]> &date; NSS Security Tools nss-tools &version; PK12UTIL 1 pk12util Export and import keys and certificate to or from a PKCS #12 file and the NSS database pk12util -i p12File [-h tokenname] [-v] [common-options] -l p12File [-h tokenname] [-r] [common-options] -o p12File -n certname [-c keyCipher] [-C certCipher] [-m|--key_len keyLen] [-n|--cert_key_len certKeyLen] [common-options] common-options are: [-d [sql:]directory] [-P dbprefix] [-k slotPasswordFile|-K slotPassword] [-w p12filePasswordFile|-W p12filePassword] STATUS This documentation is still work in progress. Please contribute to the initial review in Mozilla NSS bug 836477 Description The PKCS #12 utility, pk12util, enables sharing certificates among any server that supports PKCS#12. The tool can import certificates and keys from PKCS#12 files into security databases, export certificates, and list certificates and keys. Options and Arguments Options -i p12file Import keys and certificates from a PKCS#12 file into a security database. -l p12file List the keys and certificates in PKCS#12 file. -o p12file Export keys and certificates from the security database to a PKCS#12 file. Arguments -n certname Specify the nickname of the cert and private key to export. -d [sql:]directory Specify the database directory into which to import to or export from certificates and keys. pk12util supports two types of databases: the legacy security databases (cert8.db, key3.db, and secmod.db) and new SQLite databases (cert9.db, key4.db, and pkcs11.txt). If the prefix sql: is not used, then the tool assumes that the given databases are in the old format. -P prefix Specify the prefix used on the certificate and key databases. This option is provided as a special case. Changing the names of the certificate and key databases is not recommended. -h tokenname Specify the name of the token to import into or export from. -v Enable debug logging when importing. -k slotPasswordFile Specify the text file containing the slot's password. -K slotPassword Specify the slot's password. -w p12filePasswordFile Specify the text file containing the pkcs #12 file password. -W p12filePassword Specify the pkcs #12 file password. -c keyCipher Specify the key encryption algorithm. -C certCipher Specify the key cert (overall package) encryption algorithm. -m | --key-len keyLength Specify the desired length of the symmetric key to be used to encrypt the private key. -n | --cert-key-len certKeyLength Specify the desired length of the symmetric key to be used to encrypt the certificates and other meta-data. -r Dumps all of the data in raw (binary) form. This must be saved as a DER file. The default is to return information in a pretty-print ASCII format, which displays the information about the certificates and public keys in the p12 file. Return Codes 0 - No error 1 - User Cancelled 2 - Usage error 6 - NLS init error 8 - Certificate DB open error 9 - Key DB open error 10 - File initialization error 11 - Unicode conversion error 12 - Temporary file creation error 13 - PKCS11 get slot error 14 - PKCS12 decoder start error 15 - error read from import file 16 - pkcs12 decode error 17 - pkcs12 decoder verify error 18 - pkcs12 decoder validate bags error 19 - pkcs12 decoder import bags error 20 - key db conversion version 3 to version 2 error 21 - cert db conversion version 7 to version 5 error 22 - cert and key dbs patch error 23 - get default cert db error 24 - find cert by nickname error 25 - create export context error 26 - PKCS12 add password itegrity error 27 - cert and key Safes creation error 28 - PKCS12 add cert and key error 29 - PKCS12 encode error Examples Importing Keys and Certificates The most basic usage of pk12util for importing a certificate or key is the PKCS#12 input file () and some way to specify the security database being accessed (either for a directory or for a token). pk12util -i p12File [-h tokenname] [-v] [-d [sql:]directory] [-P dbprefix] [-k slotPasswordFile|-K slotPassword] [-w p12filePasswordFile|-W p12filePassword] For example: # pk12util -i /tmp/cert-files/users.p12 -d sql:/home/my/sharednssdb Enter a password which will be used to encrypt your keys. The password should be at least 8 characters long, and should contain at least one non-alphabetic character. Enter new password: Re-enter password: Enter password for PKCS12 file: pk12util: PKCS12 IMPORT SUCCESSFUL Exporting Keys and Certificates Using the pk12util command to export certificates and keys requires both the name of the certificate to extract from the database () and the PKCS#12-formatted output file to write to. There are optional parameters that can be used to encrypt the file to protect the certificate material. pk12util -o p12File -n certname [-c keyCipher] [-C certCipher] [-m|--key_len keyLen] [-n|--cert_key_len certKeyLen] [-d [sql:]directory] [-P dbprefix] [-k slotPasswordFile|-K slotPassword] [-w p12filePasswordFile|-W p12filePassword] For example: # pk12util -o certs.p12 -n Server-Cert -d sql:/home/my/sharednssdb Enter password for PKCS12 file: Re-enter password: Listing Keys and Certificates The information in a .p12 file are not human-readable. The certificates and keys in the file can be printed (listed) in a human-readable pretty-print format that shows information for every certificate and any public keys in the .p12 file. pk12util -l p12File [-h tokenname] [-r] [-d [sql:]directory] [-P dbprefix] [-k slotPasswordFile|-K slotPassword] [-w p12filePasswordFile|-W p12filePassword] For example, this prints the default ASCII output: # pk12util -l certs.p12 Enter password for PKCS12 file: Key(shrouded): Friendly Name: Thawte Freemail Member's Thawte Consulting (Pty) Ltd. ID Encryption algorithm: PKCS #12 V2 PBE With SHA-1 And 3KEY Triple DES-CBC Parameters: Salt: 45:2e:6a:a0:03:4d:7b:a1:63:3c:15:ea:67:37:62:1f Iteration Count: 1 (0x1) Certificate: Data: Version: 3 (0x2) Serial Number: 13 (0xd) Signature Algorithm: PKCS #1 SHA-1 With RSA Encryption Issuer: "E=personal-freemail@thawte.com,CN=Thawte Personal Freemail C A,OU=Certification Services Division,O=Thawte Consulting,L=Cape T own,ST=Western Cape,C=ZA" .... Alternatively, the prints the certificates and then exports them into separate DER binary files. This allows the certificates to be fed to another application that supports .p12 files. Each certificate is written to a sequentially-number file, beginning with file0001.der and continuing through file000N.der, incrementing the number for every certificate: # pk12util -l test.p12 -r Enter password for PKCS12 file: Key(shrouded): Friendly Name: Thawte Freemail Member's Thawte Consulting (Pty) Ltd. ID Encryption algorithm: PKCS #12 V2 PBE With SHA-1 And 3KEY Triple DES-CBC Parameters: Salt: 45:2e:6a:a0:03:4d:7b:a1:63:3c:15:ea:67:37:62:1f Iteration Count: 1 (0x1) Certificate Friendly Name: Thawte Personal Freemail Issuing CA - Thawte Consulting Certificate Friendly Name: Thawte Freemail Member's Thawte Consulting (Pty) Ltd. ID Password Encryption PKCS#12 provides for not only the protection of the private keys but also the certificate and meta-data associated with the keys. Password-based encryption is used to protect private keys on export to a PKCS#12 file and, optionally, the entire package. If no algorithm is specified, the tool defaults to using PKCS12 V2 PBE with SHA1 and 3KEY Triple DES-cbc for private key encryption. PKCS12 V2 PBE with SHA1 and 40 Bit RC4 is the default for the overall package encryption when not in FIPS mode. When in FIPS mode, there is no package encryption. The private key is always protected with strong encryption by default. Several types of ciphers are supported. Symmetric CBC ciphers for PKCS#5 V2 DES_CBC RC2-CBC RC5-CBCPad DES-EDE3-CBC (the default for key encryption) AES-128-CBC AES-192-CBC AES-256-CBC CAMELLIA-128-CBC CAMELLIA-192-CBC CAMELLIA-256-CBC PKCS#12 PBE ciphers PKCS #12 PBE with Sha1 and 128 Bit RC4 PKCS #12 PBE with Sha1 and 40 Bit RC4 PKCS #12 PBE with Sha1 and Triple DES CBC PKCS #12 PBE with Sha1 and 128 Bit RC2 CBC PKCS #12 PBE with Sha1 and 40 Bit RC2 CBC PKCS12 V2 PBE with SHA1 and 128 Bit RC4 PKCS12 V2 PBE with SHA1 and 40 Bit RC4 (the default for non-FIPS mode) PKCS12 V2 PBE with SHA1 and 3KEY Triple DES-cbc PKCS12 V2 PBE with SHA1 and 2KEY Triple DES-cbc PKCS12 V2 PBE with SHA1 and 128 Bit RC2 CBC PKCS12 V2 PBE with SHA1 and 40 Bit RC2 CBC PKCS#5 PBE ciphers PKCS #5 Password Based Encryption with MD2 and DES CBC PKCS #5 Password Based Encryption with MD5 and DES CBC PKCS #5 Password Based Encryption with SHA1 and DES CBC With PKCS#12, the crypto provider may be the soft token module or an external hardware module. If the cryptographic module does not support the requested algorithm, then the next best fit will be selected (usually the default). If no suitable replacement for the desired algorithm can be found, the tool returns the error no security module can perform the requested operation. NSS Database Types NSS originally used BerkeleyDB databases to store security information. The last versions of these legacy databases are: cert8.db for certificates key3.db for keys secmod.db for PKCS #11 module information BerkeleyDB has performance limitations, though, which prevent it from being easily used by multiple applications simultaneously. NSS has some flexibility that allows applications to use their own, independent database engine while keeping a shared database and working around the access issues. Still, NSS requires more flexibility to provide a truly shared security database. In 2009, NSS introduced a new set of databases that are SQLite databases rather than BerkleyDB. These new databases provide more accessibility and performance: cert9.db for certificates key4.db for keys pkcs11.txt, which is listing of all of the PKCS #11 modules contained in a new subdirectory in the security databases directory Because the SQLite databases are designed to be shared, these are the shared database type. The shared database type is preferred; the legacy format is included for backward compatibility. By default, the tools (certutil, pk12util, modutil) assume that the given security databases follow the more common legacy type. Using the SQLite databases must be manually specified by using the sql: prefix with the given security directory. For example: # pk12util -i /tmp/cert-files/users.p12 -d sql:/home/my/sharednssdb To set the shared database type as the default type for the tools, set the NSS_DEFAULT_DB_TYPE environment variable to sql: export NSS_DEFAULT_DB_TYPE="sql" This line can be set added to the ~/.bashrc file to make the change permanent. Most applications do not use the shared database by default, but they can be configured to use them. For example, this how-to article covers how to configure Firefox and Thunderbird to use the new shared NSS databases: https://wiki.mozilla.org/NSS_Shared_DB_Howto For an engineering draft on the changes in the shared NSS databases, see the NSS project wiki: https://wiki.mozilla.org/NSS_Shared_DB See Also certutil (1) modutil (1) The NSS wiki has information on the new database design and how to configure applications to use it. https://wiki.mozilla.org/NSS_Shared_DB_Howto https://wiki.mozilla.org/NSS_Shared_DB Additional Resources For information about NSS and other tools related to NSS (like JSS), check out the NSS project wiki at http://www.mozilla.org/projects/security/pki/nss/. The NSS site relates directly to NSS code changes and releases. Mailing lists: https://lists.mozilla.org/listinfo/dev-tech-crypto IRC: Freenode at #dogtag-pki Authors The NSS tools were written and maintained by developers with Netscape, Red Hat, and Sun. Authors: Elio Maldonado <emaldona@redhat.com>, Deon Lackey <dlackey@redhat.com>. LICENSE Licensed under the Mozilla Public License, version 1.1, and/or the GNU General Public License, version 2 or later, and/or the GNU Lesser General Public License, version 2.1 or later.