, 1.0); // Bail if we're not going to end up drawing anything. if (fill.IsEmpty()) { return SnappedImageDrawingParameters(); } nsIntSize intImageSize = aImage->OptimalImageSizeForDest( snappedDestSize, imgIContainer::FRAME_CURRENT, aSamplingFilter, aImageFlags); nsIntSize svgViewportSize; if (scaleFactors.width == 1.0 && scaleFactors.height == 1.0) { // intImageSize is scaled by currentMatrix. But since there are no scale // factors in currentMatrix, it is safe to assign intImageSize to // svgViewportSize directly. svgViewportSize = intImageSize; } else { // We should not take into account any transformation of currentMatrix // when computing svg viewport size. Since currentMatrix contains scale // factors, we need to recompute SVG viewport by unscaled devPixelDest. svgViewportSize = aImage->OptimalImageSizeForDest( devPixelDest.Size(), imgIContainer::FRAME_CURRENT, aSamplingFilter, aImageFlags); } gfxSize imageSize(intImageSize.width, intImageSize.height); // Compute the set of pixels that would be sampled by an ideal rendering gfxPoint subimageTopLeft = MapToFloatImagePixels(imageSize, devPixelDest, devPixelFill.TopLeft()); gfxPoint subimageBottomRight = MapToFloatImagePixels( imageSize, devPixelDest, devPixelFill.BottomRight()); gfxRect subimage; subimage.MoveTo(NSToIntFloor(subimageTopLeft.x), NSToIntFloor(subimageTopLeft.y)); subimage.SizeTo(NSToIntCeil(subimageBottomRight.x) - subimage.x, NSToIntCeil(subimageBottomRight.y) - subimage.y); if (subimage.IsEmpty()) { // Bail if the subimage is empty (we're not going to be drawing anything). return SnappedImageDrawingParameters(); } gfxMatrix transform; gfxMatrix invTransform; bool anchorAtUpperLeft = anchor.x == appUnitDest.x && anchor.y == appUnitDest.y; bool exactlyOneImageCopy = aFill.IsEqualEdges(appUnitDest); if (anchorAtUpperLeft && exactlyOneImageCopy) { // The simple case: we can ignore the anchor point and compute the // transformation from the sampled region (the subimage) to the fill rect. // This approach is preferable when it works since it tends to produce // less numerical error. transform = TransformBetweenRects(subimage, fill); invTransform = TransformBetweenRects(fill, subimage); } else { // The more complicated case: we compute the transformation from the // image rect positioned at the image space anchor point to the dest rect // positioned at the device space anchor point. // Compute the anchor point in both device space and image space. This // code assumes that pixel-based devices have one pixel per device unit! gfxPoint anchorPoint(gfxFloat(anchor.x) / aAppUnitsPerDevPixel, gfxFloat(anchor.y) / aAppUnitsPerDevPixel); gfxPoint imageSpaceAnchorPoint = MapToFloatImagePixels(imageSize, devPixelDest, anchorPoint); if (didSnap) { imageSpaceAnchorPoint = StableRound(imageSpaceAnchorPoint); anchorPoint = imageSpaceAnchorPoint; anchorPoint = MapToFloatUserPixels(imageSize, devPixelDest, anchorPoint); anchorPoint = currentMatrix.TransformPoint(anchorPoint); anchorPoint = StableRound(anchorPoint); } // Compute an unsnapped version of the dest rect's size. We continue to // follow the pattern that we take |currentMatrix| into account only if // |didSnap| is true. gfxSize unsnappedDestSize = didSnap ? devPixelDest.Size() * currentMatrix.ScaleFactors(true) : devPixelDest.Size(); gfxRect anchoredDestRect(anchorPoint, unsnappedDestSize); gfxRect anchoredImageRect(imageSpaceAnchorPoint, imageSize); // Calculate anchoredDestRect with snapped fill rect when the devPixelFill // rect corresponds to just a single tile in that direction if (fill.Width() != devPixelFill.Width() && devPixelDest.x == devPixelFill.x && devPixelDest.XMost() == devPixelFill.XMost()) { anchoredDestRect.width = fill.width; } if (fill.Height() != devPixelFill.Height() && devPixelDest.y == devPixelFill.y && devPixelDest.YMost() == devPixelFill.YMost()) { anchoredDestRect.height = fill.height; } transform = TransformBetweenRects(anchoredImageRect, anchoredDestRect); invTransform = TransformBetweenRects(anchoredDestRect, anchoredImageRect); } // If the transform is not a straight translation by integers, then // filtering will occur, and restricting the fill rect to the dirty rect // would change the values computed for edge pixels, which we can't allow. // Also, if 'didSnap' is false then rounding out 'devPixelDirty' might not // produce pixel-aligned coordinates, which would also break the values // computed for edge pixels. if (didSnap && !invTransform.HasNonIntegerTranslation()) { // This form of Transform is safe to call since non-axis-aligned // transforms wouldn't be snapped. devPixelDirty = currentMatrix.TransformRect(devPixelDirty); devPixelDirty.RoundOut(); fill = fill.Intersect(devPixelDirty); } if (fill.IsEmpty()) return SnappedImageDrawingParameters(); gfxRect imageSpaceFill(didSnap ? invTransform.TransformRect(fill) : invTransform.TransformBounds(fill)); // If we didn't snap, we need to post-multiply the matrix on the context to // get the final matrix we'll draw with, because we didn't take it into // account when computing the matrices above. if (!didSnap) { transform = transform * currentMatrix; } ExtendMode extendMode = (aImageFlags & imgIContainer::FLAG_CLAMP) ? ExtendMode::CLAMP : aExtendMode; // We were passed in the default extend mode but need to tile. if (extendMode == ExtendMode::CLAMP && doTile) { MOZ_ASSERT(!(aImageFlags & imgIContainer::FLAG_CLAMP)); extendMode = ExtendMode::REPEAT; } ImageRegion region = ImageRegion::CreateWithSamplingRestriction( imageSpaceFill, subimage, extendMode); return SnappedImageDrawingParameters( transform, intImageSize, region, CSSIntSize(svgViewportSize.width, svgViewportSize.height)); } static ImgDrawResult DrawImageInternal( gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aFill, const nsPoint& aAnchor, const nsRect& aDirty, const Maybe& aSVGContext, uint32_t aImageFlags, ExtendMode aExtendMode = ExtendMode::CLAMP, float aOpacity = 1.0) { ImgDrawResult result = ImgDrawResult::SUCCESS; aImageFlags |= imgIContainer::FLAG_ASYNC_NOTIFY; if (aPresContext->Type() == nsPresContext::eContext_Print) { // We want vector images to be passed on as vector commands, not a raster // image. aImageFlags |= imgIContainer::FLAG_BYPASS_SURFACE_CACHE; } if (aDest.Contains(aFill)) { aImageFlags |= imgIContainer::FLAG_CLAMP; } int32_t appUnitsPerDevPixel = aPresContext->AppUnitsPerDevPixel(); SnappedImageDrawingParameters params = ComputeSnappedImageDrawingParameters( &aContext, appUnitsPerDevPixel, aDest, aFill, aAnchor, aDirty, aImage, aSamplingFilter, aImageFlags, aExtendMode); if (!params.shouldDraw) { return result; } { gfxContextMatrixAutoSaveRestore contextMatrixRestorer(&aContext); aContext.SetMatrixDouble(params.imageSpaceToDeviceSpace); Maybe fallbackContext; if (!aSVGContext) { // Use the default viewport. fallbackContext.emplace(Some(params.svgViewportSize)); } result = aImage->Draw(&aContext, params.size, params.region, imgIContainer::FRAME_CURRENT, aSamplingFilter, aSVGContext ? aSVGContext : fallbackContext, aImageFlags, aOpacity); } return result; } /* static */ ImgDrawResult nsLayoutUtils::DrawSingleUnscaledImage( gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsPoint& aDest, const nsRect* aDirty, const Maybe& aSVGContext, uint32_t aImageFlags, const nsRect* aSourceArea) { CSSIntSize imageSize; aImage->GetWidth(&imageSize.width); aImage->GetHeight(&imageSize.height); if (imageSize.width < 1 || imageSize.height < 1) { NS_WARNING("Image width or height is non-positive"); return ImgDrawResult::TEMPORARY_ERROR; } nsSize size(CSSPixel::ToAppUnits(imageSize)); nsRect source; if (aSourceArea) { source = *aSourceArea; } else { source.SizeTo(size); } nsRect dest(aDest - source.TopLeft(), size); nsRect fill(aDest, source.Size()); // Ensure that only a single image tile is drawn. If aSourceArea extends // outside the image bounds, we want to honor the aSourceArea-to-aDest // translation but we don't want to actually tile the image. fill.IntersectRect(fill, dest); return DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, dest, fill, aDest, aDirty ? *aDirty : dest, aSVGContext, aImageFlags); } /* static */ ImgDrawResult nsLayoutUtils::DrawSingleImage( gfxContext& aContext, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aDirty, const Maybe& aSVGContext, uint32_t aImageFlags, const nsPoint* aAnchorPoint, const nsRect* aSourceArea) { nscoord appUnitsPerCSSPixel = AppUnitsPerCSSPixel(); CSSIntSize pixelImageSize( ComputeSizeForDrawingWithFallback(aImage, aDest.Size())); if (pixelImageSize.width < 1 || pixelImageSize.height < 1) { NS_ASSERTION(pixelImageSize.width >= 0 && pixelImageSize.height >= 0, "Image width or height is negative"); return ImgDrawResult::SUCCESS; // no point in drawing a zero size image } nsSize imageSize(CSSPixel::ToAppUnits(pixelImageSize)); nsRect source; nsCOMPtr image; if (aSourceArea) { source = *aSourceArea; nsIntRect subRect(source.x, source.y, source.width, source.height); subRect.ScaleInverseRoundOut(appUnitsPerCSSPixel); image = ImageOps::Clip(aImage, subRect); nsRect imageRect; imageRect.SizeTo(imageSize); nsRect clippedSource = imageRect.Intersect(source); source -= clippedSource.TopLeft(); imageSize = clippedSource.Size(); } else { source.SizeTo(imageSize); image = aImage; } nsRect dest = GetWholeImageDestination(imageSize, source, aDest); // Ensure that only a single image tile is drawn. If aSourceArea extends // outside the image bounds, we want to honor the aSourceArea-to-aDest // transform but we don't want to actually tile the image. nsRect fill; fill.IntersectRect(aDest, dest); return DrawImageInternal(aContext, aPresContext, image, aSamplingFilter, dest, fill, aAnchorPoint ? *aAnchorPoint : fill.TopLeft(), aDirty, aSVGContext, aImageFlags); } /* static */ void nsLayoutUtils::ComputeSizeForDrawing( imgIContainer* aImage, /* outparam */ CSSIntSize& aImageSize, /* outparam */ AspectRatio& aIntrinsicRatio, /* outparam */ bool& aGotWidth, /* outparam */ bool& aGotHeight) { aGotWidth = NS_SUCCEEDED(aImage->GetWidth(&aImageSize.width)); aGotHeight = NS_SUCCEEDED(aImage->GetHeight(&aImageSize.height)); Maybe intrinsicRatio = aImage->GetIntrinsicRatio(); aIntrinsicRatio = intrinsicRatio.valueOr(AspectRatio()); if (!(aGotWidth && aGotHeight) && intrinsicRatio.isNothing()) { // We hit an error (say, because the image failed to load or couldn't be // decoded) and should return zero size. aGotWidth = aGotHeight = true; aImageSize = CSSIntSize(0, 0); } } /* static */ CSSIntSize nsLayoutUtils::ComputeSizeForDrawingWithFallback( imgIContainer* aImage, const nsSize& aFallbackSize) { CSSIntSize imageSize; AspectRatio imageRatio; bool gotHeight, gotWidth; ComputeSizeForDrawing(aImage, imageSize, imageRatio, gotWidth, gotHeight); // If we didn't get both width and height, try to compute them using the // intrinsic ratio of the image. if (gotWidth != gotHeight) { if (!gotWidth) { if (imageRatio) { imageSize.width = imageRatio.ApplyTo(imageSize.height); gotWidth = true; } } else { if (imageRatio) { imageSize.height = imageRatio.Inverted().ApplyTo(imageSize.width); gotHeight = true; } } } // If we still don't have a width or height, just use the fallback size the // caller provided. if (!gotWidth) { imageSize.width = nsPresContext::AppUnitsToIntCSSPixels(aFallbackSize.width); } if (!gotHeight) { imageSize.height = nsPresContext::AppUnitsToIntCSSPixels(aFallbackSize.height); } return imageSize; } /* static */ IntSize nsLayoutUtils::ComputeImageContainerDrawingParameters( imgIContainer* aImage, nsIFrame* aForFrame, const LayoutDeviceRect& aDestRect, const StackingContextHelper& aSc, uint32_t aFlags, Maybe& aSVGContext) { MOZ_ASSERT(aImage); MOZ_ASSERT(aForFrame); gfx::Size scaleFactors = aSc.GetInheritedScale(); SamplingFilter samplingFilter = nsLayoutUtils::GetSamplingFilterForFrame(aForFrame); // Compute our SVG context parameters, if any. Don't replace the viewport // size if it was already set, prefer what the caller gave. SVGImageContext::MaybeStoreContextPaint(aSVGContext, aForFrame, aImage); if ((scaleFactors.width != 1.0 || scaleFactors.height != 1.0) && aImage->GetType() == imgIContainer::TYPE_VECTOR && (!aSVGContext || !aSVGContext->GetViewportSize())) { gfxSize gfxDestSize(aDestRect.Width(), aDestRect.Height()); IntSize viewportSize = aImage->OptimalImageSizeForDest( gfxDestSize, imgIContainer::FRAME_CURRENT, samplingFilter, aFlags); CSSIntSize cssViewportSize(viewportSize.width, viewportSize.height); if (!aSVGContext) { aSVGContext.emplace(Some(cssViewportSize)); } else { aSVGContext->SetViewportSize(Some(cssViewportSize)); } } // Attempt to snap pixels, the same as ComputeSnappedImageDrawingParameters. // Any changes to the algorithm here will need to be reflected there. bool snapped = false; gfxSize gfxLayerSize; const gfx::Matrix& itm = aSc.GetInheritedTransform(); if (!itm.HasNonAxisAlignedTransform() && itm._11 > 0.0 && itm._22 > 0.0) { gfxRect rect(gfxPoint(aDestRect.X(), aDestRect.Y()), gfxSize(aDestRect.Width(), aDestRect.Height())); gfxPoint p1 = ThebesPoint(itm.TransformPoint(ToPoint(rect.TopLeft()))); gfxPoint p2 = ThebesPoint(itm.TransformPoint(ToPoint(rect.TopRight()))); gfxPoint p3 = ThebesPoint(itm.TransformPoint(ToPoint(rect.BottomRight()))); if (p2 == gfxPoint(p1.x, p3.y) || p2 == gfxPoint(p3.x, p1.y)) { p1.Round(); p3.Round(); rect.MoveTo(gfxPoint(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); rect.SizeTo(gfxSize(std::max(p1.x, p3.x) - rect.X(), std::max(p1.y, p3.y) - rect.Y())); // An empty size is unacceptable so we ensure our suggested size is at // least 1 pixel wide/tall. gfxLayerSize = gfxSize(std::max(rect.Width(), 1.0), std::max(rect.Height(), 1.0)); snapped = true; } } if (!snapped) { // Compute our size in layer pixels. const LayerIntSize layerSize = RoundedToInt(LayerSize(aDestRect.Width() * scaleFactors.width, aDestRect.Height() * scaleFactors.height)); // An empty size is unacceptable so we ensure our suggested size is at least // 1 pixel wide/tall. gfxLayerSize = gfxSize(std::max(layerSize.width, 1), std::max(layerSize.height, 1)); } return aImage->OptimalImageSizeForDest( gfxLayerSize, imgIContainer::FRAME_CURRENT, samplingFilter, aFlags); } /* static */ nsPoint nsLayoutUtils::GetBackgroundFirstTilePos(const nsPoint& aDest, const nsPoint& aFill, const nsSize& aRepeatSize) { return nsPoint(NSToIntFloor(float(aFill.x - aDest.x) / aRepeatSize.width) * aRepeatSize.width, NSToIntFloor(float(aFill.y - aDest.y) / aRepeatSize.height) * aRepeatSize.height) + aDest; } /* static */ ImgDrawResult nsLayoutUtils::DrawBackgroundImage( gfxContext& aContext, nsIFrame* aForFrame, nsPresContext* aPresContext, imgIContainer* aImage, SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aFill, const nsSize& aRepeatSize, const nsPoint& aAnchor, const nsRect& aDirty, uint32_t aImageFlags, ExtendMode aExtendMode, float aOpacity) { AUTO_PROFILER_LABEL("nsLayoutUtils::DrawBackgroundImage", GRAPHICS_Rasterization); CSSIntSize destCSSSize{nsPresContext::AppUnitsToIntCSSPixels(aDest.width), nsPresContext::AppUnitsToIntCSSPixels(aDest.height)}; Maybe svgContext(Some(SVGImageContext(Some(destCSSSize)))); SVGImageContext::MaybeStoreContextPaint(svgContext, aForFrame, aImage); /* Fast path when there is no need for image spacing */ if (aRepeatSize.width == aDest.width && aRepeatSize.height == aDest.height) { return DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, aDest, aFill, aAnchor, aDirty, svgContext, aImageFlags, aExtendMode, aOpacity); } nsPoint firstTilePos = GetBackgroundFirstTilePos(aDest.TopLeft(), aFill.TopLeft(), aRepeatSize); for (int32_t i = firstTilePos.x; i < aFill.XMost(); i += aRepeatSize.width) { for (int32_t j = firstTilePos.y; j < aFill.YMost(); j += aRepeatSize.height) { nsRect dest(i, j, aDest.width, aDest.height); ImgDrawResult result = DrawImageInternal( aContext, aPresContext, aImage, aSamplingFilter, dest, dest, aAnchor, aDirty, svgContext, aImageFlags, ExtendMode::CLAMP, aOpacity); if (result != ImgDrawResult::SUCCESS) { return result; } } } return ImgDrawResult::SUCCESS; } /* static */ ImgDrawResult nsLayoutUtils::DrawImage( gfxContext& aContext, ComputedStyle* aComputedStyle, nsPresContext* aPresContext, imgIContainer* aImage, const SamplingFilter aSamplingFilter, const nsRect& aDest, const nsRect& aFill, const nsPoint& aAnchor, const nsRect& aDirty, uint32_t aImageFlags, float aOpacity) { Maybe svgContext; SVGImageContext::MaybeStoreContextPaint(svgContext, aComputedStyle, aImage); return DrawImageInternal(aContext, aPresContext, aImage, aSamplingFilter, aDest, aFill, aAnchor, aDirty, svgContext, aImageFlags, ExtendMode::CLAMP, aOpacity); } /* static */ nsRect nsLayoutUtils::GetWholeImageDestination(const nsSize& aWholeImageSize, const nsRect& aImageSourceArea, const nsRect& aDestArea) { double scaleX = double(aDestArea.width) / aImageSourceArea.width; double scaleY = double(aDestArea.height) / aImageSourceArea.height; nscoord destOffsetX = NSToCoordRound(aImageSourceArea.x * scaleX); nscoord destOffsetY = NSToCoordRound(aImageSourceArea.y * scaleY); nscoord wholeSizeX = NSToCoordRound(aWholeImageSize.width * scaleX); nscoord wholeSizeY = NSToCoordRound(aWholeImageSize.height * scaleY); return nsRect(aDestArea.TopLeft() - nsPoint(destOffsetX, destOffsetY), nsSize(wholeSizeX, wholeSizeY)); } /* static */ already_AddRefed nsLayoutUtils::OrientImage( imgIContainer* aContainer, const StyleImageOrientation& aOrientation) { MOZ_ASSERT(aContainer, "Should have an image container"); nsCOMPtr img(aContainer); if (aOrientation == StyleImageOrientation::FromImage) { img = ImageOps::Orient(img, img->GetOrientation()); } return img.forget(); } static bool NonZeroCorner(const LengthPercentage& aLength) { // Since negative results are clamped to 0, check > 0. return aLength.Resolve(nscoord_MAX) > 0 || aLength.Resolve(0) > 0; } /* static */ bool nsLayoutUtils::HasNonZeroCorner(const BorderRadius& aCorners) { NS_FOR_CSS_HALF_CORNERS(corner) { if (NonZeroCorner(aCorners.Get(corner))) return true; } return false; } // aCorner is a "full corner" value, i.e. eCornerTopLeft etc. static bool IsCornerAdjacentToSide(uint8_t aCorner, Side aSide) { static_assert((int)eSideTop == eCornerTopLeft, "Check for Full Corner"); static_assert((int)eSideRight == eCornerTopRight, "Check for Full Corner"); static_assert((int)eSideBottom == eCornerBottomRight, "Check for Full Corner"); static_assert((int)eSideLeft == eCornerBottomLeft, "Check for Full Corner"); static_assert((int)eSideTop == ((eCornerTopRight - 1) & 3), "Check for Full Corner"); static_assert((int)eSideRight == ((eCornerBottomRight - 1) & 3), "Check for Full Corner"); static_assert((int)eSideBottom == ((eCornerBottomLeft - 1) & 3), "Check for Full Corner"); static_assert((int)eSideLeft == ((eCornerTopLeft - 1) & 3), "Check for Full Corner"); return aSide == aCorner || aSide == ((aCorner - 1) & 3); } /* static */ bool nsLayoutUtils::HasNonZeroCornerOnSide(const BorderRadius& aCorners, Side aSide) { static_assert(eCornerTopLeftX / 2 == eCornerTopLeft, "Check for Non Zero on side"); static_assert(eCornerTopLeftY / 2 == eCornerTopLeft, "Check for Non Zero on side"); static_assert(eCornerTopRightX / 2 == eCornerTopRight, "Check for Non Zero on side"); static_assert(eCornerTopRightY / 2 == eCornerTopRight, "Check for Non Zero on side"); static_assert(eCornerBottomRightX / 2 == eCornerBottomRight, "Check for Non Zero on side"); static_assert(eCornerBottomRightY / 2 == eCornerBottomRight, "Check for Non Zero on side"); static_assert(eCornerBottomLeftX / 2 == eCornerBottomLeft, "Check for Non Zero on side"); static_assert(eCornerBottomLeftY / 2 == eCornerBottomLeft, "Check for Non Zero on side"); NS_FOR_CSS_HALF_CORNERS(corner) { // corner is a "half corner" value, so dividing by two gives us a // "full corner" value. if (NonZeroCorner(aCorners.Get(corner)) && IsCornerAdjacentToSide(corner / 2, aSide)) return true; } return false; } /* static */ nsTransparencyMode nsLayoutUtils::GetFrameTransparency( nsIFrame* aBackgroundFrame, nsIFrame* aCSSRootFrame) { if (aCSSRootFrame->StyleEffects()->mOpacity < 1.0f) return eTransparencyTransparent; if (HasNonZeroCorner(aCSSRootFrame->StyleBorder()->mBorderRadius)) return eTransparencyTransparent; if (aCSSRootFrame->StyleDisplay()->mAppearance == StyleAppearance::MozWinGlass) return eTransparencyGlass; if (aCSSRootFrame->StyleDisplay()->mAppearance == StyleAppearance::MozWinBorderlessGlass) return eTransparencyBorderlessGlass; nsITheme::Transparency transparency; if (aCSSRootFrame->IsThemed(&transparency)) return transparency == nsITheme::eTransparent ? eTransparencyTransparent : eTransparencyOpaque; // We need an uninitialized window to be treated as opaque because // doing otherwise breaks window display effects on some platforms, // specifically Vista. (bug 450322) if (aBackgroundFrame->IsViewportFrame() && !aBackgroundFrame->PrincipalChildList().FirstChild()) { return eTransparencyOpaque; } ComputedStyle* bgSC; if (!nsCSSRendering::FindBackground(aBackgroundFrame, &bgSC)) { return eTransparencyTransparent; } const nsStyleBackground* bg = bgSC->StyleBackground(); if (NS_GET_A(bg->BackgroundColor(bgSC)) < 255 || // bottom layer's clip is used for the color bg->BottomLayer().mClip != StyleGeometryBox::BorderBox) return eTransparencyTransparent; return eTransparencyOpaque; } static bool IsPopupFrame(const nsIFrame* aFrame) { // aFrame is a popup it's the list control frame dropdown for a combobox. LayoutFrameType frameType = aFrame->Type(); if (frameType == LayoutFrameType::ListControl) { const nsListControlFrame* lcf = static_cast(aFrame); return lcf->IsInDropDownMode(); } // ... or if it's a XUL menupopup frame. return frameType == LayoutFrameType::MenuPopup; } /* static */ bool nsLayoutUtils::IsPopup(const nsIFrame* aFrame) { // Optimization: the frame can't possibly be a popup if it has no view. if (!aFrame->HasView()) { NS_ASSERTION(!IsPopupFrame(aFrame), "popup frame must have a view"); return false; } return IsPopupFrame(aFrame); } /* static */ nsIFrame* nsLayoutUtils::GetDisplayRootFrame(nsIFrame* aFrame) { // We could use GetRootPresContext() here if the // NS_FRAME_IN_POPUP frame bit is set. nsIFrame* f = aFrame; for (;;) { if (!f->HasAnyStateBits(NS_FRAME_IN_POPUP)) { f = f->PresShell()->GetRootFrame(); if (!f) { return aFrame; } } else if (IsPopup(f)) { return f; } nsIFrame* parent = GetCrossDocParentFrame(f); if (!parent) return f; f = parent; } } /* static */ nsIFrame* nsLayoutUtils::GetReferenceFrame(nsIFrame* aFrame) { nsIFrame* f = aFrame; for (;;) { const nsStyleDisplay* disp = f->StyleDisplay(); if (f->IsTransformed(disp) || f->IsPreserve3DLeaf(disp) || IsPopup(f)) { return f; } nsIFrame* parent = GetCrossDocParentFrame(f); if (!parent) { return f; } f = parent; } } /* static */ gfx::ShapedTextFlags nsLayoutUtils::GetTextRunFlagsForStyle( ComputedStyle* aComputedStyle, nsPresContext* aPresContext, const nsStyleFont* aStyleFont, const nsStyleText* aStyleText, nscoord aLetterSpacing) { gfx::ShapedTextFlags result = gfx::ShapedTextFlags(); if (aLetterSpacing != 0 || aStyleText->mTextJustify == StyleTextJustify::InterCharacter) { result |= gfx::ShapedTextFlags::TEXT_DISABLE_OPTIONAL_LIGATURES; } if (aStyleText->mControlCharacterVisibility == NS_STYLE_CONTROL_CHARACTER_VISIBILITY_HIDDEN) { result |= gfx::ShapedTextFlags::TEXT_HIDE_CONTROL_CHARACTERS; } switch (aComputedStyle->StyleText()->mTextRendering) { case StyleTextRendering::Optimizespeed: result |= gfx::ShapedTextFlags::TEXT_OPTIMIZE_SPEED; break; case StyleTextRendering::Auto: if (aStyleFont->mFont.size < aPresContext->GetAutoQualityMinFontSize()) { result |= gfx::ShapedTextFlags::TEXT_OPTIMIZE_SPEED; } break; default: break; } return result | GetTextRunOrientFlagsForStyle(aComputedStyle); } /* static */ gfx::ShapedTextFlags nsLayoutUtils::GetTextRunOrientFlagsForStyle( ComputedStyle* aComputedStyle) { uint8_t writingMode = aComputedStyle->StyleVisibility()->mWritingMode; switch (writingMode) { case NS_STYLE_WRITING_MODE_HORIZONTAL_TB: return gfx::ShapedTextFlags::TEXT_ORIENT_HORIZONTAL; case NS_STYLE_WRITING_MODE_VERTICAL_LR: case NS_STYLE_WRITING_MODE_VERTICAL_RL: switch (aComputedStyle->StyleVisibility()->mTextOrientation) { case StyleTextOrientation::Mixed: return gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_MIXED; case StyleTextOrientation::Upright: return gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_UPRIGHT; case StyleTextOrientation::Sideways: return gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT; default: MOZ_ASSERT_UNREACHABLE("unknown text-orientation"); return gfx::ShapedTextFlags(); } case NS_STYLE_WRITING_MODE_SIDEWAYS_LR: return gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_SIDEWAYS_LEFT; case NS_STYLE_WRITING_MODE_SIDEWAYS_RL: return gfx::ShapedTextFlags::TEXT_ORIENT_VERTICAL_SIDEWAYS_RIGHT; default: MOZ_ASSERT_UNREACHABLE("unknown writing-mode"); return gfx::ShapedTextFlags(); } } /* static */ void nsLayoutUtils::GetRectDifferenceStrips(const nsRect& aR1, const nsRect& aR2, nsRect* aHStrip, nsRect* aVStrip) { NS_ASSERTION(aR1.TopLeft() == aR2.TopLeft(), "expected rects at the same position"); nsRect unionRect(aR1.x, aR1.y, std::max(aR1.width, aR2.width), std::max(aR1.height, aR2.height)); nscoord VStripStart = std::min(aR1.width, aR2.width); nscoord HStripStart = std::min(aR1.height, aR2.height); *aVStrip = unionRect; aVStrip->x += VStripStart; aVStrip->width -= VStripStart; *aHStrip = unionRect; aHStrip->y += HStripStart; aHStrip->height -= HStripStart; } nsDeviceContext* nsLayoutUtils::GetDeviceContextForScreenInfo( nsPIDOMWindowOuter* aWindow) { if (!aWindow) { return nullptr; } nsCOMPtr docShell = aWindow->GetDocShell(); while (docShell) { // Now make sure our size is up to date. That will mean that the device // context does the right thing on multi-monitor systems when we return it // to the caller. It will also make sure that our prescontext has been // created, if we're supposed to have one. nsCOMPtr win = docShell->GetWindow(); if (!win) { // No reason to go on return nullptr; } win->EnsureSizeAndPositionUpToDate(); RefPtr presContext = docShell->GetPresContext(); if (presContext) { nsDeviceContext* context = presContext->DeviceContext(); if (context) { return context; } } nsCOMPtr parentItem; docShell->GetInProcessParent(getter_AddRefs(parentItem)); docShell = do_QueryInterface(parentItem); } return nullptr; } /* static */ bool nsLayoutUtils::IsReallyFixedPos(const nsIFrame* aFrame) { MOZ_ASSERT(aFrame->StyleDisplay()->mPosition == NS_STYLE_POSITION_FIXED, "IsReallyFixedPos called on non-'position:fixed' frame"); return MayBeReallyFixedPos(aFrame); } /* static */ bool nsLayoutUtils::MayBeReallyFixedPos(const nsIFrame* aFrame) { MOZ_ASSERT(aFrame->GetParent(), "MayBeReallyFixedPos called on frame not in tree"); LayoutFrameType parentType = aFrame->GetParent()->Type(); return parentType == LayoutFrameType::Viewport || parentType == LayoutFrameType::PageContent; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromOffscreenCanvas(OffscreenCanvas* aOffscreenCanvas, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; IntSize size = aOffscreenCanvas->GetWidthHeight(); result.mSourceSurface = aOffscreenCanvas->GetSurfaceSnapshot(&result.mAlphaType); if (!result.mSourceSurface) { // If the element doesn't have a context then we won't get a snapshot. The // canvas spec wants us to not error and just draw nothing, so return an // empty surface. result.mAlphaType = gfxAlphaType::Opaque; RefPtr ref = aTarget ? aTarget : gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); if (ref->CanCreateSimilarDrawTarget(size, SurfaceFormat::B8G8R8A8)) { RefPtr dt = ref->CreateSimilarDrawTarget(size, SurfaceFormat::B8G8R8A8); if (dt) { result.mSourceSurface = dt->Snapshot(); } } } else if (aTarget) { RefPtr opt = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (opt) { result.mSourceSurface = opt; } } result.mHasSize = true; result.mSize = size; result.mIntrinsicSize = size; result.mIsWriteOnly = aOffscreenCanvas->IsWriteOnly(); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement( nsIImageLoadingContent* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; nsresult rv; nsCOMPtr imgRequest; rv = aElement->GetRequest(nsIImageLoadingContent::CURRENT_REQUEST, getter_AddRefs(imgRequest)); if (NS_FAILED(rv)) { return result; } if (!imgRequest) { // There's no image request. This is either because a request for // a non-empty URI failed, or the URI is the empty string. nsCOMPtr currentURI; aElement->GetCurrentURI(getter_AddRefs(currentURI)); if (!currentURI) { // Treat the empty URI as available instead of broken state. result.mHasSize = true; } return result; } uint32_t status; imgRequest->GetImageStatus(&status); result.mHasSize = status & imgIRequest::STATUS_SIZE_AVAILABLE; if ((status & imgIRequest::STATUS_LOAD_COMPLETE) == 0) { // Spec says to use GetComplete, but that only works on // HTMLImageElement, and we support all sorts of other stuff // here. Do this for now pending spec clarification. result.mIsStillLoading = (status & imgIRequest::STATUS_ERROR) == 0; return result; } nsCOMPtr principal; rv = imgRequest->GetImagePrincipal(getter_AddRefs(principal)); if (NS_FAILED(rv)) { return result; } nsCOMPtr imgContainer; rv = imgRequest->GetImage(getter_AddRefs(imgContainer)); if (NS_FAILED(rv)) { return result; } uint32_t noRasterize = aSurfaceFlags & SFE_NO_RASTERIZING_VECTORS; uint32_t whichFrame = (aSurfaceFlags & SFE_WANT_FIRST_FRAME_IF_IMAGE) ? (uint32_t)imgIContainer::FRAME_FIRST : (uint32_t)imgIContainer::FRAME_CURRENT; uint32_t frameFlags = imgIContainer::FLAG_SYNC_DECODE | imgIContainer::FLAG_ASYNC_NOTIFY; if (aSurfaceFlags & SFE_NO_COLORSPACE_CONVERSION) frameFlags |= imgIContainer::FLAG_DECODE_NO_COLORSPACE_CONVERSION; if (aSurfaceFlags & SFE_PREFER_NO_PREMULTIPLY_ALPHA) { frameFlags |= imgIContainer::FLAG_DECODE_NO_PREMULTIPLY_ALPHA; } int32_t imgWidth, imgHeight; nsCOMPtr content = do_QueryInterface(aElement); HTMLImageElement* element = HTMLImageElement::FromNodeOrNull(content); if (aSurfaceFlags & SFE_USE_ELEMENT_SIZE_IF_VECTOR && element && imgContainer->GetType() == imgIContainer::TYPE_VECTOR) { // We're holding a strong ref to "element" via "content". imgWidth = MOZ_KnownLive(element)->Width(); imgHeight = MOZ_KnownLive(element)->Height(); } else { rv = imgContainer->GetWidth(&imgWidth); nsresult rv2 = imgContainer->GetHeight(&imgHeight); if (NS_FAILED(rv) || NS_FAILED(rv2)) return result; } result.mSize = IntSize(imgWidth, imgHeight); result.mIntrinsicSize = IntSize(imgWidth, imgHeight); if (!noRasterize || imgContainer->GetType() == imgIContainer::TYPE_RASTER) { if (aSurfaceFlags & SFE_WANT_IMAGE_SURFACE) { frameFlags |= imgIContainer::FLAG_WANT_DATA_SURFACE; } result.mSourceSurface = imgContainer->GetFrameAtSize(result.mSize, whichFrame, frameFlags); if (!result.mSourceSurface) { return result; } // The surface we return is likely to be cached. We don't want to have to // convert to a surface that's compatible with aTarget each time it's used // (that would result in terrible performance), so we convert once here // upfront if aTarget is specified. if (aTarget) { RefPtr optSurface = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (optSurface) { result.mSourceSurface = optSurface; } } const auto& format = result.mSourceSurface->GetFormat(); if (IsOpaque(format)) { result.mAlphaType = gfxAlphaType::Opaque; } else if (frameFlags & imgIContainer::FLAG_DECODE_NO_PREMULTIPLY_ALPHA) { result.mAlphaType = gfxAlphaType::NonPremult; } else { result.mAlphaType = gfxAlphaType::Premult; } } else { result.mDrawInfo.mImgContainer = imgContainer; result.mDrawInfo.mWhichFrame = whichFrame; result.mDrawInfo.mDrawingFlags = frameFlags; } int32_t corsmode; if (NS_SUCCEEDED(imgRequest->GetCORSMode(&corsmode))) { result.mCORSUsed = (corsmode != imgIRequest::CORS_NONE); } bool hadCrossOriginRedirects = true; imgRequest->GetHadCrossOriginRedirects(&hadCrossOriginRedirects); result.mPrincipal = principal.forget(); result.mHadCrossOriginRedirects = hadCrossOriginRedirects; result.mImageRequest = imgRequest.forget(); result.mIsWriteOnly = CanvasUtils::CheckWriteOnlySecurity( result.mCORSUsed, result.mPrincipal, result.mHadCrossOriginRedirects); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement( HTMLImageElement* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { return SurfaceFromElement(static_cast(aElement), aSurfaceFlags, aTarget); } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement( HTMLCanvasElement* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; IntSize size = aElement->GetSize(); result.mSourceSurface = aElement->GetSurfaceSnapshot(&result.mAlphaType); if (!result.mSourceSurface) { // If the element doesn't have a context then we won't get a snapshot. The // canvas spec wants us to not error and just draw nothing, so return an // empty surface. result.mAlphaType = gfxAlphaType::Opaque; RefPtr ref = aTarget ? aTarget : gfxPlatform::GetPlatform()->ScreenReferenceDrawTarget(); if (ref->CanCreateSimilarDrawTarget(size, SurfaceFormat::B8G8R8A8)) { RefPtr dt = ref->CreateSimilarDrawTarget(size, SurfaceFormat::B8G8R8A8); if (dt) { result.mSourceSurface = dt->Snapshot(); } } } else if (aTarget) { RefPtr opt = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (opt) { result.mSourceSurface = opt; } } // Ensure that any future changes to the canvas trigger proper invalidation, // in case this is being used by -moz-element() aElement->MarkContextClean(); result.mHasSize = true; result.mSize = size; result.mIntrinsicSize = size; result.mPrincipal = aElement->NodePrincipal(); result.mHadCrossOriginRedirects = false; result.mIsWriteOnly = aElement->IsWriteOnly(); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement( HTMLVideoElement* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { SurfaceFromElementResult result; result.mAlphaType = gfxAlphaType::Opaque; // Assume opaque. if (aElement->ContainsRestrictedContent()) { return result; } uint16_t readyState = aElement->ReadyState(); if (readyState == HAVE_NOTHING || readyState == HAVE_METADATA) { result.mIsStillLoading = true; return result; } // If it doesn't have a principal, just bail nsCOMPtr principal = aElement->GetCurrentVideoPrincipal(); if (!principal) return result; result.mLayersImage = aElement->GetCurrentImage(); if (!result.mLayersImage) return result; if (aTarget) { // They gave us a DrawTarget to optimize for, so even though we have a // layers::Image, we should unconditionally grab a SourceSurface and try to // optimize it. result.mSourceSurface = result.mLayersImage->GetAsSourceSurface(); if (!result.mSourceSurface) return result; RefPtr opt = aTarget->OptimizeSourceSurface(result.mSourceSurface); if (opt) { result.mSourceSurface = opt; } } result.mCORSUsed = aElement->GetCORSMode() != CORS_NONE; result.mHasSize = true; result.mSize = result.mLayersImage->GetSize(); result.mIntrinsicSize = gfx::IntSize(aElement->VideoWidth(), aElement->VideoHeight()); result.mPrincipal = principal.forget(); result.mHadCrossOriginRedirects = aElement->HadCrossOriginRedirects(); result.mIsWriteOnly = CanvasUtils::CheckWriteOnlySecurity( result.mCORSUsed, result.mPrincipal, result.mHadCrossOriginRedirects); return result; } nsLayoutUtils::SurfaceFromElementResult nsLayoutUtils::SurfaceFromElement( dom::Element* aElement, uint32_t aSurfaceFlags, RefPtr& aTarget) { // If it's a , we may be able to just grab its internal surface if (HTMLCanvasElement* canvas = HTMLCanvasElement::FromNodeOrNull(aElement)) { return SurfaceFromElement(canvas, aSurfaceFlags, aTarget); } // Maybe it's