/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Layers.h" #include // for max, min #include "apz/src/AsyncPanZoomController.h" #include "CompositableHost.h" // for CompositableHost #include "ImageContainer.h" // for ImageContainer, etc #include "ImageLayers.h" // for ImageLayer #include "LayerSorter.h" // for SortLayersBy3DZOrder #include "LayersLogging.h" // for AppendToString #include "LayerUserData.h" #include "ReadbackLayer.h" // for ReadbackLayer #include "UnitTransforms.h" // for ViewAs #include "gfxEnv.h" #include "gfxPlatform.h" // for gfxPlatform #include "gfxUtils.h" // for gfxUtils, etc #include "gfx2DGlue.h" #include "mozilla/DebugOnly.h" // for DebugOnly #include "mozilla/IntegerPrintfMacros.h" #include "mozilla/StaticPrefs.h" #include "mozilla/Telemetry.h" // for Accumulate #include "mozilla/ToString.h" #include "mozilla/gfx/2D.h" // for DrawTarget #include "mozilla/gfx/BaseSize.h" // for BaseSize #include "mozilla/gfx/Matrix.h" // for Matrix4x4 #include "mozilla/gfx/Polygon.h" // for Polygon #include "mozilla/layers/AsyncCanvasRenderer.h" #include "mozilla/layers/BSPTree.h" // for BSPTree #include "mozilla/layers/CompositableClient.h" // for CompositableClient #include "mozilla/layers/Compositor.h" // for Compositor #include "mozilla/layers/CompositorTypes.h" #include "mozilla/layers/LayerManagerComposite.h" // for LayerComposite #include "mozilla/layers/LayerMetricsWrapper.h" // for LayerMetricsWrapper #include "mozilla/layers/LayersMessages.h" // for TransformFunction, etc #include "mozilla/layers/LayersTypes.h" // for TextureDumpMode #include "mozilla/layers/PersistentBufferProvider.h" #include "mozilla/layers/ShadowLayers.h" // for ShadowableLayer #include "nsAString.h" #include "nsCSSValue.h" // for nsCSSValue::Array, etc #include "nsDisplayList.h" // for nsDisplayItem #include "nsPrintfCString.h" // for nsPrintfCString #include "protobuf/LayerScopePacket.pb.h" #include "mozilla/Compression.h" #include "TreeTraversal.h" // for ForEachNode #include #include uint8_t gLayerManagerLayerBuilder; namespace mozilla { namespace layers { typedef ScrollableLayerGuid::ViewID ViewID; using namespace mozilla::gfx; using namespace mozilla::Compression; //-------------------------------------------------- // LayerManager /* static */ mozilla::LogModule* LayerManager::GetLog() { static LazyLogModule sLog("Layers"); return sLog; } ScrollableLayerGuid::ViewID LayerManager::GetRootScrollableLayerId() { if (!mRoot) { return ScrollableLayerGuid::NULL_SCROLL_ID; } LayerMetricsWrapper layerMetricsRoot = LayerMetricsWrapper(mRoot); LayerMetricsWrapper rootScrollableLayerMetrics = BreadthFirstSearch( layerMetricsRoot, [](LayerMetricsWrapper aLayerMetrics) { return aLayerMetrics.Metrics().IsScrollable(); }); return rootScrollableLayerMetrics.IsValid() ? rootScrollableLayerMetrics.Metrics().GetScrollId() : ScrollableLayerGuid::NULL_SCROLL_ID; } LayerMetricsWrapper LayerManager::GetRootContentLayer() { if (!mRoot) { return LayerMetricsWrapper(); } LayerMetricsWrapper root(mRoot); return BreadthFirstSearch( root, [](LayerMetricsWrapper aLayerMetrics) { return aLayerMetrics.Metrics().IsRootContent(); }); } already_AddRefed LayerManager::CreateOptimalDrawTarget( const gfx::IntSize& aSize, SurfaceFormat aFormat) { return gfxPlatform::GetPlatform()->CreateOffscreenContentDrawTarget(aSize, aFormat); } already_AddRefed LayerManager::CreateOptimalMaskDrawTarget( const gfx::IntSize& aSize) { return CreateOptimalDrawTarget(aSize, SurfaceFormat::A8); } already_AddRefed LayerManager::CreateDrawTarget( const IntSize& aSize, SurfaceFormat aFormat) { return gfxPlatform::GetPlatform()->CreateOffscreenCanvasDrawTarget(aSize, aFormat); } already_AddRefed LayerManager::CreatePersistentBufferProvider( const mozilla::gfx::IntSize& aSize, mozilla::gfx::SurfaceFormat aFormat) { RefPtr bufferProvider = PersistentBufferProviderBasic::Create( aSize, aFormat, gfxPlatform::GetPlatform()->GetPreferredCanvasBackend()); if (!bufferProvider) { bufferProvider = PersistentBufferProviderBasic::Create( aSize, aFormat, gfxPlatform::GetPlatform()->GetFallbackCanvasBackend()); } return bufferProvider.forget(); } already_AddRefed LayerManager::CreateImageContainer( ImageContainer::Mode flag) { RefPtr container = new ImageContainer(flag); return container.forget(); } bool LayerManager::AreComponentAlphaLayersEnabled() { return StaticPrefs::ComponentAlphaEnabled(); } /*static*/ void LayerManager::LayerUserDataDestroy(void* data) { delete static_cast(data); } UniquePtr LayerManager::RemoveUserData(void* aKey) { UniquePtr d(static_cast( mUserData.Remove(static_cast(aKey)))); return d; } void LayerManager::PayloadPresented() { RecordCompositionPayloadsPresented(mPayload); } //-------------------------------------------------- // Layer Layer::Layer(LayerManager* aManager, void* aImplData) : mManager(aManager), mParent(nullptr), mNextSibling(nullptr), mPrevSibling(nullptr), mImplData(aImplData), mUseTileSourceRect(false) #ifdef DEBUG , mDebugColorIndex(0) #endif { } Layer::~Layer() {} void Layer::SetCompositorAnimations( const CompositorAnimations& aCompositorAnimations) { MOZ_LAYERS_LOG_IF_SHADOWABLE( this, ("Layer::Mutated(%p) SetCompositorAnimations with id=%" PRIu64, this, mAnimationInfo.GetCompositorAnimationsId())); mAnimationInfo.SetCompositorAnimations(aCompositorAnimations); Mutated(); } void Layer::ClearCompositorAnimations() { MOZ_LAYERS_LOG_IF_SHADOWABLE( this, ("Layer::Mutated(%p) ClearCompositorAnimations with id=%" PRIu64, this, mAnimationInfo.GetCompositorAnimationsId())); mAnimationInfo.ClearAnimations(); Mutated(); } void Layer::StartPendingAnimations(const TimeStamp& aReadyTime) { ForEachNode(this, [&aReadyTime](Layer* layer) { if (layer->mAnimationInfo.StartPendingAnimations(aReadyTime)) { layer->Mutated(); } }); } void Layer::SetAsyncPanZoomController(uint32_t aIndex, AsyncPanZoomController* controller) { MOZ_ASSERT(aIndex < GetScrollMetadataCount()); // We should never be setting an APZC on a non-scrollable layer MOZ_ASSERT(!controller || GetFrameMetrics(aIndex).IsScrollable()); mApzcs[aIndex] = controller; } AsyncPanZoomController* Layer::GetAsyncPanZoomController( uint32_t aIndex) const { MOZ_ASSERT(aIndex < GetScrollMetadataCount()); #ifdef DEBUG if (mApzcs[aIndex]) { MOZ_ASSERT(GetFrameMetrics(aIndex).IsScrollable()); } #endif return mApzcs[aIndex]; } void Layer::ScrollMetadataChanged() { mApzcs.SetLength(GetScrollMetadataCount()); } std::unordered_set Layer::ApplyPendingUpdatesToSubtree() { ForEachNode(this, [](Layer* layer) { layer->ApplyPendingUpdatesForThisTransaction(); }); // Once we're done recursing through the whole tree, clear the pending // updates from the manager. return Manager()->ClearPendingScrollInfoUpdate(); } bool Layer::IsOpaqueForVisibility() { return GetEffectiveOpacity() == 1.0f && GetEffectiveMixBlendMode() == CompositionOp::OP_OVER; } bool Layer::CanUseOpaqueSurface() { // If the visible content in the layer is opaque, there is no need // for an alpha channel. if (GetContentFlags() & CONTENT_OPAQUE) return true; // Also, if this layer is the bottommost layer in a container which // doesn't need an alpha channel, we can use an opaque surface for this // layer too. Any transparent areas must be covered by something else // in the container. ContainerLayer* parent = GetParent(); return parent && parent->GetFirstChild() == this && parent->CanUseOpaqueSurface(); } // NB: eventually these methods will be defined unconditionally, and // can be moved into Layers.h const Maybe& Layer::GetLocalClipRect() { if (HostLayer* shadow = AsHostLayer()) { return shadow->GetShadowClipRect(); } return GetClipRect(); } const LayerIntRegion& Layer::GetLocalVisibleRegion() { if (HostLayer* shadow = AsHostLayer()) { return shadow->GetShadowVisibleRegion(); } return GetVisibleRegion(); } Matrix4x4 Layer::SnapTransformTranslation(const Matrix4x4& aTransform, Matrix* aResidualTransform) { if (aResidualTransform) { *aResidualTransform = Matrix(); } if (!mManager->IsSnappingEffectiveTransforms()) { return aTransform; } Matrix matrix2D; if (aTransform.CanDraw2D(&matrix2D) && !matrix2D.HasNonTranslation() && matrix2D.HasNonIntegerTranslation()) { auto snappedTranslation = IntPoint::Round(matrix2D.GetTranslation()); Matrix snappedMatrix = Matrix::Translation(snappedTranslation.x, snappedTranslation.y); Matrix4x4 result = Matrix4x4::From2D(snappedMatrix); if (aResidualTransform) { // set aResidualTransform so that aResidual * snappedMatrix == matrix2D. // (I.e., appying snappedMatrix after aResidualTransform gives the // ideal transform.) *aResidualTransform = Matrix::Translation(matrix2D._31 - snappedTranslation.x, matrix2D._32 - snappedTranslation.y); } return result; } return SnapTransformTranslation3D(aTransform, aResidualTransform); } Matrix4x4 Layer::SnapTransformTranslation3D(const Matrix4x4& aTransform, Matrix* aResidualTransform) { if (aTransform.IsSingular() || aTransform.HasPerspectiveComponent() || aTransform.HasNonTranslation() || !aTransform.HasNonIntegerTranslation()) { // For a singular transform, there is no reversed matrix, so we // don't snap it. // For a perspective transform, the content is transformed in // non-linear, so we don't snap it too. return aTransform; } // Snap for 3D Transforms Point3D transformedOrigin = aTransform.TransformPoint(Point3D()); // Compute the transformed snap by rounding the values of // transformed origin. auto transformedSnapXY = IntPoint::Round(transformedOrigin.x, transformedOrigin.y); Matrix4x4 inverse = aTransform; inverse.Invert(); // see Matrix4x4::ProjectPoint() Float transformedSnapZ = inverse._33 == 0 ? 0 : (-(transformedSnapXY.x * inverse._13 + transformedSnapXY.y * inverse._23 + inverse._43) / inverse._33); Point3D transformedSnap = Point3D(transformedSnapXY.x, transformedSnapXY.y, transformedSnapZ); if (transformedOrigin == transformedSnap) { return aTransform; } // Compute the snap from the transformed snap. Point3D snap = inverse.TransformPoint(transformedSnap); if (snap.z > 0.001 || snap.z < -0.001) { // Allow some level of accumulated computation error. MOZ_ASSERT(inverse._33 == 0.0); return aTransform; } // The difference between the origin and snap is the residual transform. if (aResidualTransform) { // The residual transform is to translate the snap to the origin // of the content buffer. *aResidualTransform = Matrix::Translation(-snap.x, -snap.y); } // Translate transformed origin to transformed snap since the // residual transform would trnslate the snap to the origin. Point3D transformedShift = transformedSnap - transformedOrigin; Matrix4x4 result = aTransform; result.PostTranslate(transformedShift.x, transformedShift.y, transformedShift.z); // For non-2d transform, residual translation could be more than // 0.5 pixels for every axis. return result; } Matrix4x4 Layer::SnapTransform(const Matrix4x4& aTransform, const gfxRect& aSnapRect, Matrix* aResidualTransform) { if (aResidualTransform) { *aResidualTransform = Matrix(); } Matrix matrix2D; Matrix4x4 result; if (mManager->IsSnappingEffectiveTransforms() && aTransform.Is2D(&matrix2D) && gfxSize(1.0, 1.0) <= aSnapRect.Size() && matrix2D.PreservesAxisAlignedRectangles()) { auto transformedTopLeft = IntPoint::Round(matrix2D.TransformPoint(ToPoint(aSnapRect.TopLeft()))); auto transformedTopRight = IntPoint::Round(matrix2D.TransformPoint(ToPoint(aSnapRect.TopRight()))); auto transformedBottomRight = IntPoint::Round( matrix2D.TransformPoint(ToPoint(aSnapRect.BottomRight()))); Matrix snappedMatrix = gfxUtils::TransformRectToRect( aSnapRect, transformedTopLeft, transformedTopRight, transformedBottomRight); result = Matrix4x4::From2D(snappedMatrix); if (aResidualTransform && !snappedMatrix.IsSingular()) { // set aResidualTransform so that aResidual * snappedMatrix == matrix2D. // (i.e., appying snappedMatrix after aResidualTransform gives the // ideal transform. Matrix snappedMatrixInverse = snappedMatrix; snappedMatrixInverse.Invert(); *aResidualTransform = matrix2D * snappedMatrixInverse; } } else { result = aTransform; } return result; } static bool AncestorLayerMayChangeTransform(Layer* aLayer) { for (Layer* l = aLayer; l; l = l->GetParent()) { if (l->GetContentFlags() & Layer::CONTENT_MAY_CHANGE_TRANSFORM) { return true; } if (l->GetParent() && l->GetParent()->AsRefLayer()) { return false; } } return false; } bool Layer::MayResample() { Matrix transform2d; return !GetEffectiveTransform().Is2D(&transform2d) || ThebesMatrix(transform2d).HasNonIntegerTranslation() || AncestorLayerMayChangeTransform(this); } RenderTargetIntRect Layer::CalculateScissorRect( const RenderTargetIntRect& aCurrentScissorRect) { ContainerLayer* container = GetParent(); ContainerLayer* containerChild = nullptr; NS_ASSERTION(GetParent(), "This can't be called on the root!"); // Find the layer creating the 3D context. while (container->Extend3DContext() && !container->UseIntermediateSurface()) { containerChild = container; container = container->GetParent(); MOZ_ASSERT(container); } // Find the nearest layer with a clip, or this layer. // ContainerState::SetupScrollingMetadata() may install a clip on // the layer. Layer* clipLayer = containerChild && containerChild->GetLocalClipRect() ? containerChild : this; // Establish initial clip rect: it's either the one passed in, or // if the parent has an intermediate surface, it's the extents of that // surface. RenderTargetIntRect currentClip; if (container->UseIntermediateSurface()) { currentClip.SizeTo(container->GetIntermediateSurfaceRect().Size()); } else { currentClip = aCurrentScissorRect; } if (!clipLayer->GetLocalClipRect()) { return currentClip; } if (GetLocalVisibleRegion().IsEmpty()) { // When our visible region is empty, our parent may not have created the // intermediate surface that we would require for correct clipping; however, // this does not matter since we are invisible. // Make sure we still compute a clip rect if we want to draw checkboarding // for this layer, since we want to do this even if the layer is invisible. return RenderTargetIntRect(currentClip.TopLeft(), RenderTargetIntSize(0, 0)); } const RenderTargetIntRect clipRect = ViewAs( *clipLayer->GetLocalClipRect(), PixelCastJustification::RenderTargetIsParentLayerForRoot); if (clipRect.IsEmpty()) { // We might have a non-translation transform in the container so we can't // use the code path below. return RenderTargetIntRect(currentClip.TopLeft(), RenderTargetIntSize(0, 0)); } RenderTargetIntRect scissor = clipRect; if (!container->UseIntermediateSurface()) { gfx::Matrix matrix; DebugOnly is2D = container->GetEffectiveTransform().Is2D(&matrix); // See DefaultComputeEffectiveTransforms below NS_ASSERTION(is2D && matrix.PreservesAxisAlignedRectangles(), "Non preserves axis aligned transform with clipped child " "should have forced intermediate surface"); gfx::Rect r(scissor.X(), scissor.Y(), scissor.Width(), scissor.Height()); gfxRect trScissor = gfx::ThebesRect(matrix.TransformBounds(r)); trScissor.Round(); IntRect tmp; if (!gfxUtils::GfxRectToIntRect(trScissor, &tmp)) { return RenderTargetIntRect(currentClip.TopLeft(), RenderTargetIntSize(0, 0)); } scissor = ViewAs(tmp); // Find the nearest ancestor with an intermediate surface do { container = container->GetParent(); } while (container && !container->UseIntermediateSurface()); } if (container) { scissor.MoveBy(-container->GetIntermediateSurfaceRect().TopLeft()); } return currentClip.Intersect(scissor); } Maybe Layer::GetScrolledClipRect() const { const Maybe clip = mSimpleAttrs.GetScrolledClip(); return clip ? Some(clip->GetClipRect()) : Nothing(); } const ScrollMetadata& Layer::GetScrollMetadata(uint32_t aIndex) const { MOZ_ASSERT(aIndex < GetScrollMetadataCount()); return mScrollMetadata[aIndex]; } const FrameMetrics& Layer::GetFrameMetrics(uint32_t aIndex) const { return GetScrollMetadata(aIndex).GetMetrics(); } bool Layer::HasScrollableFrameMetrics() const { for (uint32_t i = 0; i < GetScrollMetadataCount(); i++) { if (GetFrameMetrics(i).IsScrollable()) { return true; } } return false; } bool Layer::HasRootScrollableFrameMetrics() const { for (uint32_t i = 0; i < GetScrollMetadataCount(); i++) { if (GetFrameMetrics(i).IsScrollable() && GetFrameMetrics(i).IsRootContent()) { return true; } } return false; } bool Layer::IsScrollableWithoutContent() const { // A scrollable container layer with no children return AsContainerLayer() && HasScrollableFrameMetrics() && !GetFirstChild(); } Matrix4x4 Layer::GetTransform() const { Matrix4x4 transform = mSimpleAttrs.GetTransform(); transform.PostScale(GetPostXScale(), GetPostYScale(), 1.0f); if (const ContainerLayer* c = AsContainerLayer()) { transform.PreScale(c->GetPreXScale(), c->GetPreYScale(), 1.0f); } return transform; } const CSSTransformMatrix Layer::GetTransformTyped() const { return ViewAs(GetTransform()); } Matrix4x4 Layer::GetLocalTransform() { if (HostLayer* shadow = AsHostLayer()) { return shadow->GetShadowTransform(); } return GetTransform(); } const LayerToParentLayerMatrix4x4 Layer::GetLocalTransformTyped() { return ViewAs(GetLocalTransform()); } bool Layer::IsScrollbarContainer() const { const ScrollbarData& data = GetScrollbarData(); return (data.mScrollbarLayerType == ScrollbarLayerType::Container) ? data.mDirection.isSome() : false; } bool Layer::HasTransformAnimation() const { return mAnimationInfo.HasTransformAnimation(); } void Layer::ApplyPendingUpdatesForThisTransaction() { if (mPendingTransform && *mPendingTransform != mSimpleAttrs.GetTransform()) { MOZ_LAYERS_LOG_IF_SHADOWABLE( this, ("Layer::Mutated(%p) PendingUpdatesForThisTransaction", this)); mSimpleAttrs.SetTransform(*mPendingTransform); MutatedSimple(); } mPendingTransform = nullptr; if (mAnimationInfo.ApplyPendingUpdatesForThisTransaction()) { MOZ_LAYERS_LOG_IF_SHADOWABLE( this, ("Layer::Mutated(%p) PendingUpdatesForThisTransaction", this)); Mutated(); } for (size_t i = 0; i < mScrollMetadata.Length(); i++) { FrameMetrics& fm = mScrollMetadata[i].GetMetrics(); ScrollableLayerGuid::ViewID scrollId = fm.GetScrollId(); Maybe update = Manager()->GetPendingScrollInfoUpdate(scrollId); if (update) { fm.UpdatePendingScrollInfo(update.value()); Mutated(); } } } float Layer::GetLocalOpacity() { float opacity = mSimpleAttrs.GetOpacity(); if (HostLayer* shadow = AsHostLayer()) opacity = shadow->GetShadowOpacity(); return std::min(std::max(opacity, 0.0f), 1.0f); } float Layer::GetEffectiveOpacity() { float opacity = GetLocalOpacity(); for (ContainerLayer* c = GetParent(); c && !c->UseIntermediateSurface(); c = c->GetParent()) { opacity *= c->GetLocalOpacity(); } return opacity; } CompositionOp Layer::GetEffectiveMixBlendMode() { if (mSimpleAttrs.GetMixBlendMode() != CompositionOp::OP_OVER) return mSimpleAttrs.GetMixBlendMode(); for (ContainerLayer* c = GetParent(); c && !c->UseIntermediateSurface(); c = c->GetParent()) { if (c->mSimpleAttrs.GetMixBlendMode() != CompositionOp::OP_OVER) return c->mSimpleAttrs.GetMixBlendMode(); } return mSimpleAttrs.GetMixBlendMode(); } Matrix4x4 Layer::ComputeTransformToPreserve3DRoot() { Matrix4x4 transform = GetLocalTransform(); for (Layer* layer = GetParent(); layer && layer->Extend3DContext(); layer = layer->GetParent()) { transform = transform * layer->GetLocalTransform(); } return transform; } void Layer::ComputeEffectiveTransformForMaskLayers( const gfx::Matrix4x4& aTransformToSurface) { if (GetMaskLayer()) { ComputeEffectiveTransformForMaskLayer(GetMaskLayer(), aTransformToSurface); } for (size_t i = 0; i < GetAncestorMaskLayerCount(); i++) { Layer* maskLayer = GetAncestorMaskLayerAt(i); ComputeEffectiveTransformForMaskLayer(maskLayer, aTransformToSurface); } } /* static */ void Layer::ComputeEffectiveTransformForMaskLayer( Layer* aMaskLayer, const gfx::Matrix4x4& aTransformToSurface) { #ifdef DEBUG bool maskIs2D = aMaskLayer->GetTransform().CanDraw2D(); NS_ASSERTION(maskIs2D, "How did we end up with a 3D transform here?!"); #endif // The mask layer can have an async transform applied to it in some // situations, so be sure to use its GetLocalTransform() rather than // its GetTransform(). aMaskLayer->mEffectiveTransform = aMaskLayer->SnapTransformTranslation( aMaskLayer->GetLocalTransform() * aTransformToSurface, nullptr); } RenderTargetRect Layer::TransformRectToRenderTarget(const LayerIntRect& aRect) { LayerRect rect(aRect); RenderTargetRect quad = RenderTargetRect::FromUnknownRect( GetEffectiveTransform().TransformBounds(rect.ToUnknownRect())); return quad; } bool Layer::GetVisibleRegionRelativeToRootLayer(nsIntRegion& aResult, IntPoint* aLayerOffset) { MOZ_ASSERT(aLayerOffset, "invalid offset pointer"); if (!GetParent()) { return false; } IntPoint offset; aResult = GetLocalVisibleRegion().ToUnknownRegion(); for (Layer* layer = this; layer; layer = layer->GetParent()) { gfx::Matrix matrix; if (!layer->GetLocalTransform().Is2D(&matrix) || !matrix.IsTranslation()) { return false; } // The offset of |layer| to its parent. auto currentLayerOffset = IntPoint::Round(matrix.GetTranslation()); // Translate the accumulated visible region of |this| by the offset of // |layer|. aResult.MoveBy(currentLayerOffset.x, currentLayerOffset.y); // If the parent layer clips its lower layers, clip the visible region // we're accumulating. if (layer->GetLocalClipRect()) { aResult.AndWith(layer->GetLocalClipRect()->ToUnknownRect()); } // Now we need to walk across the list of siblings for this parent layer, // checking to see if any of these layer trees obscure |this|. If so, // remove these areas from the visible region as well. This will pick up // chrome overlays like a tab modal prompt. Layer* sibling; for (sibling = layer->GetNextSibling(); sibling; sibling = sibling->GetNextSibling()) { gfx::Matrix siblingMatrix; if (!sibling->GetLocalTransform().Is2D(&siblingMatrix) || !siblingMatrix.IsTranslation()) { continue; } // Retreive the translation from sibling to |layer|. The accumulated // visible region is currently oriented with |layer|. auto siblingOffset = IntPoint::Round(siblingMatrix.GetTranslation()); nsIntRegion siblingVisibleRegion( sibling->GetLocalVisibleRegion().ToUnknownRegion()); // Translate the siblings region to |layer|'s origin. siblingVisibleRegion.MoveBy(-siblingOffset.x, -siblingOffset.y); // Apply the sibling's clip. // Layer clip rects are not affected by the layer's transform. Maybe clipRect = sibling->GetLocalClipRect(); if (clipRect) { siblingVisibleRegion.AndWith(clipRect->ToUnknownRect()); } // Subtract the sibling visible region from the visible region of |this|. aResult.SubOut(siblingVisibleRegion); } // Keep track of the total offset for aLayerOffset. We use this in plugin // positioning code. offset += currentLayerOffset; } *aLayerOffset = IntPoint(offset.x, offset.y); return true; } Maybe Layer::GetCombinedClipRect() const { Maybe clip = GetClipRect(); clip = IntersectMaybeRects(clip, GetScrolledClipRect()); for (size_t i = 0; i < mScrollMetadata.Length(); i++) { clip = IntersectMaybeRects(clip, mScrollMetadata[i].GetClipRect()); } return clip; } ContainerLayer::ContainerLayer(LayerManager* aManager, void* aImplData) : Layer(aManager, aImplData), mFirstChild(nullptr), mLastChild(nullptr), mPreXScale(1.0f), mPreYScale(1.0f), mInheritedXScale(1.0f), mInheritedYScale(1.0f), mPresShellResolution(1.0f), mUseIntermediateSurface(false), mSupportsComponentAlphaChildren(false), mMayHaveReadbackChild(false), mChildrenChanged(false) {} ContainerLayer::~ContainerLayer() {} bool ContainerLayer::InsertAfter(Layer* aChild, Layer* aAfter) { if (aChild->Manager() != Manager()) { NS_ERROR("Child has wrong manager"); return false; } if (aChild->GetParent()) { NS_ERROR("aChild already in the tree"); return false; } if (aChild->GetNextSibling() || aChild->GetPrevSibling()) { NS_ERROR("aChild already has siblings?"); return false; } if (aAfter && (aAfter->Manager() != Manager() || aAfter->GetParent() != this)) { NS_ERROR("aAfter is not our child"); return false; } aChild->SetParent(this); if (aAfter == mLastChild) { mLastChild = aChild; } if (!aAfter) { aChild->SetNextSibling(mFirstChild); if (mFirstChild) { mFirstChild->SetPrevSibling(aChild); } mFirstChild = aChild; NS_ADDREF(aChild); DidInsertChild(aChild); return true; } Layer* next = aAfter->GetNextSibling(); aChild->SetNextSibling(next); aChild->SetPrevSibling(aAfter); if (next) { next->SetPrevSibling(aChild); } aAfter->SetNextSibling(aChild); NS_ADDREF(aChild); DidInsertChild(aChild); return true; } void ContainerLayer::RemoveAllChildren() { // Optimizes "while (mFirstChild) ContainerLayer::RemoveChild(mFirstChild);" Layer* current = mFirstChild; // This is inlining DidRemoveChild() on each layer; we can skip the calls // to NotifyPaintedLayerRemoved as it gets taken care of when as we call // NotifyRemoved prior to removing any layers. while (current) { Layer* next = current->GetNextSibling(); if (current->GetType() == TYPE_READBACK) { static_cast(current)->NotifyRemoved(); } current = next; } current = mFirstChild; mFirstChild = nullptr; while (current) { MOZ_ASSERT(!current->GetPrevSibling()); Layer* next = current->GetNextSibling(); current->SetParent(nullptr); current->SetNextSibling(nullptr); if (next) { next->SetPrevSibling(nullptr); } NS_RELEASE(current); current = next; } } // Note that ContainerLayer::RemoveAllChildren is an optimized // version of this code; if you make changes to ContainerLayer::RemoveChild // consider whether the matching changes need to be made to // ContainerLayer::RemoveAllChildren bool ContainerLayer::RemoveChild(Layer* aChild) { if (aChild->Manager() != Manager()) { NS_ERROR("Child has wrong manager"); return false; } if (aChild->GetParent() != this) { NS_ERROR("aChild not our child"); return false; } Layer* prev = aChild->GetPrevSibling(); Layer* next = aChild->GetNextSibling(); if (prev) { prev->SetNextSibling(next); } else { this->mFirstChild = next; } if (next) { next->SetPrevSibling(prev); } else { this->mLastChild = prev; } aChild->SetNextSibling(nullptr); aChild->SetPrevSibling(nullptr); aChild->SetParent(nullptr); this->DidRemoveChild(aChild); NS_RELEASE(aChild); return true; } bool ContainerLayer::RepositionChild(Layer* aChild, Layer* aAfter) { if (aChild->Manager() != Manager()) { NS_ERROR("Child has wrong manager"); return false; } if (aChild->GetParent() != this) { NS_ERROR("aChild not our child"); return false; } if (aAfter && (aAfter->Manager() != Manager() || aAfter->GetParent() != this)) { NS_ERROR("aAfter is not our child"); return false; } if (aChild == aAfter) { NS_ERROR("aChild cannot be the same as aAfter"); return false; } Layer* prev = aChild->GetPrevSibling(); Layer* next = aChild->GetNextSibling(); if (prev == aAfter) { // aChild is already in the correct position, nothing to do. return true; } if (prev) { prev->SetNextSibling(next); } else { mFirstChild = next; } if (next) { next->SetPrevSibling(prev); } else { mLastChild = prev; } if (!aAfter) { aChild->SetPrevSibling(nullptr); aChild->SetNextSibling(mFirstChild); if (mFirstChild) { mFirstChild->SetPrevSibling(aChild); } mFirstChild = aChild; return true; } Layer* afterNext = aAfter->GetNextSibling(); if (afterNext) { afterNext->SetPrevSibling(aChild); } else { mLastChild = aChild; } aAfter->SetNextSibling(aChild); aChild->SetPrevSibling(aAfter); aChild->SetNextSibling(afterNext); return true; } void ContainerLayer::FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { aAttrs = ContainerLayerAttributes(mPreXScale, mPreYScale, mInheritedXScale, mInheritedYScale, mPresShellResolution); } bool ContainerLayer::Creates3DContextWithExtendingChildren() { if (Extend3DContext()) { return false; } for (Layer* child = GetFirstChild(); child; child = child->GetNextSibling()) { if (child->Extend3DContext()) { return true; } } return false; } RenderTargetIntRect ContainerLayer::GetIntermediateSurfaceRect() { NS_ASSERTION(mUseIntermediateSurface, "Must have intermediate surface"); LayerIntRect bounds = GetLocalVisibleRegion().GetBounds(); return RenderTargetIntRect::FromUnknownRect(bounds.ToUnknownRect()); } bool ContainerLayer::HasMultipleChildren() { uint32_t count = 0; for (Layer* child = GetFirstChild(); child; child = child->GetNextSibling()) { const Maybe& clipRect = child->GetLocalClipRect(); if (clipRect && clipRect->IsEmpty()) continue; if (!child->Extend3DContext() && child->GetLocalVisibleRegion().IsEmpty()) continue; ++count; if (count > 1) return true; } return false; } /** * Collect all leaf descendants of the current 3D context. */ void ContainerLayer::Collect3DContextLeaves(nsTArray& aToSort) { ForEachNode((Layer*)this, [this, &aToSort](Layer* layer) { ContainerLayer* container = layer->AsContainerLayer(); if (layer == this || (container && container->Extend3DContext() && !container->UseIntermediateSurface())) { return TraversalFlag::Continue; } aToSort.AppendElement(layer); return TraversalFlag::Skip; }); } static nsTArray SortLayersWithBSPTree(nsTArray& aArray) { std::list inputLayers; // Build a list of polygons to be sorted. for (Layer* layer : aArray) { // Ignore invisible layers. if (!layer->IsVisible()) { continue; } const gfx::IntRect& bounds = layer->GetLocalVisibleRegion().GetBounds().ToUnknownRect(); const gfx::Matrix4x4& transform = layer->GetEffectiveTransform(); if (transform.IsSingular()) { // Transform cannot be inverted. continue; } gfx::Polygon polygon = gfx::Polygon::FromRect(gfx::Rect(bounds)); // Transform the polygon to screen space. polygon.TransformToScreenSpace(transform); if (polygon.GetPoints().Length() >= 3) { inputLayers.push_back(LayerPolygon(layer, std::move(polygon))); } } if (inputLayers.empty()) { return nsTArray(); } // Build a BSP tree from the list of polygons. BSPTree tree(inputLayers); nsTArray orderedLayers(tree.GetDrawOrder()); // Transform the polygons back to layer space. for (LayerPolygon& layerPolygon : orderedLayers) { gfx::Matrix4x4 inverse = layerPolygon.layer->GetEffectiveTransform().Inverse(); MOZ_ASSERT(layerPolygon.geometry); layerPolygon.geometry->TransformToLayerSpace(inverse); } return orderedLayers; } static nsTArray StripLayerGeometry( const nsTArray& aLayers) { nsTArray layers; std::set uniqueLayers; for (const LayerPolygon& layerPolygon : aLayers) { auto result = uniqueLayers.insert(layerPolygon.layer); if (result.second) { // Layer was added to the set. layers.AppendElement(LayerPolygon(layerPolygon.layer)); } } return layers; } nsTArray ContainerLayer::SortChildrenBy3DZOrder( SortMode aSortMode) { AutoTArray toSort; nsTArray drawOrder; for (Layer* layer = GetFirstChild(); layer; layer = layer->GetNextSibling()) { ContainerLayer* container = layer->AsContainerLayer(); if (container && container->Extend3DContext() && !container->UseIntermediateSurface()) { // Collect 3D layers in toSort array. container->Collect3DContextLeaves(toSort); // Sort the 3D layers. if (toSort.Length() > 0) { nsTArray sorted = SortLayersWithBSPTree(toSort); drawOrder.AppendElements(std::move(sorted)); toSort.ClearAndRetainStorage(); } continue; } drawOrder.AppendElement(LayerPolygon(layer)); } if (aSortMode == SortMode::WITHOUT_GEOMETRY) { // Compositor does not support arbitrary layers, strip the layer geometry // and duplicate layers. return StripLayerGeometry(drawOrder); } return drawOrder; } bool ContainerLayer::AnyAncestorOrThisIs3DContextLeaf() { Layer* parent = this; while (parent != nullptr) { if (parent->Is3DContextLeaf()) { return true; } parent = parent->GetParent(); } return false; } void ContainerLayer::DefaultComputeEffectiveTransforms( const Matrix4x4& aTransformToSurface) { Matrix residual; Matrix4x4 idealTransform = GetLocalTransform() * aTransformToSurface; // Keep 3D transforms for leaves to keep z-order sorting correct. if (!Extend3DContext() && !Is3DContextLeaf()) { idealTransform.ProjectTo2D(); } bool useIntermediateSurface; if (HasMaskLayers() || GetForceIsolatedGroup()) { useIntermediateSurface = true; #ifdef MOZ_DUMP_PAINTING } else if (gfxEnv::DumpPaintIntermediate() && !Extend3DContext()) { useIntermediateSurface = true; #endif } else { /* Don't use an intermediate surface for opacity when it's within a 3d * context, since we'd rather keep the 3d effects. This matches the * WebKit/blink behaviour, but is changing in the latest spec. */ float opacity = GetEffectiveOpacity(); CompositionOp blendMode = GetEffectiveMixBlendMode(); if ((HasMultipleChildren() || Creates3DContextWithExtendingChildren()) && ((opacity != 1.0f && !Extend3DContext()) || (blendMode != CompositionOp::OP_OVER))) { useIntermediateSurface = true; } else if ((!idealTransform.Is2D() || AnyAncestorOrThisIs3DContextLeaf()) && Creates3DContextWithExtendingChildren()) { useIntermediateSurface = true; } else if (blendMode != CompositionOp::OP_OVER && Manager()->BlendingRequiresIntermediateSurface()) { useIntermediateSurface = true; } else { useIntermediateSurface = false; gfx::Matrix contTransform; bool checkClipRect = false; bool checkMaskLayers = false; if (!idealTransform.Is2D(&contTransform)) { // In 3D case, always check if we should use IntermediateSurface. checkClipRect = true; checkMaskLayers = true; } else { #ifdef MOZ_GFX_OPTIMIZE_MOBILE if (!contTransform.PreservesAxisAlignedRectangles()) { #else if (gfx::ThebesMatrix(contTransform).HasNonIntegerTranslation()) { #endif checkClipRect = true; } /* In 2D case, only translation and/or positive scaling can be done w/o * using IntermediateSurface. Otherwise, when rotation or flip happen, * we should check whether to use IntermediateSurface. */ if (contTransform.HasNonAxisAlignedTransform() || contTransform.HasNegativeScaling()) { checkMaskLayers = true; } } if (checkClipRect || checkMaskLayers) { for (Layer* child = GetFirstChild(); child; child = child->GetNextSibling()) { const Maybe& clipRect = child->GetLocalClipRect(); /* We can't (easily) forward our transform to children with a * non-empty clip rect since it would need to be adjusted for the * transform. See the calculations performed by CalculateScissorRect * above. Nor for a child with a mask layer. */ if (checkClipRect && (clipRect && !clipRect->IsEmpty() && (child->Extend3DContext() || !child->GetLocalVisibleRegion().IsEmpty()))) { useIntermediateSurface = true; break; } if (checkMaskLayers && child->HasMaskLayers()) { useIntermediateSurface = true; break; } } } } } NS_ASSERTION(!Extend3DContext() || !useIntermediateSurface, "Can't have an intermediate surface with preserve-3d!"); if (useIntermediateSurface) { mEffectiveTransform = SnapTransformTranslation(idealTransform, &residual); } else { mEffectiveTransform = idealTransform; } // For layers extending 3d context, its ideal transform should be // applied on children. if (!Extend3DContext()) { // Without this projection, non-container children would get a 3D // transform while 2D is expected. idealTransform.ProjectTo2D(); } mUseIntermediateSurface = useIntermediateSurface; if (useIntermediateSurface) { ComputeEffectiveTransformsForChildren(Matrix4x4::From2D(residual)); } else { ComputeEffectiveTransformsForChildren(idealTransform); } ComputeEffectiveTransformForMaskLayers(aTransformToSurface); } void ContainerLayer::DefaultComputeSupportsComponentAlphaChildren( bool* aNeedsSurfaceCopy) { if (!(GetContentFlags() & Layer::CONTENT_COMPONENT_ALPHA_DESCENDANT) || !Manager()->AreComponentAlphaLayersEnabled()) { mSupportsComponentAlphaChildren = false; if (aNeedsSurfaceCopy) { *aNeedsSurfaceCopy = false; } return; } mSupportsComponentAlphaChildren = false; bool needsSurfaceCopy = false; CompositionOp blendMode = GetEffectiveMixBlendMode(); if (UseIntermediateSurface()) { if (GetLocalVisibleRegion().GetNumRects() == 1 && (GetContentFlags() & Layer::CONTENT_OPAQUE)) { mSupportsComponentAlphaChildren = true; } else { gfx::Matrix transform; if (HasOpaqueAncestorLayer(this) && GetEffectiveTransform().Is2D(&transform) && !gfx::ThebesMatrix(transform).HasNonIntegerTranslation() && blendMode == gfx::CompositionOp::OP_OVER) { mSupportsComponentAlphaChildren = true; needsSurfaceCopy = true; } } } else if (blendMode == gfx::CompositionOp::OP_OVER) { mSupportsComponentAlphaChildren = (GetContentFlags() & Layer::CONTENT_OPAQUE) || (GetParent() && GetParent()->SupportsComponentAlphaChildren()); } if (aNeedsSurfaceCopy) { *aNeedsSurfaceCopy = mSupportsComponentAlphaChildren && needsSurfaceCopy; } } void ContainerLayer::ComputeEffectiveTransformsForChildren( const Matrix4x4& aTransformToSurface) { for (Layer* l = mFirstChild; l; l = l->GetNextSibling()) { l->ComputeEffectiveTransforms(aTransformToSurface); } } /* static */ bool ContainerLayer::HasOpaqueAncestorLayer(Layer* aLayer) { for (Layer* l = aLayer->GetParent(); l; l = l->GetParent()) { if (l->GetContentFlags() & Layer::CONTENT_OPAQUE) return true; } return false; } // Note that ContainerLayer::RemoveAllChildren contains an optimized // version of this code; if you make changes to ContainerLayer::DidRemoveChild // consider whether the matching changes need to be made to // ContainerLayer::RemoveAllChildren void ContainerLayer::DidRemoveChild(Layer* aLayer) { PaintedLayer* tl = aLayer->AsPaintedLayer(); if (tl && tl->UsedForReadback()) { for (Layer* l = mFirstChild; l; l = l->GetNextSibling()) { if (l->GetType() == TYPE_READBACK) { static_cast(l)->NotifyPaintedLayerRemoved(tl); } } } if (aLayer->GetType() == TYPE_READBACK) { static_cast(aLayer)->NotifyRemoved(); } } void ContainerLayer::DidInsertChild(Layer* aLayer) { if (aLayer->GetType() == TYPE_READBACK) { mMayHaveReadbackChild = true; } } void RefLayer::FillSpecificAttributes(SpecificLayerAttributes& aAttrs) { aAttrs = RefLayerAttributes(GetReferentId(), mEventRegionsOverride); } /** * StartFrameTimeRecording, together with StopFrameTimeRecording * enable recording of frame intervals. * * To allow concurrent consumers, a cyclic array is used which serves all * consumers, practically stateless with regard to consumers. * * To save resources, the buffer is allocated on first call to * StartFrameTimeRecording and recording is paused if no consumer which called * StartFrameTimeRecording is able to get valid results (because the cyclic * buffer was overwritten since that call). * * To determine availability of the data upon StopFrameTimeRecording: * - mRecording.mNextIndex increases on each RecordFrame, and never resets. * - Cyclic buffer position is realized as mNextIndex % bufferSize. * - StartFrameTimeRecording returns mNextIndex. When StopFrameTimeRecording is * called, the required start index is passed as an arg, and we're able to * calculate the required length. If this length is bigger than bufferSize, it * means data was overwritten. otherwise, we can return the entire sequence. * - To determine if we need to pause, mLatestStartIndex is updated to * mNextIndex on each call to StartFrameTimeRecording. If this index gets * overwritten, it means that all earlier start indices obtained via * StartFrameTimeRecording were also overwritten, hence, no point in * recording, so pause. * - mCurrentRunStartIndex indicates the oldest index of the recording after * which the recording was not paused. If StopFrameTimeRecording is invoked * with a start index older than this, it means that some frames were not * recorded, so data is invalid. */ uint32_t FrameRecorder::StartFrameTimeRecording(int32_t aBufferSize) { if (mRecording.mIsPaused) { mRecording.mIsPaused = false; if (!mRecording.mIntervals.Length()) { // Initialize recording buffers mRecording.mIntervals.SetLength(aBufferSize); } // After being paused, recent values got invalid. Update them to now. mRecording.mLastFrameTime = TimeStamp::Now(); // Any recording which started before this is invalid, since we were paused. mRecording.mCurrentRunStartIndex = mRecording.mNextIndex; } // If we'll overwrite this index, there are no more consumers with aStartIndex // for which we're able to provide the full recording, so no point in keep // recording. mRecording.mLatestStartIndex = mRecording.mNextIndex; return mRecording.mNextIndex; } void FrameRecorder::RecordFrame() { if (!mRecording.mIsPaused) { TimeStamp now = TimeStamp::Now(); uint32_t i = mRecording.mNextIndex % mRecording.mIntervals.Length(); mRecording.mIntervals[i] = static_cast((now - mRecording.mLastFrameTime).ToMilliseconds()); mRecording.mNextIndex++; mRecording.mLastFrameTime = now; if (mRecording.mNextIndex > (mRecording.mLatestStartIndex + mRecording.mIntervals.Length())) { // We've just overwritten the most recent recording start -> pause. mRecording.mIsPaused = true; } } } void FrameRecorder::StopFrameTimeRecording(uint32_t aStartIndex, nsTArray& aFrameIntervals) { uint32_t bufferSize = mRecording.mIntervals.Length(); uint32_t length = mRecording.mNextIndex - aStartIndex; if (mRecording.mIsPaused || length > bufferSize || aStartIndex < mRecording.mCurrentRunStartIndex) { // aStartIndex is too old. Also if aStartIndex was issued before // mRecordingNextIndex overflowed (uint32_t) // and stopped after the overflow (would happen once every 828 days of // constant 60fps). length = 0; } if (!length) { aFrameIntervals.Clear(); return; // empty recording, return empty arrays. } // Set length in advance to avoid possibly repeated reallocations aFrameIntervals.SetLength(length); uint32_t cyclicPos = aStartIndex % bufferSize; for (uint32_t i = 0; i < length; i++, cyclicPos++) { if (cyclicPos == bufferSize) { cyclicPos = 0; } aFrameIntervals[i] = mRecording.mIntervals[cyclicPos]; } } static void PrintInfo(std::stringstream& aStream, HostLayer* aLayerComposite); #ifdef MOZ_DUMP_PAINTING template void WriteSnapshotToDumpFile_internal(T* aObj, DataSourceSurface* aSurf) { nsCString string(aObj->Name()); string.Append('-'); string.AppendInt((uint64_t)aObj); if (gfxUtils::sDumpPaintFile != stderr) { fprintf_stderr(gfxUtils::sDumpPaintFile, R"(array["%s"]=")", string.BeginReading()); } gfxUtils::DumpAsDataURI(aSurf, gfxUtils::sDumpPaintFile); if (gfxUtils::sDumpPaintFile != stderr) { fprintf_stderr(gfxUtils::sDumpPaintFile, R"(";)"); } } void WriteSnapshotToDumpFile(Layer* aLayer, DataSourceSurface* aSurf) { WriteSnapshotToDumpFile_internal(aLayer, aSurf); } void WriteSnapshotToDumpFile(LayerManager* aManager, DataSourceSurface* aSurf) { WriteSnapshotToDumpFile_internal(aManager, aSurf); } void WriteSnapshotToDumpFile(Compositor* aCompositor, DrawTarget* aTarget) { RefPtr surf = aTarget->Snapshot(); RefPtr dSurf = surf->GetDataSurface(); WriteSnapshotToDumpFile_internal(aCompositor, dSurf); } #endif void Layer::Dump(std::stringstream& aStream, const char* aPrefix, bool aDumpHtml, bool aSorted, const Maybe& aGeometry) { #ifdef MOZ_DUMP_PAINTING bool dumpCompositorTexture = gfxEnv::DumpCompositorTextures() && AsHostLayer() && AsHostLayer()->GetCompositableHost(); bool dumpClientTexture = gfxEnv::DumpPaint() && AsShadowableLayer() && AsShadowableLayer()->GetCompositableClient(); nsCString layerId(Name()); layerId.Append('-'); layerId.AppendInt((uint64_t)this); #endif if (aDumpHtml) { aStream << nsPrintfCString(R"(
  • "; } DumpSelf(aStream, aPrefix, aGeometry); #ifdef MOZ_DUMP_PAINTING if (dumpCompositorTexture) { AsHostLayer()->GetCompositableHost()->Dump(aStream, aPrefix, aDumpHtml); } else if (dumpClientTexture) { if (aDumpHtml) { aStream << nsPrintfCString(R"()"; } } #endif if (aDumpHtml) { aStream << ""; #ifdef MOZ_DUMP_PAINTING if (dumpClientTexture) { aStream << nsPrintfCString("
    \n", layerId.BeginReading()) .get(); } #endif } if (Layer* mask = GetMaskLayer()) { aStream << nsPrintfCString("%s Mask layer:\n", aPrefix).get(); nsAutoCString pfx(aPrefix); pfx += " "; mask->Dump(aStream, pfx.get(), aDumpHtml); } for (size_t i = 0; i < GetAncestorMaskLayerCount(); i++) { aStream << nsPrintfCString("%s Ancestor mask layer %d:\n", aPrefix, uint32_t(i)) .get(); nsAutoCString pfx(aPrefix); pfx += " "; GetAncestorMaskLayerAt(i)->Dump(aStream, pfx.get(), aDumpHtml); } #ifdef MOZ_DUMP_PAINTING for (size_t i = 0; i < mExtraDumpInfo.Length(); i++) { const nsCString& str = mExtraDumpInfo[i]; aStream << aPrefix << " Info:\n" << str.get(); } #endif if (ContainerLayer* container = AsContainerLayer()) { nsTArray children; if (aSorted) { children = container->SortChildrenBy3DZOrder( ContainerLayer::SortMode::WITH_GEOMETRY); } else { for (Layer* l = container->GetFirstChild(); l; l = l->GetNextSibling()) { children.AppendElement(LayerPolygon(l)); } } nsAutoCString pfx(aPrefix); pfx += " "; if (aDumpHtml) { aStream << "
      "; } for (LayerPolygon& child : children) { child.layer->Dump(aStream, pfx.get(), aDumpHtml, aSorted, child.geometry); } if (aDumpHtml) { aStream << "
    "; } } if (aDumpHtml) { aStream << "
  • "; } } static void DumpGeometry(std::stringstream& aStream, const Maybe& aGeometry) { aStream << " [geometry=["; const nsTArray& points = aGeometry->GetPoints(); for (size_t i = 0; i < points.Length(); ++i) { const gfx::IntPoint point = TruncatedToInt(points[i].As2DPoint()); const char* sfx = (i != points.Length() - 1) ? "," : ""; AppendToString(aStream, point, "", sfx); } aStream << "]]"; } void Layer::DumpSelf(std::stringstream& aStream, const char* aPrefix, const Maybe& aGeometry) { PrintInfo(aStream, aPrefix); if (aGeometry) { DumpGeometry(aStream, aGeometry); } aStream << "\n"; } void Layer::Dump(layerscope::LayersPacket* aPacket, const void* aParent) { DumpPacket(aPacket, aParent); if (Layer* kid = GetFirstChild()) { kid->Dump(aPacket, this); } if (Layer* next = GetNextSibling()) { next->Dump(aPacket, aParent); } } void Layer::SetDisplayListLog(const char* log) { if (gfxUtils::DumpDisplayList()) { mDisplayListLog = log; } } void Layer::GetDisplayListLog(nsCString& log) { log.SetLength(0); if (gfxUtils::DumpDisplayList()) { // This function returns a plain text string which consists of two things // 1. DisplayList log. // 2. Memory address of this layer. // We know the target layer of each display item by information in #1. // Here is an example of a Text display item line log in #1 // Text p=0xa9850c00 f=0x0xaa405b00(..... // f keeps the address of the target client layer of a display item. // For LayerScope, display-item-to-client-layer mapping is not enough since // LayerScope, which lives in the chrome process, knows only composite // layers. As so, we need display-item-to-client-layer-to-layer-composite // mapping. That's the reason we insert #2 into the log log.AppendPrintf("0x%p\n%s", (void*)this, mDisplayListLog.get()); } } void Layer::Log(const char* aPrefix) { if (!IsLogEnabled()) return; LogSelf(aPrefix); if (Layer* kid = GetFirstChild()) { nsAutoCString pfx(aPrefix); pfx += " "; kid->Log(pfx.get()); } if (Layer* next = GetNextSibling()) next->Log(aPrefix); } void Layer::LogSelf(const char* aPrefix) { if (!IsLogEnabled()) return; std::stringstream ss; PrintInfo(ss, aPrefix); MOZ_LAYERS_LOG(("%s", ss.str().c_str())); if (mMaskLayer) { nsAutoCString pfx(aPrefix); pfx += R"( \ MaskLayer )"; mMaskLayer->LogSelf(pfx.get()); } } void Layer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { aStream << aPrefix; aStream << nsPrintfCString("%s%s (0x%p)", mManager->Name(), Name(), this).get(); layers::PrintInfo(aStream, AsHostLayer()); if (mClipRect) { AppendToString(aStream, *mClipRect, " [clip=", "]"); } if (mSimpleAttrs.GetScrolledClip()) { AppendToString(aStream, mSimpleAttrs.GetScrolledClip()->GetClipRect(), " [scrolled-clip=", "]"); if (const Maybe& ix = mSimpleAttrs.GetScrolledClip()->GetMaskLayerIndex()) { AppendToString(aStream, ix.value(), " [scrolled-mask=", "]"); } } if (1.0 != mSimpleAttrs.GetPostXScale() || 1.0 != mSimpleAttrs.GetPostYScale()) { aStream << nsPrintfCString(" [postScale=%g, %g]", mSimpleAttrs.GetPostXScale(), mSimpleAttrs.GetPostYScale()) .get(); } if (!GetBaseTransform().IsIdentity()) { AppendToString(aStream, GetBaseTransform(), " [transform=", "]"); } if (!GetEffectiveTransform().IsIdentity()) { AppendToString(aStream, GetEffectiveTransform(), " [effective-transform=", "]"); } if (GetTransformIsPerspective()) { aStream << " [perspective]"; } if (!mVisibleRegion.IsEmpty()) { AppendToString(aStream, mVisibleRegion.ToUnknownRegion(), " [visible=", "]"); } else { aStream << " [not visible]"; } if (!mEventRegions.IsEmpty()) { AppendToString(aStream, mEventRegions, " ", ""); } if (1.0 != GetOpacity()) { aStream << nsPrintfCString(" [opacity=%g]", GetOpacity()).get(); } if (IsOpaque()) { aStream << " [opaqueContent]"; } if (GetContentFlags() & CONTENT_COMPONENT_ALPHA) { aStream << " [componentAlpha]"; } if (GetContentFlags() & CONTENT_BACKFACE_HIDDEN) { aStream << " [backfaceHidden]"; } if (Extend3DContext()) { aStream << " [extend3DContext]"; } if (Combines3DTransformWithAncestors()) { aStream << " [combines3DTransformWithAncestors]"; } if (Is3DContextLeaf()) { aStream << " [is3DContextLeaf]"; } if (Maybe viewId = IsAsyncZoomContainer()) { aStream << nsPrintfCString(" [asyncZoomContainer scrollId=%" PRIu64 "]", *viewId) .get(); } if (IsScrollbarContainer()) { aStream << " [scrollbar]"; } if (GetScrollbarData().IsThumb()) { if (Maybe thumbDirection = GetScrollbarData().mDirection) { if (*thumbDirection == ScrollDirection::eVertical) { aStream << nsPrintfCString(" [vscrollbar=%" PRIu64 "]", GetScrollbarData().mTargetViewId) .get(); } if (*thumbDirection == ScrollDirection::eHorizontal) { aStream << nsPrintfCString(" [hscrollbar=%" PRIu64 "]", GetScrollbarData().mTargetViewId) .get(); } } } if (GetIsFixedPosition()) { LayerPoint anchor = GetFixedPositionAnchor(); aStream << nsPrintfCString(" [isFixedPosition scrollId=%" PRIu64 " sides=0x%x anchor=%s]", GetFixedPositionScrollContainerId(), GetFixedPositionSides(), ToString(anchor).c_str()) .get(); } if (GetIsStickyPosition()) { aStream << nsPrintfCString(" [isStickyPosition scrollId=%" PRIu64 " outer=(%.3f,%.3f)-(%.3f,%.3f) " "inner=(%.3f,%.3f)-(%.3f,%.3f)]", GetStickyScrollContainerId(), GetStickyScrollRangeOuter().X(), GetStickyScrollRangeOuter().Y(), GetStickyScrollRangeOuter().XMost(), GetStickyScrollRangeOuter().YMost(), GetStickyScrollRangeInner().X(), GetStickyScrollRangeInner().Y(), GetStickyScrollRangeInner().XMost(), GetStickyScrollRangeInner().YMost()) .get(); } if (mMaskLayer) { aStream << nsPrintfCString(" [mMaskLayer=%p]", mMaskLayer.get()).get(); } for (uint32_t i = 0; i < mScrollMetadata.Length(); i++) { if (!mScrollMetadata[i].IsDefault()) { aStream << nsPrintfCString(" [metrics%d=", i).get(); AppendToString(aStream, mScrollMetadata[i], "", "]"); } } // FIXME: On the compositor thread, we don't set mAnimationInfo::mAnimations, // All animations are transformed by AnimationHelper::ExtractAnimations() into // mAnimationInfo.mPropertyAnimationGroups, instead. So if we want to check // if layer trees are properly synced up across processes, we should dump // mAnimationInfo.mPropertyAnimationGroups for the compositor thread. // (See AnimationInfo.h for more details.) if (!mAnimationInfo.GetAnimations().IsEmpty()) { aStream << nsPrintfCString(" [%d animations with id=%" PRIu64 " ]", (int)mAnimationInfo.GetAnimations().Length(), mAnimationInfo.GetCompositorAnimationsId()) .get(); } } // The static helper function sets the transform matrix into the packet static void DumpTransform(layerscope::LayersPacket::Layer::Matrix* aLayerMatrix, const Matrix4x4& aMatrix) { aLayerMatrix->set_is2d(aMatrix.Is2D()); if (aMatrix.Is2D()) { Matrix m = aMatrix.As2D(); aLayerMatrix->set_isid(m.IsIdentity()); if (!m.IsIdentity()) { aLayerMatrix->add_m(m._11); aLayerMatrix->add_m(m._12); aLayerMatrix->add_m(m._21); aLayerMatrix->add_m(m._22); aLayerMatrix->add_m(m._31); aLayerMatrix->add_m(m._32); } } else { aLayerMatrix->add_m(aMatrix._11); aLayerMatrix->add_m(aMatrix._12); aLayerMatrix->add_m(aMatrix._13); aLayerMatrix->add_m(aMatrix._14); aLayerMatrix->add_m(aMatrix._21); aLayerMatrix->add_m(aMatrix._22); aLayerMatrix->add_m(aMatrix._23); aLayerMatrix->add_m(aMatrix._24); aLayerMatrix->add_m(aMatrix._31); aLayerMatrix->add_m(aMatrix._32); aLayerMatrix->add_m(aMatrix._33); aLayerMatrix->add_m(aMatrix._34); aLayerMatrix->add_m(aMatrix._41); aLayerMatrix->add_m(aMatrix._42); aLayerMatrix->add_m(aMatrix._43); aLayerMatrix->add_m(aMatrix._44); } } // The static helper function sets the IntRect into the packet template static void DumpRect(layerscope::LayersPacket::Layer::Rect* aLayerRect, const BaseRect& aRect) { aLayerRect->set_x(aRect.X()); aLayerRect->set_y(aRect.Y()); aLayerRect->set_w(aRect.Width()); aLayerRect->set_h(aRect.Height()); } // The static helper function sets the nsIntRegion into the packet static void DumpRegion(layerscope::LayersPacket::Layer::Region* aLayerRegion, const nsIntRegion& aRegion) { for (auto iter = aRegion.RectIter(); !iter.Done(); iter.Next()) { DumpRect(aLayerRegion->add_r(), iter.Get()); } } void Layer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { // Add a new layer (UnknownLayer) using namespace layerscope; LayersPacket::Layer* layer = aPacket->add_layer(); // Basic information layer->set_type(LayersPacket::Layer::UnknownLayer); layer->set_ptr(reinterpret_cast(this)); layer->set_parentptr(reinterpret_cast(aParent)); // Shadow if (HostLayer* lc = AsHostLayer()) { LayersPacket::Layer::Shadow* s = layer->mutable_shadow(); if (const Maybe& clipRect = lc->GetShadowClipRect()) { DumpRect(s->mutable_clip(), *clipRect); } if (!lc->GetShadowBaseTransform().IsIdentity()) { DumpTransform(s->mutable_transform(), lc->GetShadowBaseTransform()); } if (!lc->GetShadowVisibleRegion().IsEmpty()) { DumpRegion(s->mutable_vregion(), lc->GetShadowVisibleRegion().ToUnknownRegion()); } } // Clip if (mClipRect) { DumpRect(layer->mutable_clip(), *mClipRect); } // Transform if (!GetBaseTransform().IsIdentity()) { DumpTransform(layer->mutable_transform(), GetBaseTransform()); } // Visible region if (!mVisibleRegion.ToUnknownRegion().IsEmpty()) { DumpRegion(layer->mutable_vregion(), mVisibleRegion.ToUnknownRegion()); } // EventRegions if (!mEventRegions.IsEmpty()) { const EventRegions& e = mEventRegions; if (!e.mHitRegion.IsEmpty()) { DumpRegion(layer->mutable_hitregion(), e.mHitRegion); } if (!e.mDispatchToContentHitRegion.IsEmpty()) { DumpRegion(layer->mutable_dispatchregion(), e.mDispatchToContentHitRegion); } if (!e.mNoActionRegion.IsEmpty()) { DumpRegion(layer->mutable_noactionregion(), e.mNoActionRegion); } if (!e.mHorizontalPanRegion.IsEmpty()) { DumpRegion(layer->mutable_hpanregion(), e.mHorizontalPanRegion); } if (!e.mVerticalPanRegion.IsEmpty()) { DumpRegion(layer->mutable_vpanregion(), e.mVerticalPanRegion); } } // Opacity layer->set_opacity(GetOpacity()); // Content opaque layer->set_copaque(static_cast(GetContentFlags() & CONTENT_OPAQUE)); // Component alpha layer->set_calpha( static_cast(GetContentFlags() & CONTENT_COMPONENT_ALPHA)); // Vertical or horizontal bar if (GetScrollbarData().mScrollbarLayerType == layers::ScrollbarLayerType::Thumb) { layer->set_direct(*GetScrollbarData().mDirection == ScrollDirection::eVertical ? LayersPacket::Layer::VERTICAL : LayersPacket::Layer::HORIZONTAL); layer->set_barid(GetScrollbarData().mTargetViewId); } // Mask layer if (mMaskLayer) { layer->set_mask(reinterpret_cast(mMaskLayer.get())); } // DisplayList log. if (mDisplayListLog.Length() > 0) { layer->set_displaylistloglength(mDisplayListLog.Length()); auto compressedData = MakeUnique(LZ4::maxCompressedSize(mDisplayListLog.Length())); int compressedSize = LZ4::compress((char*)mDisplayListLog.get(), mDisplayListLog.Length(), compressedData.get()); layer->set_displaylistlog(compressedData.get(), compressedSize); } } bool Layer::IsBackfaceHidden() { if (GetContentFlags() & CONTENT_BACKFACE_HIDDEN) { Layer* container = AsContainerLayer() ? this : GetParent(); if (container) { // The effective transform can include non-preserve-3d parent // transforms, since we don't always require an intermediate. if (container->Extend3DContext() || container->Is3DContextLeaf()) { return container->GetEffectiveTransform().IsBackfaceVisible(); } return container->GetBaseTransform().IsBackfaceVisible(); } } return false; } UniquePtr Layer::RemoveUserData(void* aKey) { UniquePtr d(static_cast( mUserData.Remove(static_cast(aKey)))); return d; } void Layer::SetManager(LayerManager* aManager, HostLayer* aSelf) { // No one should be calling this for weird reasons. MOZ_ASSERT(aSelf); MOZ_ASSERT(aSelf->GetLayer() == this); mManager = aManager; } void PaintedLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { Layer::PrintInfo(aStream, aPrefix); nsIntRegion validRegion = GetValidRegion(); if (!validRegion.IsEmpty()) { AppendToString(aStream, validRegion, " [valid=", "]"); } } void PaintedLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::PaintedLayer); nsIntRegion validRegion = GetValidRegion(); if (!validRegion.IsEmpty()) { DumpRegion(layer->mutable_valid(), validRegion); } } void ContainerLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { Layer::PrintInfo(aStream, aPrefix); if (UseIntermediateSurface()) { aStream << " [usesTmpSurf]"; } if (1.0 != mPreXScale || 1.0 != mPreYScale) { aStream << nsPrintfCString(" [preScale=%g, %g]", mPreXScale, mPreYScale).get(); } aStream << nsPrintfCString(" [presShellResolution=%g]", mPresShellResolution) .get(); } void ContainerLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // Get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::ContainerLayer); } void ColorLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { Layer::PrintInfo(aStream, aPrefix); AppendToString(aStream, mColor, " [color=", "]"); AppendToString(aStream, mBounds, " [bounds=", "]"); } void ColorLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // Get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::ColorLayer); layer->set_color(mColor.ToABGR()); } CanvasLayer::CanvasLayer(LayerManager* aManager, void* aImplData) : Layer(aManager, aImplData), mSamplingFilter(SamplingFilter::GOOD) {} CanvasLayer::~CanvasLayer() = default; void CanvasLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { Layer::PrintInfo(aStream, aPrefix); if (mSamplingFilter != SamplingFilter::GOOD) { AppendToString(aStream, mSamplingFilter, " [filter=", "]"); } } // This help function is used to assign the correct enum value // to the packet static void DumpFilter(layerscope::LayersPacket::Layer* aLayer, const SamplingFilter& aSamplingFilter) { using namespace layerscope; switch (aSamplingFilter) { case SamplingFilter::GOOD: aLayer->set_filter(LayersPacket::Layer::FILTER_GOOD); break; case SamplingFilter::LINEAR: aLayer->set_filter(LayersPacket::Layer::FILTER_LINEAR); break; case SamplingFilter::POINT: aLayer->set_filter(LayersPacket::Layer::FILTER_POINT); break; default: // ignore it break; } } void CanvasLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // Get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::CanvasLayer); DumpFilter(layer, mSamplingFilter); } CanvasRenderer* CanvasLayer::CreateOrGetCanvasRenderer() { if (!mCanvasRenderer) { mCanvasRenderer.reset(CreateCanvasRendererInternal()); } return mCanvasRenderer.get(); } void ImageLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { Layer::PrintInfo(aStream, aPrefix); if (mSamplingFilter != SamplingFilter::GOOD) { AppendToString(aStream, mSamplingFilter, " [filter=", "]"); } } void ImageLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // Get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::ImageLayer); DumpFilter(layer, mSamplingFilter); } void RefLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { ContainerLayer::PrintInfo(aStream, aPrefix); if (mId.IsValid()) { AppendToString(aStream, uint64_t(mId), " [id=", "]"); } if (mEventRegionsOverride & EventRegionsOverride::ForceDispatchToContent) { aStream << " [force-dtc]"; } if (mEventRegionsOverride & EventRegionsOverride::ForceEmptyHitRegion) { aStream << " [force-ehr]"; } } void RefLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // Get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::RefLayer); layer->set_refid(uint64_t(mId)); } void ReadbackLayer::PrintInfo(std::stringstream& aStream, const char* aPrefix) { Layer::PrintInfo(aStream, aPrefix); AppendToString(aStream, mSize, " [size=", "]"); if (mBackgroundLayer) { AppendToString(aStream, mBackgroundLayer, " [backgroundLayer=", "]"); AppendToString(aStream, mBackgroundLayerOffset, " [backgroundOffset=", "]"); } else if (mBackgroundColor.a == 1.f) { AppendToString(aStream, mBackgroundColor, " [backgroundColor=", "]"); } else { aStream << " [nobackground]"; } } void ReadbackLayer::DumpPacket(layerscope::LayersPacket* aPacket, const void* aParent) { Layer::DumpPacket(aPacket, aParent); // Get this layer data using namespace layerscope; LayersPacket::Layer* layer = aPacket->mutable_layer(aPacket->layer_size() - 1); layer->set_type(LayersPacket::Layer::ReadbackLayer); LayersPacket::Layer::Size* size = layer->mutable_size(); size->set_w(mSize.width); size->set_h(mSize.height); } //-------------------------------------------------- // LayerManager void LayerManager::Dump(std::stringstream& aStream, const char* aPrefix, bool aDumpHtml, bool aSorted) { #ifdef MOZ_DUMP_PAINTING if (aDumpHtml) { aStream << "
    • "; } #endif DumpSelf(aStream, aPrefix, aSorted); nsAutoCString pfx(aPrefix); pfx += " "; if (!GetRoot()) { aStream << nsPrintfCString("%s(null)\n", pfx.get()).get(); if (aDumpHtml) { aStream << "
    "; } return; } if (aDumpHtml) { aStream << "
      "; } GetRoot()->Dump(aStream, pfx.get(), aDumpHtml, aSorted); if (aDumpHtml) { aStream << "
    "; } aStream << "\n"; } void LayerManager::DumpSelf(std::stringstream& aStream, const char* aPrefix, bool aSorted) { PrintInfo(aStream, aPrefix); aStream << " --- in " << (aSorted ? "3D-sorted rendering order" : "content order"); aStream << "\n"; } void LayerManager::Dump(bool aSorted) { std::stringstream ss; Dump(ss, "", false, aSorted); print_stderr(ss); } void LayerManager::Dump(layerscope::LayersPacket* aPacket) { DumpPacket(aPacket); if (GetRoot()) { GetRoot()->Dump(aPacket, this); } } void LayerManager::Log(const char* aPrefix) { if (!IsLogEnabled()) return; LogSelf(aPrefix); nsAutoCString pfx(aPrefix); pfx += " "; if (!GetRoot()) { MOZ_LAYERS_LOG(("%s(null)", pfx.get())); return; } GetRoot()->Log(pfx.get()); } void LayerManager::LogSelf(const char* aPrefix) { nsAutoCString str; std::stringstream ss; PrintInfo(ss, aPrefix); MOZ_LAYERS_LOG(("%s", ss.str().c_str())); } void LayerManager::PrintInfo(std::stringstream& aStream, const char* aPrefix) { aStream << aPrefix << nsPrintfCString("%sLayerManager (0x%p)", Name(), this).get(); } void LayerManager::DumpPacket(layerscope::LayersPacket* aPacket) { using namespace layerscope; // Add a new layer data (LayerManager) LayersPacket::Layer* layer = aPacket->add_layer(); layer->set_type(LayersPacket::Layer::LayerManager); layer->set_ptr(reinterpret_cast(this)); // Layer Tree Root layer->set_parentptr(0); } /*static*/ bool LayerManager::IsLogEnabled() { return MOZ_LOG_TEST(GetLog(), LogLevel::Debug); } bool LayerManager::SetPendingScrollUpdateForNextTransaction( ScrollableLayerGuid::ViewID aScrollId, const ScrollUpdateInfo& aUpdateInfo, wr::RenderRoot aRenderRoot) { Layer* withPendingTransform = DepthFirstSearch( GetRoot(), [](Layer* aLayer) { return aLayer->HasPendingTransform(); }); if (withPendingTransform) { return false; } // If this is called on a LayerManager that's not a WebRenderLayerManager, // then we don't actually need the aRenderRoot information. We force it to // RenderRoot::Default so that we can make assumptions in // GetPendingScrollInfoUpdate. wr::RenderRoot renderRoot = (GetBackendType() == LayersBackend::LAYERS_WR) ? aRenderRoot : wr::RenderRoot::Default; mPendingScrollUpdates[renderRoot][aScrollId] = aUpdateInfo; return true; } Maybe LayerManager::GetPendingScrollInfoUpdate( ScrollableLayerGuid::ViewID aScrollId) { // This never gets called for WebRenderLayerManager, so we assume that all // pending scroll info updates are stored under the default RenderRoot. MOZ_ASSERT(GetBackendType() != LayersBackend::LAYERS_WR); auto it = mPendingScrollUpdates[wr::RenderRoot::Default].find(aScrollId); if (it != mPendingScrollUpdates[wr::RenderRoot::Default].end()) { return Some(it->second); } return Nothing(); } std::unordered_set LayerManager::ClearPendingScrollInfoUpdate() { std::unordered_set scrollIds; for (auto renderRoot : wr::kRenderRoots) { auto& updates = mPendingScrollUpdates[renderRoot]; for (const auto& update : updates) { scrollIds.insert(update.first); } updates.clear(); } return scrollIds; } void PrintInfo(std::stringstream& aStream, HostLayer* aLayerComposite) { if (!aLayerComposite) { return; } if (const Maybe& clipRect = aLayerComposite->GetShadowClipRect()) { AppendToString(aStream, *clipRect, " [shadow-clip=", "]"); } if (!aLayerComposite->GetShadowBaseTransform().IsIdentity()) { AppendToString(aStream, aLayerComposite->GetShadowBaseTransform(), " [shadow-transform=", "]"); } if (!aLayerComposite->GetLayer()->Extend3DContext() && !aLayerComposite->GetShadowVisibleRegion().IsEmpty()) { AppendToString(aStream, aLayerComposite->GetShadowVisibleRegion().ToUnknownRegion(), " [shadow-visible=", "]"); } } void SetAntialiasingFlags(Layer* aLayer, DrawTarget* aTarget) { bool permitSubpixelAA = !(aLayer->GetContentFlags() & Layer::CONTENT_DISABLE_SUBPIXEL_AA); if (aTarget->IsCurrentGroupOpaque()) { aTarget->SetPermitSubpixelAA(permitSubpixelAA); return; } const IntRect& bounds = aLayer->GetVisibleRegion().GetBounds().ToUnknownRect(); gfx::Rect transformedBounds = aTarget->GetTransform().TransformBounds( gfx::Rect(Float(bounds.X()), Float(bounds.Y()), Float(bounds.Width()), Float(bounds.Height()))); transformedBounds.RoundOut(); IntRect intTransformedBounds; transformedBounds.ToIntRect(&intTransformedBounds); permitSubpixelAA &= !(aLayer->GetContentFlags() & Layer::CONTENT_COMPONENT_ALPHA) || aTarget->GetOpaqueRect().Contains(intTransformedBounds); aTarget->SetPermitSubpixelAA(permitSubpixelAA); } IntRect ToOutsideIntRect(const gfxRect& aRect) { return IntRect::RoundOut(aRect.X(), aRect.Y(), aRect.Width(), aRect.Height()); } void RecordCompositionPayloadsPresented( const nsTArray& aPayloads) { if (aPayloads.Length()) { TimeStamp presented = TimeStamp::Now(); for (const CompositionPayload& payload : aPayloads) { #if MOZ_GECKO_PROFILER if (profiler_is_active()) { nsPrintfCString marker( "Payload Presented, type: %d latency: %dms\n", int32_t(payload.mType), int32_t((presented - payload.mTimeStamp).ToMilliseconds())); profiler_add_marker(marker.get(), JS::ProfilingCategoryPair::GRAPHICS); } #endif if (payload.mType == CompositionPayloadType::eKeyPress) { Telemetry::AccumulateTimeDelta( mozilla::Telemetry::KEYPRESS_PRESENT_LATENCY, payload.mTimeStamp, presented); } } } } } // namespace layers } // namespace mozilla