/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifdef _MSC_VER #define _USE_MATH_DEFINES #endif #include #include "mozilla/Alignment.h" #include "cairo.h" #include "gfxContext.h" #include "gfxColor.h" #include "gfxMatrix.h" #include "gfxASurface.h" #include "gfxPattern.h" #include "gfxPlatform.h" #include "gfxTeeSurface.h" #include "GeckoProfiler.h" #include "gfx2DGlue.h" #include #if CAIRO_HAS_DWRITE_FONT #include "gfxWindowsPlatform.h" #endif using namespace mozilla; using namespace mozilla::gfx; UserDataKey gfxContext::sDontUseAsSourceKey; /* This class lives on the stack and allows gfxContext users to easily, and * performantly get a gfx::Pattern to use for drawing in their current context. */ class GeneralPattern { public: GeneralPattern(gfxContext *aContext) : mContext(aContext), mPattern(nullptr) {} ~GeneralPattern() { if (mPattern) { mPattern->~Pattern(); } } operator mozilla::gfx::Pattern&() { gfxContext::AzureState &state = mContext->CurrentState(); if (state.pattern) { return *state.pattern->GetPattern(mContext->mDT, state.patternTransformChanged ? &state.patternTransform : nullptr); } else if (state.sourceSurface) { Matrix transform = state.surfTransform; if (state.patternTransformChanged) { Matrix mat = mContext->mTransform; mat.Invert(); transform = transform * state.patternTransform * mat; } mPattern = new (mSurfacePattern.addr()) SurfacePattern(state.sourceSurface, EXTEND_CLAMP, transform); return *mPattern; } else { mPattern = new (mColorPattern.addr()) ColorPattern(state.color); return *mPattern; } } private: union { mozilla::AlignedStorage2 mColorPattern; mozilla::AlignedStorage2 mSurfacePattern; }; gfxContext *mContext; Pattern *mPattern; }; gfxContext::gfxContext(gfxASurface *surface) : mRefCairo(nullptr) , mSurface(surface) { MOZ_COUNT_CTOR(gfxContext); mCairo = cairo_create(surface->CairoSurface()); mFlags = surface->GetDefaultContextFlags(); if (mSurface->GetRotateForLandscape()) { // Rotate page 90 degrees to draw landscape page on portrait paper gfxIntSize size = mSurface->GetSize(); Translate(gfxPoint(0, size.width)); gfxMatrix matrix(0, -1, 1, 0, 0, 0); Multiply(matrix); } } gfxContext::gfxContext(DrawTarget *aTarget) : mPathIsRect(false) , mTransformChanged(false) , mCairo(nullptr) , mRefCairo(nullptr) , mSurface(nullptr) , mFlags(0) , mDT(aTarget) , mOriginalDT(aTarget) { MOZ_COUNT_CTOR(gfxContext); mStateStack.SetLength(1); CurrentState().drawTarget = mDT; mDT->SetTransform(Matrix()); } gfxContext::~gfxContext() { if (mCairo) { cairo_destroy(mCairo); } if (mRefCairo) { cairo_destroy(mRefCairo); } if (mDT) { for (int i = mStateStack.Length() - 1; i >= 0; i--) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { mDT->PopClip(); } if (mStateStack[i].clipWasReset) { break; } } mDT->Flush(); } MOZ_COUNT_DTOR(gfxContext); } gfxASurface * gfxContext::OriginalSurface() { if (mCairo || mSurface) { return mSurface; } if (mOriginalDT && mOriginalDT->GetType() == BACKEND_CAIRO) { cairo_surface_t *s = (cairo_surface_t*)mOriginalDT->GetNativeSurface(NATIVE_SURFACE_CAIRO_SURFACE); if (s) { mSurface = gfxASurface::Wrap(s); return mSurface; } } return nullptr; } already_AddRefed gfxContext::CurrentSurface(gfxFloat *dx, gfxFloat *dy) { if (mCairo) { cairo_surface_t *s = cairo_get_group_target(mCairo); if (s == mSurface->CairoSurface()) { if (dx && dy) cairo_surface_get_device_offset(s, dx, dy); nsRefPtr ret = mSurface; return ret.forget(); } if (dx && dy) cairo_surface_get_device_offset(s, dx, dy); return gfxASurface::Wrap(s); } else { if (mDT->GetType() == BACKEND_CAIRO) { cairo_surface_t *s = (cairo_surface_t*)mDT->GetNativeSurface(NATIVE_SURFACE_CAIRO_SURFACE); if (s) { if (dx && dy) cairo_surface_get_device_offset(s, dx, dy); return gfxASurface::Wrap(s); } } if (dx && dy) { *dx = *dy = 0; } // An Azure context doesn't have a surface backing it. return nullptr; } } cairo_t * gfxContext::GetCairo() { if (mCairo) { return mCairo; } if (mDT->GetType() == BACKEND_CAIRO) { cairo_t *ctx = (cairo_t*)mDT->GetNativeSurface(NATIVE_SURFACE_CAIRO_CONTEXT); if (ctx) { return ctx; } } if (mRefCairo) { // Set transform! return mRefCairo; } mRefCairo = cairo_create(gfxPlatform::GetPlatform()->ScreenReferenceSurface()->CairoSurface()); return mRefCairo; } void gfxContext::Save() { if (mCairo) { cairo_save(mCairo); } else { CurrentState().transform = mTransform; mStateStack.AppendElement(AzureState(CurrentState())); CurrentState().clipWasReset = false; CurrentState().pushedClips.Clear(); } } void gfxContext::Restore() { if (mCairo) { cairo_restore(mCairo); } else { for (unsigned int c = 0; c < CurrentState().pushedClips.Length(); c++) { mDT->PopClip(); } if (CurrentState().clipWasReset && CurrentState().drawTarget == mStateStack[mStateStack.Length() - 2].drawTarget) { PushClipsToDT(mDT); } mStateStack.RemoveElementAt(mStateStack.Length() - 1); mDT = CurrentState().drawTarget; ChangeTransform(CurrentState().transform, false); } } // drawing void gfxContext::NewPath() { if (mCairo) { cairo_new_path(mCairo); } else { mPath = nullptr; mPathBuilder = nullptr; mPathIsRect = false; mTransformChanged = false; } } void gfxContext::ClosePath() { if (mCairo) { cairo_close_path(mCairo); } else { EnsurePathBuilder(); mPathBuilder->Close(); } } already_AddRefed gfxContext::CopyPath() { nsRefPtr path; if (mCairo) { path = new gfxPath(cairo_copy_path(mCairo)); } else { EnsurePath(); path = new gfxPath(mPath); } return path.forget(); } void gfxContext::SetPath(gfxPath* path) { if (mCairo) { cairo_new_path(mCairo); if (path->mPath->status == CAIRO_STATUS_SUCCESS && path->mPath->num_data != 0) cairo_append_path(mCairo, path->mPath); } else { MOZ_ASSERT(path->mMoz2DPath, "Can't mix cairo and azure paths!"); MOZ_ASSERT(path->mMoz2DPath->GetBackendType() == mDT->GetType()); mPath = path->mMoz2DPath; mPathBuilder = nullptr; mPathIsRect = false; mTransformChanged = false; } } gfxPoint gfxContext::CurrentPoint() { if (mCairo) { double x, y; cairo_get_current_point(mCairo, &x, &y); return gfxPoint(x, y); } else { EnsurePathBuilder(); return ThebesPoint(mPathBuilder->CurrentPoint()); } } void gfxContext::Stroke() { if (mCairo) { cairo_stroke_preserve(mCairo); } else { AzureState &state = CurrentState(); if (mPathIsRect) { MOZ_ASSERT(!mTransformChanged); mDT->StrokeRect(mRect, GeneralPattern(this), state.strokeOptions, DrawOptions(1.0f, GetOp(), state.aaMode)); } else { EnsurePath(); mDT->Stroke(mPath, GeneralPattern(this), state.strokeOptions, DrawOptions(1.0f, GetOp(), state.aaMode)); } } } void gfxContext::Fill() { PROFILER_LABEL("gfxContext", "Fill"); if (mCairo) { cairo_fill_preserve(mCairo); } else { FillAzure(1.0f); } } void gfxContext::FillWithOpacity(gfxFloat aOpacity) { if (mCairo) { // This method exists in the hope that one day cairo gets a direct // API for this, and then we would change this method to use that // API instead. if (aOpacity != 1.0) { gfxContextAutoSaveRestore saveRestore(this); Clip(); Paint(aOpacity); } else { Fill(); } } else { FillAzure(Float(aOpacity)); } } void gfxContext::MoveTo(const gfxPoint& pt) { if (mCairo) { cairo_move_to(mCairo, pt.x, pt.y); } else { EnsurePathBuilder(); mPathBuilder->MoveTo(ToPoint(pt)); } } void gfxContext::NewSubPath() { if (mCairo) { cairo_new_sub_path(mCairo); } else { // XXX - This has no users, we should kill it, it should be equivelant to a // MoveTo to the path's current point. } } void gfxContext::LineTo(const gfxPoint& pt) { if (mCairo) { cairo_line_to(mCairo, pt.x, pt.y); } else { EnsurePathBuilder(); mPathBuilder->LineTo(ToPoint(pt)); } } void gfxContext::CurveTo(const gfxPoint& pt1, const gfxPoint& pt2, const gfxPoint& pt3) { if (mCairo) { cairo_curve_to(mCairo, pt1.x, pt1.y, pt2.x, pt2.y, pt3.x, pt3.y); } else { EnsurePathBuilder(); mPathBuilder->BezierTo(ToPoint(pt1), ToPoint(pt2), ToPoint(pt3)); } } void gfxContext::QuadraticCurveTo(const gfxPoint& pt1, const gfxPoint& pt2) { if (mCairo) { double cx, cy; cairo_get_current_point(mCairo, &cx, &cy); cairo_curve_to(mCairo, (cx + pt1.x * 2.0) / 3.0, (cy + pt1.y * 2.0) / 3.0, (pt1.x * 2.0 + pt2.x) / 3.0, (pt1.y * 2.0 + pt2.y) / 3.0, pt2.x, pt2.y); } else { EnsurePathBuilder(); mPathBuilder->QuadraticBezierTo(ToPoint(pt1), ToPoint(pt2)); } } void gfxContext::Arc(const gfxPoint& center, gfxFloat radius, gfxFloat angle1, gfxFloat angle2) { if (mCairo) { cairo_arc(mCairo, center.x, center.y, radius, angle1, angle2); } else { EnsurePathBuilder(); mPathBuilder->Arc(ToPoint(center), Float(radius), Float(angle1), Float(angle2)); } } void gfxContext::NegativeArc(const gfxPoint& center, gfxFloat radius, gfxFloat angle1, gfxFloat angle2) { if (mCairo) { cairo_arc_negative(mCairo, center.x, center.y, radius, angle1, angle2); } else { EnsurePathBuilder(); mPathBuilder->Arc(ToPoint(center), Float(radius), Float(angle2), Float(angle1)); } } void gfxContext::Line(const gfxPoint& start, const gfxPoint& end) { if (mCairo) { MoveTo(start); LineTo(end); } else { EnsurePathBuilder(); mPathBuilder->MoveTo(ToPoint(start)); mPathBuilder->LineTo(ToPoint(end)); } } // XXX snapToPixels is only valid when snapping for filled // rectangles and for even-width stroked rectangles. // For odd-width stroked rectangles, we need to offset x/y by // 0.5... void gfxContext::Rectangle(const gfxRect& rect, bool snapToPixels) { if (mCairo) { if (snapToPixels) { gfxRect snappedRect(rect); if (UserToDevicePixelSnapped(snappedRect, true)) { cairo_matrix_t mat; cairo_get_matrix(mCairo, &mat); cairo_identity_matrix(mCairo); Rectangle(snappedRect); cairo_set_matrix(mCairo, &mat); return; } } cairo_rectangle(mCairo, rect.X(), rect.Y(), rect.Width(), rect.Height()); } else { Rect rec = ToRect(rect); if (snapToPixels) { gfxRect newRect(rect); if (UserToDevicePixelSnapped(newRect, true)) { gfxMatrix mat = ThebesMatrix(mTransform); mat.Invert(); // We need the user space rect. rec = ToRect(mat.TransformBounds(newRect)); } } if (!mPathBuilder && !mPathIsRect) { mPathIsRect = true; mRect = rec; return; } EnsurePathBuilder(); mPathBuilder->MoveTo(rec.TopLeft()); mPathBuilder->LineTo(rec.TopRight()); mPathBuilder->LineTo(rec.BottomRight()); mPathBuilder->LineTo(rec.BottomLeft()); mPathBuilder->Close(); } } void gfxContext::Ellipse(const gfxPoint& center, const gfxSize& dimensions) { gfxSize halfDim = dimensions / 2.0; gfxRect r(center - gfxPoint(halfDim.width, halfDim.height), dimensions); gfxCornerSizes c(halfDim, halfDim, halfDim, halfDim); RoundedRectangle (r, c); } void gfxContext::Polygon(const gfxPoint *points, uint32_t numPoints) { if (mCairo) { if (numPoints == 0) return; cairo_move_to(mCairo, points[0].x, points[0].y); for (uint32_t i = 1; i < numPoints; ++i) { cairo_line_to(mCairo, points[i].x, points[i].y); } } else { if (numPoints == 0) { return; } EnsurePathBuilder(); mPathBuilder->MoveTo(ToPoint(points[0])); for (uint32_t i = 1; i < numPoints; i++) { mPathBuilder->LineTo(ToPoint(points[i])); } } } void gfxContext::DrawSurface(gfxASurface *surface, const gfxSize& size) { if (mCairo) { cairo_save(mCairo); cairo_set_source_surface(mCairo, surface->CairoSurface(), 0, 0); cairo_new_path(mCairo); // pixel-snap this Rectangle(gfxRect(gfxPoint(0.0, 0.0), size), true); cairo_fill(mCairo); cairo_restore(mCairo); } else { // Lifetime needs to be limited here since we may wrap surface's data. RefPtr surf = gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(mDT, surface); if (!surf) { return; } Rect rect(0, 0, Float(size.width), Float(size.height)); rect.Intersect(Rect(0, 0, Float(surf->GetSize().width), Float(surf->GetSize().height))); // XXX - Should fix pixel snapping. mDT->DrawSurface(surf, rect, rect); } } // transform stuff void gfxContext::Translate(const gfxPoint& pt) { if (mCairo) { cairo_translate(mCairo, pt.x, pt.y); } else { Matrix newMatrix = mTransform; ChangeTransform(newMatrix.Translate(Float(pt.x), Float(pt.y))); } } void gfxContext::Scale(gfxFloat x, gfxFloat y) { if (mCairo) { cairo_scale(mCairo, x, y); } else { Matrix newMatrix = mTransform; ChangeTransform(newMatrix.Scale(Float(x), Float(y))); } } void gfxContext::Rotate(gfxFloat angle) { if (mCairo) { cairo_rotate(mCairo, angle); } else { Matrix rotation = Matrix::Rotation(Float(angle)); ChangeTransform(rotation * mTransform); } } void gfxContext::Multiply(const gfxMatrix& matrix) { if (mCairo) { const cairo_matrix_t& mat = reinterpret_cast(matrix); cairo_transform(mCairo, &mat); } else { ChangeTransform(ToMatrix(matrix) * mTransform); } } void gfxContext::MultiplyAndNudgeToIntegers(const gfxMatrix& matrix) { if (mCairo) { const cairo_matrix_t& mat = reinterpret_cast(matrix); cairo_transform(mCairo, &mat); // XXX nudging to integers not currently supported for Thebes } else { Matrix transform = ToMatrix(matrix) * mTransform; transform.NudgeToIntegers(); ChangeTransform(transform); } } void gfxContext::SetMatrix(const gfxMatrix& matrix) { if (mCairo) { const cairo_matrix_t& mat = reinterpret_cast(matrix); cairo_set_matrix(mCairo, &mat); } else { ChangeTransform(ToMatrix(matrix)); } } void gfxContext::IdentityMatrix() { if (mCairo) { cairo_identity_matrix(mCairo); } else { ChangeTransform(Matrix()); } } gfxMatrix gfxContext::CurrentMatrix() const { if (mCairo) { cairo_matrix_t mat; cairo_get_matrix(mCairo, &mat); return gfxMatrix(*reinterpret_cast(&mat)); } else { return ThebesMatrix(mTransform); } } void gfxContext::NudgeCurrentMatrixToIntegers() { if (mCairo) { cairo_matrix_t mat; cairo_get_matrix(mCairo, &mat); gfxMatrix(*reinterpret_cast(&mat)).NudgeToIntegers(); cairo_set_matrix(mCairo, &mat); } else { gfxMatrix matrix = ThebesMatrix(mTransform); matrix.NudgeToIntegers(); ChangeTransform(ToMatrix(matrix)); } } gfxPoint gfxContext::DeviceToUser(const gfxPoint& point) const { if (mCairo) { gfxPoint ret = point; cairo_device_to_user(mCairo, &ret.x, &ret.y); return ret; } else { Matrix matrix = mTransform; matrix.Invert(); return ThebesPoint(matrix * ToPoint(point)); } } gfxSize gfxContext::DeviceToUser(const gfxSize& size) const { if (mCairo) { gfxSize ret = size; cairo_device_to_user_distance(mCairo, &ret.width, &ret.height); return ret; } else { Matrix matrix = mTransform; matrix.Invert(); return ThebesSize(matrix * ToSize(size)); } } gfxRect gfxContext::DeviceToUser(const gfxRect& rect) const { if (mCairo) { gfxRect ret = rect; cairo_device_to_user(mCairo, &ret.x, &ret.y); cairo_device_to_user_distance(mCairo, &ret.width, &ret.height); return ret; } else { Matrix matrix = mTransform; matrix.Invert(); return ThebesRect(matrix.TransformBounds(ToRect(rect))); } } gfxPoint gfxContext::UserToDevice(const gfxPoint& point) const { if (mCairo) { gfxPoint ret = point; cairo_user_to_device(mCairo, &ret.x, &ret.y); return ret; } else { return ThebesPoint(mTransform * ToPoint(point)); } } gfxSize gfxContext::UserToDevice(const gfxSize& size) const { if (mCairo) { gfxSize ret = size; cairo_user_to_device_distance(mCairo, &ret.width, &ret.height); return ret; } else { const Matrix &matrix = mTransform; gfxSize newSize; newSize.width = size.width * matrix._11 + size.height * matrix._12; newSize.height = size.width * matrix._21 + size.height * matrix._22; return newSize; } } gfxRect gfxContext::UserToDevice(const gfxRect& rect) const { if (mCairo) { double xmin = rect.X(), ymin = rect.Y(), xmax = rect.XMost(), ymax = rect.YMost(); double x[3], y[3]; x[0] = xmin; y[0] = ymax; x[1] = xmax; y[1] = ymax; x[2] = xmax; y[2] = ymin; cairo_user_to_device(mCairo, &xmin, &ymin); xmax = xmin; ymax = ymin; for (int i = 0; i < 3; i++) { cairo_user_to_device(mCairo, &x[i], &y[i]); xmin = std::min(xmin, x[i]); xmax = std::max(xmax, x[i]); ymin = std::min(ymin, y[i]); ymax = std::max(ymax, y[i]); } return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); } else { const Matrix &matrix = mTransform; return ThebesRect(matrix.TransformBounds(ToRect(rect))); } } bool gfxContext::UserToDevicePixelSnapped(gfxRect& rect, bool ignoreScale) const { if (GetFlags() & FLAG_DISABLE_SNAPPING) return false; // if we're not at 1.0 scale, don't snap, unless we're // ignoring the scale. If we're not -just- a scale, // never snap. const gfxFloat epsilon = 0.0000001; #define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) if (mCairo) { cairo_matrix_t mat; cairo_get_matrix(mCairo, &mat); if (!ignoreScale && (!WITHIN_E(mat.xx,1.0) || !WITHIN_E(mat.yy,1.0) || !WITHIN_E(mat.xy,0.0) || !WITHIN_E(mat.yx,0.0))) return false; } else { Matrix mat = mTransform; if (!ignoreScale && (!WITHIN_E(mat._11,1.0) || !WITHIN_E(mat._22,1.0) || !WITHIN_E(mat._12,0.0) || !WITHIN_E(mat._21,0.0))) return false; } #undef WITHIN_E gfxPoint p1 = UserToDevice(rect.TopLeft()); gfxPoint p2 = UserToDevice(rect.TopRight()); gfxPoint p3 = UserToDevice(rect.BottomRight()); // Check that the rectangle is axis-aligned. For an axis-aligned rectangle, // two opposite corners define the entire rectangle. So check if // the axis-aligned rectangle with opposite corners p1 and p3 // define an axis-aligned rectangle whose other corners are p2 and p4. // We actually only need to check one of p2 and p4, since an affine // transform maps parallelograms to parallelograms. if (p2 == gfxPoint(p1.x, p3.y) || p2 == gfxPoint(p3.x, p1.y)) { p1.Round(); p3.Round(); rect.MoveTo(gfxPoint(std::min(p1.x, p3.x), std::min(p1.y, p3.y))); rect.SizeTo(gfxSize(std::max(p1.x, p3.x) - rect.X(), std::max(p1.y, p3.y) - rect.Y())); return true; } return false; } bool gfxContext::UserToDevicePixelSnapped(gfxPoint& pt, bool ignoreScale) const { if (GetFlags() & FLAG_DISABLE_SNAPPING) return false; // if we're not at 1.0 scale, don't snap, unless we're // ignoring the scale. If we're not -just- a scale, // never snap. const gfxFloat epsilon = 0.0000001; #define WITHIN_E(a,b) (fabs((a)-(b)) < epsilon) if (mCairo) { cairo_matrix_t mat; cairo_get_matrix(mCairo, &mat); if (!ignoreScale && (!WITHIN_E(mat.xx,1.0) || !WITHIN_E(mat.yy,1.0) || !WITHIN_E(mat.xy,0.0) || !WITHIN_E(mat.yx,0.0))) return false; } else { Matrix mat = mTransform; if (!ignoreScale && (!WITHIN_E(mat._11,1.0) || !WITHIN_E(mat._22,1.0) || !WITHIN_E(mat._12,0.0) || !WITHIN_E(mat._21,0.0))) return false; } #undef WITHIN_E pt = UserToDevice(pt); pt.Round(); return true; } void gfxContext::PixelSnappedRectangleAndSetPattern(const gfxRect& rect, gfxPattern *pattern) { gfxRect r(rect); // Bob attempts to pixel-snap the rectangle, and returns true if // the snapping succeeds. If it does, we need to set up an // identity matrix, because the rectangle given back is in device // coordinates. // // We then have to call a translate to dr.pos afterwards, to make // sure the image lines up in the right place with our pixel // snapped rectangle. // // If snapping wasn't successful, we just translate to where the // pattern would normally start (in app coordinates) and do the // same thing. Rectangle(r, true); SetPattern(pattern); } void gfxContext::SetAntialiasMode(AntialiasMode mode) { if (mCairo) { if (mode == MODE_ALIASED) { cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_NONE); } else if (mode == MODE_COVERAGE) { cairo_set_antialias(mCairo, CAIRO_ANTIALIAS_DEFAULT); } } else { if (mode == MODE_ALIASED) { CurrentState().aaMode = AA_NONE; } else if (mode == MODE_COVERAGE) { CurrentState().aaMode = AA_SUBPIXEL; } } } gfxContext::AntialiasMode gfxContext::CurrentAntialiasMode() const { if (mCairo) { cairo_antialias_t aa = cairo_get_antialias(mCairo); if (aa == CAIRO_ANTIALIAS_NONE) return MODE_ALIASED; return MODE_COVERAGE; } else { if (CurrentState().aaMode == AA_NONE) { return MODE_ALIASED; } return MODE_COVERAGE; } } void gfxContext::SetDash(gfxLineType ltype) { static double dash[] = {5.0, 5.0}; static double dot[] = {1.0, 1.0}; switch (ltype) { case gfxLineDashed: SetDash(dash, 2, 0.0); break; case gfxLineDotted: SetDash(dot, 2, 0.0); break; case gfxLineSolid: default: SetDash(nullptr, 0, 0.0); break; } } void gfxContext::SetDash(gfxFloat *dashes, int ndash, gfxFloat offset) { if (mCairo) { cairo_set_dash(mCairo, dashes, ndash, offset); } else { AzureState &state = CurrentState(); state.dashPattern.SetLength(ndash); for (int i = 0; i < ndash; i++) { state.dashPattern[i] = Float(dashes[i]); } state.strokeOptions.mDashLength = ndash; state.strokeOptions.mDashOffset = Float(offset); state.strokeOptions.mDashPattern = ndash ? state.dashPattern.Elements() : nullptr; } } bool gfxContext::CurrentDash(FallibleTArray& dashes, gfxFloat* offset) const { if (mCairo) { int count = cairo_get_dash_count(mCairo); if (count <= 0 || !dashes.SetLength(count)) { return false; } cairo_get_dash(mCairo, dashes.Elements(), offset); return true; } else { const AzureState &state = CurrentState(); int count = state.strokeOptions.mDashLength; if (count <= 0 || !dashes.SetLength(count)) { return false; } for (int i = 0; i < count; i++) { dashes[i] = state.dashPattern[i]; } *offset = state.strokeOptions.mDashOffset; return true; } } gfxFloat gfxContext::CurrentDashOffset() const { if (mCairo) { if (cairo_get_dash_count(mCairo) <= 0) { return 0.0; } gfxFloat offset; cairo_get_dash(mCairo, nullptr, &offset); return offset; } else { return CurrentState().strokeOptions.mDashOffset; } } void gfxContext::SetLineWidth(gfxFloat width) { if (mCairo) { cairo_set_line_width(mCairo, width); } else { CurrentState().strokeOptions.mLineWidth = Float(width); } } gfxFloat gfxContext::CurrentLineWidth() const { if (mCairo) { return cairo_get_line_width(mCairo); } else { return CurrentState().strokeOptions.mLineWidth; } } void gfxContext::SetOperator(GraphicsOperator op) { if (mCairo) { if (mFlags & FLAG_SIMPLIFY_OPERATORS) { if (op != OPERATOR_SOURCE && op != OPERATOR_CLEAR && op != OPERATOR_OVER) op = OPERATOR_OVER; } cairo_set_operator(mCairo, (cairo_operator_t)op); } else { if (op == OPERATOR_CLEAR) { CurrentState().opIsClear = true; return; } CurrentState().opIsClear = false; CurrentState().op = CompositionOpForOp(op); } } gfxContext::GraphicsOperator gfxContext::CurrentOperator() const { if (mCairo) { return (GraphicsOperator)cairo_get_operator(mCairo); } else { return ThebesOp(CurrentState().op); } } void gfxContext::SetLineCap(GraphicsLineCap cap) { if (mCairo) { cairo_set_line_cap(mCairo, (cairo_line_cap_t)cap); } else { CurrentState().strokeOptions.mLineCap = ToCapStyle(cap); } } gfxContext::GraphicsLineCap gfxContext::CurrentLineCap() const { if (mCairo) { return (GraphicsLineCap)cairo_get_line_cap(mCairo); } else { return ThebesLineCap(CurrentState().strokeOptions.mLineCap); } } void gfxContext::SetLineJoin(GraphicsLineJoin join) { if (mCairo) { cairo_set_line_join(mCairo, (cairo_line_join_t)join); } else { CurrentState().strokeOptions.mLineJoin = ToJoinStyle(join); } } gfxContext::GraphicsLineJoin gfxContext::CurrentLineJoin() const { if (mCairo) { return (GraphicsLineJoin)cairo_get_line_join(mCairo); } else { return ThebesLineJoin(CurrentState().strokeOptions.mLineJoin); } } void gfxContext::SetMiterLimit(gfxFloat limit) { if (mCairo) { cairo_set_miter_limit(mCairo, limit); } else { CurrentState().strokeOptions.mMiterLimit = Float(limit); } } gfxFloat gfxContext::CurrentMiterLimit() const { if (mCairo) { return cairo_get_miter_limit(mCairo); } else { return CurrentState().strokeOptions.mMiterLimit; } } void gfxContext::SetFillRule(FillRule rule) { if (mCairo) { cairo_set_fill_rule(mCairo, (cairo_fill_rule_t)rule); } else { CurrentState().fillRule = rule == FILL_RULE_WINDING ? FILL_WINDING : FILL_EVEN_ODD; } } gfxContext::FillRule gfxContext::CurrentFillRule() const { if (mCairo) { return (FillRule)cairo_get_fill_rule(mCairo); } else { return FILL_RULE_WINDING; } } // clipping void gfxContext::Clip(const gfxRect& rect) { if (mCairo) { cairo_new_path(mCairo); cairo_rectangle(mCairo, rect.X(), rect.Y(), rect.Width(), rect.Height()); cairo_clip(mCairo); } else { AzureState::PushedClip clip = { nullptr, ToRect(rect), mTransform }; CurrentState().pushedClips.AppendElement(clip); mDT->PushClipRect(ToRect(rect)); NewPath(); } } void gfxContext::Clip() { if (mCairo) { cairo_clip_preserve(mCairo); } else { if (mPathIsRect) { MOZ_ASSERT(!mTransformChanged); AzureState::PushedClip clip = { nullptr, mRect, mTransform }; CurrentState().pushedClips.AppendElement(clip); mDT->PushClipRect(mRect); } else { EnsurePath(); mDT->PushClip(mPath); AzureState::PushedClip clip = { mPath, Rect(), mTransform }; CurrentState().pushedClips.AppendElement(clip); } } } void gfxContext::ResetClip() { if (mCairo) { cairo_reset_clip(mCairo); } else { for (int i = mStateStack.Length() - 1; i >= 0; i--) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { mDT->PopClip(); } if (mStateStack[i].clipWasReset) { break; } } CurrentState().pushedClips.Clear(); CurrentState().clipWasReset = true; } } void gfxContext::UpdateSurfaceClip() { if (mCairo) { NewPath(); // we paint an empty rectangle to ensure the clip is propagated to // the destination surface SetDeviceColor(gfxRGBA(0,0,0,0)); Rectangle(gfxRect(0,1,1,0)); Fill(); } } gfxRect gfxContext::GetClipExtents() { if (mCairo) { double xmin, ymin, xmax, ymax; cairo_clip_extents(mCairo, &xmin, &ymin, &xmax, &ymax); return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); } else { Rect rect = GetAzureDeviceSpaceClipBounds(); if (rect.width == 0 || rect.height == 0) { return gfxRect(0, 0, 0, 0); } Matrix mat = mTransform; mat.Invert(); rect = mat.TransformBounds(rect); return ThebesRect(rect); } } bool gfxContext::ClipContainsRect(const gfxRect& aRect) { if (mCairo) { cairo_rectangle_list_t *clip = cairo_copy_clip_rectangle_list(mCairo); bool result = false; if (clip->status == CAIRO_STATUS_SUCCESS) { for (int i = 0; i < clip->num_rectangles; i++) { gfxRect rect(clip->rectangles[i].x, clip->rectangles[i].y, clip->rectangles[i].width, clip->rectangles[i].height); if (rect.Contains(aRect)) { result = true; break; } } } cairo_rectangle_list_destroy(clip); return result; } else { unsigned int lastReset = 0; for (int i = mStateStack.Length() - 2; i > 0; i--) { if (mStateStack[i].clipWasReset) { lastReset = i; break; } } // Since we always return false when the clip list contains a // non-rectangular clip or a non-rectilinear transform, our 'total' clip // is always a rectangle if we hit the end of this function. Rect clipBounds(0, 0, Float(mDT->GetSize().width), Float(mDT->GetSize().height)); for (unsigned int i = lastReset; i < mStateStack.Length(); i++) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { AzureState::PushedClip &clip = mStateStack[i].pushedClips[c]; if (clip.path || !clip.transform.IsRectilinear()) { // Cairo behavior is we return false if the clip contains a non- // rectangle. return false; } else { Rect clipRect = mTransform.TransformBounds(clip.rect); clipBounds.IntersectRect(clipBounds, clipRect); } } } return clipBounds.Contains(ToRect(aRect)); } } // rendering sources void gfxContext::SetColor(const gfxRGBA& c) { if (mCairo) { if (gfxPlatform::GetCMSMode() == eCMSMode_All) { gfxRGBA cms; qcms_transform *transform = gfxPlatform::GetCMSRGBTransform(); if (transform) gfxPlatform::TransformPixel(c, cms, transform); // Use the original alpha to avoid unnecessary float->byte->float // conversion errors cairo_set_source_rgba(mCairo, cms.r, cms.g, cms.b, c.a); } else cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a); } else { CurrentState().pattern = nullptr; CurrentState().sourceSurfCairo = nullptr; CurrentState().sourceSurface = nullptr; if (gfxPlatform::GetCMSMode() == eCMSMode_All) { gfxRGBA cms; qcms_transform *transform = gfxPlatform::GetCMSRGBTransform(); if (transform) gfxPlatform::TransformPixel(c, cms, transform); // Use the original alpha to avoid unnecessary float->byte->float // conversion errors CurrentState().color = ToColor(cms); } else CurrentState().color = ToColor(c); } } void gfxContext::SetDeviceColor(const gfxRGBA& c) { if (mCairo) { cairo_set_source_rgba(mCairo, c.r, c.g, c.b, c.a); } else { CurrentState().pattern = nullptr; CurrentState().sourceSurfCairo = nullptr; CurrentState().sourceSurface = nullptr; CurrentState().color = ToColor(c); } } bool gfxContext::GetDeviceColor(gfxRGBA& c) { if (mCairo) { return cairo_pattern_get_rgba(cairo_get_source(mCairo), &c.r, &c.g, &c.b, &c.a) == CAIRO_STATUS_SUCCESS; } else { if (CurrentState().sourceSurface) { return false; } if (CurrentState().pattern) { gfxRGBA color; return CurrentState().pattern->GetSolidColor(c); } c = ThebesRGBA(CurrentState().color); return true; } } void gfxContext::SetSource(gfxASurface *surface, const gfxPoint& offset) { if (mCairo) { NS_ASSERTION(surface->GetAllowUseAsSource(), "Surface not allowed to be used as source!"); cairo_set_source_surface(mCairo, surface->CairoSurface(), offset.x, offset.y); } else { CurrentState().surfTransform = Matrix(1.0f, 0, 0, 1.0f, Float(offset.x), Float(offset.y)); CurrentState().pattern = nullptr; CurrentState().patternTransformChanged = false; // Keep the underlying cairo surface around while we keep the // sourceSurface. CurrentState().sourceSurfCairo = surface; CurrentState().sourceSurface = gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(mDT, surface); CurrentState().color = Color(0, 0, 0, 0); } } void gfxContext::SetPattern(gfxPattern *pattern) { if (mCairo) { cairo_set_source(mCairo, pattern->CairoPattern()); } else { CurrentState().sourceSurfCairo = nullptr; CurrentState().sourceSurface = nullptr; CurrentState().patternTransformChanged = false; CurrentState().pattern = pattern; } } already_AddRefed gfxContext::GetPattern() { if (mCairo) { cairo_pattern_t *pat = cairo_get_source(mCairo); NS_ASSERTION(pat, "I was told this couldn't be null"); nsRefPtr wrapper; if (pat) wrapper = new gfxPattern(pat); else wrapper = new gfxPattern(gfxRGBA(0,0,0,0)); return wrapper.forget(); } else { nsRefPtr pat; AzureState &state = CurrentState(); if (state.pattern) { pat = state.pattern; } else if (state.sourceSurface) { NS_ASSERTION(false, "Ugh, this isn't good."); } else { pat = new gfxPattern(ThebesRGBA(state.color)); } return pat.forget(); } } // masking void gfxContext::Mask(gfxPattern *pattern) { if (mCairo) { cairo_mask(mCairo, pattern->CairoPattern()); } else { if (pattern->Extend() == gfxPattern::EXTEND_NONE) { // In this situation the mask will be fully transparent (i.e. nothing // will be drawn) outside of the bounds of the surface. We can support // that by clipping out drawing to that area. Point offset; if (pattern->IsAzure()) { // This is an Azure pattern. i.e. this was the result of a PopGroup and // then the extend mode was changed to EXTEND_NONE. // XXX - We may need some additional magic here in theory to support // device offsets in these patterns, but no problems have been observed // yet because of this. And it would complicate things a little further. offset = Point(0.f, 0.f); } else if (pattern->GetType() == gfxPattern::PATTERN_SURFACE) { nsRefPtr asurf = pattern->GetSurface(); gfxPoint deviceOffset = asurf->GetDeviceOffset(); offset = Point(-deviceOffset.x, -deviceOffset.y); // this lets GetAzureSurface work pattern->GetPattern(mDT); } if (pattern->IsAzure() || pattern->GetType() == gfxPattern::PATTERN_SURFACE) { RefPtr mask = pattern->GetAzureSurface(); Matrix mat = ToMatrix(pattern->GetInverseMatrix()); Matrix old = mTransform; // add in the inverse of the pattern transform so that when we // MaskSurface we are transformed to the place matching the pattern transform mat = mat * mTransform; ChangeTransform(mat); mDT->MaskSurface(GeneralPattern(this), mask, offset, DrawOptions(1.0f, CurrentState().op, CurrentState().aaMode)); ChangeTransform(old); return; } } mDT->Mask(GeneralPattern(this), *pattern->GetPattern(mDT), DrawOptions(1.0f, CurrentState().op, CurrentState().aaMode)); } } void gfxContext::Mask(gfxASurface *surface, const gfxPoint& offset) { PROFILER_LABEL("gfxContext", "Mask"); if (mCairo) { cairo_mask_surface(mCairo, surface->CairoSurface(), offset.x, offset.y); } else { // Lifetime needs to be limited here as we may simply wrap surface's data. RefPtr sourceSurf = gfxPlatform::GetPlatform()->GetSourceSurfaceForSurface(mDT, surface); if (!sourceSurf) { return; } gfxPoint pt = surface->GetDeviceOffset(); // We clip here to bind to the mask surface bounds, see above. mDT->MaskSurface(GeneralPattern(this), sourceSurf, Point(offset.x - pt.x, offset.y - pt.y), DrawOptions(1.0f, CurrentState().op, CurrentState().aaMode)); } } void gfxContext::Paint(gfxFloat alpha) { PROFILER_LABEL("gfxContext", "Paint"); if (mCairo) { cairo_paint_with_alpha(mCairo, alpha); } else { AzureState &state = CurrentState(); if (state.sourceSurface && !state.sourceSurfCairo && !state.patternTransformChanged && !state.opIsClear) { // This is the case where a PopGroupToSource has been done and this // paint is executed without changing the transform or the source. Matrix oldMat = mDT->GetTransform(); IntSize surfSize = state.sourceSurface->GetSize(); Matrix mat; mat.Translate(-state.deviceOffset.x, -state.deviceOffset.y); mDT->SetTransform(mat); mDT->DrawSurface(state.sourceSurface, Rect(state.sourceSurfaceDeviceOffset, Size(surfSize.width, surfSize.height)), Rect(Point(), Size(surfSize.width, surfSize.height)), DrawSurfaceOptions(), DrawOptions(alpha, GetOp())); mDT->SetTransform(oldMat); return; } Matrix mat = mDT->GetTransform(); mat.Invert(); Rect paintRect = mat.TransformBounds(Rect(Point(0, 0), Size(mDT->GetSize()))); if (state.opIsClear) { mDT->ClearRect(paintRect); } else { mDT->FillRect(paintRect, GeneralPattern(this), DrawOptions(Float(alpha), GetOp())); } } } // groups void gfxContext::PushGroup(gfxContentType content) { if (mCairo) { cairo_push_group_with_content(mCairo, (cairo_content_t) content); } else { PushNewDT(content); PushClipsToDT(mDT); mDT->SetTransform(GetDTTransform()); } } static gfxRect GetRoundOutDeviceClipExtents(gfxContext* aCtx) { gfxContextMatrixAutoSaveRestore save(aCtx); aCtx->IdentityMatrix(); gfxRect r = aCtx->GetClipExtents(); r.RoundOut(); return r; } /** * Copy the contents of aSrc to aDest, translated by aTranslation. */ static void CopySurface(gfxASurface* aSrc, gfxASurface* aDest, const gfxPoint& aTranslation) { cairo_t *cr = cairo_create(aDest->CairoSurface()); cairo_set_source_surface(cr, aSrc->CairoSurface(), aTranslation.x, aTranslation.y); cairo_set_operator(cr, CAIRO_OPERATOR_SOURCE); cairo_paint(cr); cairo_destroy(cr); } void gfxContext::PushGroupAndCopyBackground(gfxContentType content) { if (mCairo) { if (content == GFX_CONTENT_COLOR_ALPHA && !(GetFlags() & FLAG_DISABLE_COPY_BACKGROUND)) { nsRefPtr s = CurrentSurface(); if ((s->GetAllowUseAsSource() || s->GetType() == gfxSurfaceTypeTee) && (s->GetContentType() == GFX_CONTENT_COLOR || s->GetOpaqueRect().Contains(GetRoundOutDeviceClipExtents(this)))) { cairo_push_group_with_content(mCairo, CAIRO_CONTENT_COLOR); nsRefPtr d = CurrentSurface(); if (d->GetType() == gfxSurfaceTypeTee) { NS_ASSERTION(s->GetType() == gfxSurfaceTypeTee, "Mismatched types"); nsAutoTArray,2> ss; nsAutoTArray,2> ds; static_cast(s.get())->GetSurfaces(&ss); static_cast(d.get())->GetSurfaces(&ds); NS_ASSERTION(ss.Length() == ds.Length(), "Mismatched lengths"); gfxPoint translation = d->GetDeviceOffset() - s->GetDeviceOffset(); for (uint32_t i = 0; i < ss.Length(); ++i) { CopySurface(ss[i], ds[i], translation); } } else { CopySurface(s, d, gfxPoint(0, 0)); } d->SetOpaqueRect(s->GetOpaqueRect()); return; } } } else { IntRect clipExtents; if (mDT->GetFormat() != FORMAT_B8G8R8X8) { gfxRect clipRect = GetRoundOutDeviceClipExtents(this); clipExtents = IntRect(clipRect.x, clipRect.y, clipRect.width, clipRect.height); } if ((mDT->GetFormat() == FORMAT_B8G8R8X8 || mDT->GetOpaqueRect().Contains(clipExtents)) && !mDT->GetUserData(&sDontUseAsSourceKey)) { DrawTarget *oldDT = mDT; RefPtr source = mDT->Snapshot(); Point oldDeviceOffset = CurrentState().deviceOffset; PushNewDT(GFX_CONTENT_COLOR); Point offset = CurrentState().deviceOffset - oldDeviceOffset; Rect surfRect(0, 0, Float(mDT->GetSize().width), Float(mDT->GetSize().height)); Rect sourceRect = surfRect; sourceRect.x += offset.x; sourceRect.y += offset.y; mDT->SetTransform(Matrix()); mDT->DrawSurface(source, surfRect, sourceRect); mDT->SetOpaqueRect(oldDT->GetOpaqueRect()); PushClipsToDT(mDT); mDT->SetTransform(GetDTTransform()); return; } } PushGroup(content); } already_AddRefed gfxContext::PopGroup() { if (mCairo) { cairo_pattern_t *pat = cairo_pop_group(mCairo); nsRefPtr wrapper = new gfxPattern(pat); cairo_pattern_destroy(pat); return wrapper.forget(); } else { RefPtr src = mDT->Snapshot(); Point deviceOffset = CurrentState().deviceOffset; Restore(); Matrix mat = mTransform; mat.Invert(); Matrix deviceOffsetTranslation; deviceOffsetTranslation.Translate(deviceOffset.x, deviceOffset.y); nsRefPtr pat = new gfxPattern(src, deviceOffsetTranslation * mat); return pat.forget(); } } void gfxContext::PopGroupToSource() { if (mCairo) { cairo_pop_group_to_source(mCairo); } else { RefPtr src = mDT->Snapshot(); Point deviceOffset = CurrentState().deviceOffset; Restore(); CurrentState().sourceSurfCairo = nullptr; CurrentState().sourceSurface = src; CurrentState().sourceSurfaceDeviceOffset = deviceOffset; CurrentState().pattern = nullptr; CurrentState().patternTransformChanged = false; Matrix mat = mTransform; mat.Invert(); Matrix deviceOffsetTranslation; deviceOffsetTranslation.Translate(deviceOffset.x, deviceOffset.y); CurrentState().surfTransform = deviceOffsetTranslation * mat; } } bool gfxContext::PointInFill(const gfxPoint& pt) { if (mCairo) { return cairo_in_fill(mCairo, pt.x, pt.y); } else { return mPath->ContainsPoint(ToPoint(pt), mTransform); } } bool gfxContext::PointInStroke(const gfxPoint& pt) { if (mCairo) { return cairo_in_stroke(mCairo, pt.x, pt.y); } else { return mPath->StrokeContainsPoint(CurrentState().strokeOptions, ToPoint(pt), mTransform); } } gfxRect gfxContext::GetUserPathExtent() { if (mCairo) { double xmin, ymin, xmax, ymax; cairo_path_extents(mCairo, &xmin, &ymin, &xmax, &ymax); return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); } else { return ThebesRect(mPath->GetBounds()); } } gfxRect gfxContext::GetUserFillExtent() { if (mCairo) { double xmin, ymin, xmax, ymax; cairo_fill_extents(mCairo, &xmin, &ymin, &xmax, &ymax); return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); } else { return ThebesRect(mPath->GetBounds()); } } gfxRect gfxContext::GetUserStrokeExtent() { if (mCairo) { double xmin, ymin, xmax, ymax; cairo_stroke_extents(mCairo, &xmin, &ymin, &xmax, &ymax); return gfxRect(xmin, ymin, xmax - xmin, ymax - ymin); } else { return ThebesRect(mPath->GetStrokedBounds(CurrentState().strokeOptions, mTransform)); } } bool gfxContext::HasError() { if (mCairo) { return cairo_status(mCairo) != CAIRO_STATUS_SUCCESS; } else { // As far as this is concerned, an Azure context is never in error. return false; } } void gfxContext::RoundedRectangle(const gfxRect& rect, const gfxCornerSizes& corners, bool draw_clockwise) { // // For CW drawing, this looks like: // // ...******0** 1 C // **** // *** 2 // ** // * // * // 3 // * // * // // Where 0, 1, 2, 3 are the control points of the Bezier curve for // the corner, and C is the actual corner point. // // At the start of the loop, the current point is assumed to be // the point adjacent to the top left corner on the top // horizontal. Note that corner indices start at the top left and // continue clockwise, whereas in our loop i = 0 refers to the top // right corner. // // When going CCW, the control points are swapped, and the first // corner that's drawn is the top left (along with the top segment). // // There is considerable latitude in how one chooses the four // control points for a Bezier curve approximation to an ellipse. // For the overall path to be continuous and show no corner at the // endpoints of the arc, points 0 and 3 must be at the ends of the // straight segments of the rectangle; points 0, 1, and C must be // collinear; and points 3, 2, and C must also be collinear. This // leaves only two free parameters: the ratio of the line segments // 01 and 0C, and the ratio of the line segments 32 and 3C. See // the following papers for extensive discussion of how to choose // these ratios: // // Dokken, Tor, et al. "Good approximation of circles by // curvature-continuous Bezier curves." Computer-Aided // Geometric Design 7(1990) 33--41. // Goldapp, Michael. "Approximation of circular arcs by cubic // polynomials." Computer-Aided Geometric Design 8(1991) 227--238. // Maisonobe, Luc. "Drawing an elliptical arc using polylines, // quadratic, or cubic Bezier curves." // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf // // We follow the approach in section 2 of Goldapp (least-error, // Hermite-type approximation) and make both ratios equal to // // 2 2 + n - sqrt(2n + 28) // alpha = - * --------------------- // 3 n - 4 // // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ). // // This is the result of Goldapp's equation (10b) when the angle // swept out by the arc is pi/2, and the parameter "a-bar" is the // expression given immediately below equation (21). // // Using this value, the maximum radial error for a circle, as a // fraction of the radius, is on the order of 0.2 x 10^-3. // Neither Dokken nor Goldapp discusses error for a general // ellipse; Maisonobe does, but his choice of control points // follows different constraints, and Goldapp's expression for // 'alpha' gives much smaller radial error, even for very flat // ellipses, than Maisonobe's equivalent. // // For the various corners and for each axis, the sign of this // constant changes, or it might be 0 -- it's multiplied by the // appropriate multiplier from the list before using. if (mCairo) { const gfxFloat alpha = 0.55191497064665766025; typedef struct { gfxFloat a, b; } twoFloats; twoFloats cwCornerMults[4] = { { -1, 0 }, { 0, -1 }, { +1, 0 }, { 0, +1 } }; twoFloats ccwCornerMults[4] = { { +1, 0 }, { 0, -1 }, { -1, 0 }, { 0, +1 } }; twoFloats *cornerMults = draw_clockwise ? cwCornerMults : ccwCornerMults; gfxPoint pc, p0, p1, p2, p3; if (draw_clockwise) cairo_move_to(mCairo, rect.X() + corners[NS_CORNER_TOP_LEFT].width, rect.Y()); else cairo_move_to(mCairo, rect.X() + rect.Width() - corners[NS_CORNER_TOP_RIGHT].width, rect.Y()); NS_FOR_CSS_CORNERS(i) { // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) mozilla::css::Corner c = mozilla::css::Corner(draw_clockwise ? ((i+1) % 4) : ((4-i) % 4)); // i+2 and i+3 respectively. These are used to index into the corner // multiplier table, and were deduced by calculating out the long form // of each corner and finding a pattern in the signs and values. int i2 = (i+2) % 4; int i3 = (i+3) % 4; pc = rect.AtCorner(c); if (corners[c].width > 0.0 && corners[c].height > 0.0) { p0.x = pc.x + cornerMults[i].a * corners[c].width; p0.y = pc.y + cornerMults[i].b * corners[c].height; p3.x = pc.x + cornerMults[i3].a * corners[c].width; p3.y = pc.y + cornerMults[i3].b * corners[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * corners[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * corners[c].height; p2.x = p3.x - alpha * cornerMults[i3].a * corners[c].width; p2.y = p3.y - alpha * cornerMults[i3].b * corners[c].height; cairo_line_to (mCairo, p0.x, p0.y); cairo_curve_to (mCairo, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y); } else { cairo_line_to (mCairo, pc.x, pc.y); } } cairo_close_path (mCairo); } else { EnsurePathBuilder(); const gfxFloat alpha = 0.55191497064665766025; typedef struct { gfxFloat a, b; } twoFloats; twoFloats cwCornerMults[4] = { { -1, 0 }, { 0, -1 }, { +1, 0 }, { 0, +1 } }; twoFloats ccwCornerMults[4] = { { +1, 0 }, { 0, -1 }, { -1, 0 }, { 0, +1 } }; twoFloats *cornerMults = draw_clockwise ? cwCornerMults : ccwCornerMults; gfxPoint pc, p0, p1, p2, p3; if (draw_clockwise) mPathBuilder->MoveTo(Point(Float(rect.X() + corners[NS_CORNER_TOP_LEFT].width), Float(rect.Y()))); else mPathBuilder->MoveTo(Point(Float(rect.X() + rect.Width() - corners[NS_CORNER_TOP_RIGHT].width), Float(rect.Y()))); NS_FOR_CSS_CORNERS(i) { // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) mozilla::css::Corner c = mozilla::css::Corner(draw_clockwise ? ((i+1) % 4) : ((4-i) % 4)); // i+2 and i+3 respectively. These are used to index into the corner // multiplier table, and were deduced by calculating out the long form // of each corner and finding a pattern in the signs and values. int i2 = (i+2) % 4; int i3 = (i+3) % 4; pc = rect.AtCorner(c); if (corners[c].width > 0.0 && corners[c].height > 0.0) { p0.x = pc.x + cornerMults[i].a * corners[c].width; p0.y = pc.y + cornerMults[i].b * corners[c].height; p3.x = pc.x + cornerMults[i3].a * corners[c].width; p3.y = pc.y + cornerMults[i3].b * corners[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * corners[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * corners[c].height; p2.x = p3.x - alpha * cornerMults[i3].a * corners[c].width; p2.y = p3.y - alpha * cornerMults[i3].b * corners[c].height; mPathBuilder->LineTo(ToPoint(p0)); mPathBuilder->BezierTo(ToPoint(p1), ToPoint(p2), ToPoint(p3)); } else { mPathBuilder->LineTo(ToPoint(pc)); } } mPathBuilder->Close(); } } #ifdef MOZ_DUMP_PAINTING void gfxContext::WriteAsPNG(const char* aFile) { nsRefPtr surf = CurrentSurface(); if (surf) { surf->WriteAsPNG(aFile); } else { NS_WARNING("No surface found!"); } } void gfxContext::DumpAsDataURL() { nsRefPtr surf = CurrentSurface(); if (surf) { surf->DumpAsDataURL(); } else { NS_WARNING("No surface found!"); } } void gfxContext::CopyAsDataURL() { nsRefPtr surf = CurrentSurface(); if (surf) { surf->CopyAsDataURL(); } else { NS_WARNING("No surface found!"); } } #endif void gfxContext::EnsurePath() { if (mPathBuilder) { mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; } if (mPath) { if (mTransformChanged) { Matrix mat = mTransform; mat.Invert(); mat = mPathTransform * mat; mPathBuilder = mPath->TransformedCopyToBuilder(mat, CurrentState().fillRule); mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; mTransformChanged = false; } if (CurrentState().fillRule == mPath->GetFillRule()) { return; } mPathBuilder = mPath->CopyToBuilder(CurrentState().fillRule); mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; return; } EnsurePathBuilder(); mPath = mPathBuilder->Finish(); mPathBuilder = nullptr; } void gfxContext::EnsurePathBuilder() { if (mPathBuilder && !mTransformChanged) { return; } if (mPath) { if (!mTransformChanged) { mPathBuilder = mPath->CopyToBuilder(CurrentState().fillRule); mPath = nullptr; } else { Matrix invTransform = mTransform; invTransform.Invert(); Matrix toNewUS = mPathTransform * invTransform; mPathBuilder = mPath->TransformedCopyToBuilder(toNewUS, CurrentState().fillRule); } return; } DebugOnly oldPath = mPathBuilder.get(); if (!mPathBuilder) { mPathBuilder = mDT->CreatePathBuilder(CurrentState().fillRule); if (mPathIsRect) { mPathBuilder->MoveTo(mRect.TopLeft()); mPathBuilder->LineTo(mRect.TopRight()); mPathBuilder->LineTo(mRect.BottomRight()); mPathBuilder->LineTo(mRect.BottomLeft()); mPathBuilder->Close(); } } if (mTransformChanged) { // This could be an else if since this should never happen when // mPathBuilder is nullptr and mPath is nullptr. But this way we can // assert if all the state is as expected. MOZ_ASSERT(oldPath); MOZ_ASSERT(!mPathIsRect); Matrix invTransform = mTransform; invTransform.Invert(); Matrix toNewUS = mPathTransform * invTransform; RefPtr path = mPathBuilder->Finish(); mPathBuilder = path->TransformedCopyToBuilder(toNewUS, CurrentState().fillRule); } mPathIsRect = false; } void gfxContext::FillAzure(Float aOpacity) { AzureState &state = CurrentState(); CompositionOp op = GetOp(); if (mPathIsRect) { MOZ_ASSERT(!mTransformChanged); if (state.opIsClear) { mDT->ClearRect(mRect); } else if (op == OP_SOURCE) { // Emulate cairo operator source which is bound by mask! mDT->ClearRect(mRect); mDT->FillRect(mRect, GeneralPattern(this), DrawOptions(aOpacity)); } else { mDT->FillRect(mRect, GeneralPattern(this), DrawOptions(aOpacity, op, state.aaMode)); } } else { EnsurePath(); NS_ASSERTION(!state.opIsClear, "We shouldn't be clearing complex paths!"); mDT->Fill(mPath, GeneralPattern(this), DrawOptions(aOpacity, op, state.aaMode)); } } void gfxContext::PushClipsToDT(DrawTarget *aDT) { // Tricky, we have to restore all clips -since the last time- the clip // was reset. If we didn't reset the clip, just popping the clips we // added was fine. unsigned int lastReset = 0; for (int i = mStateStack.Length() - 2; i > 0; i--) { if (mStateStack[i].clipWasReset) { lastReset = i; break; } } // Don't need to save the old transform, we'll be setting a new one soon! // Push all clips from the last state on the stack where the clip was // reset to the clip before ours. for (unsigned int i = lastReset; i < mStateStack.Length() - 1; i++) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { aDT->SetTransform(mStateStack[i].pushedClips[c].transform * GetDeviceTransform()); if (mStateStack[i].pushedClips[c].path) { aDT->PushClip(mStateStack[i].pushedClips[c].path); } else { aDT->PushClipRect(mStateStack[i].pushedClips[c].rect); } } } } CompositionOp gfxContext::GetOp() { if (CurrentState().op != OP_SOURCE) { return CurrentState().op; } AzureState &state = CurrentState(); if (state.pattern) { if (state.pattern->IsOpaque()) { return OP_OVER; } else { return OP_SOURCE; } } else if (state.sourceSurface) { if (state.sourceSurface->GetFormat() == FORMAT_B8G8R8X8) { return OP_OVER; } else { return OP_SOURCE; } } else { if (state.color.a > 0.999) { return OP_OVER; } else { return OP_SOURCE; } } } /* SVG font code can change the transform after having set the pattern on the * context. When the pattern is set it is in user space, if the transform is * changed after doing so the pattern needs to be converted back into userspace. * We just store the old pattern transform here so that we only do the work * needed here if the pattern is actually used. * We need to avoid doing this when this ChangeTransform comes from a restore, * since the current pattern and the current transform are both part of the * state we know the new CurrentState()'s values are valid. But if we assume * a change they might become invalid since patternTransformChanged is part of * the state and might be false for the restored AzureState. */ void gfxContext::ChangeTransform(const Matrix &aNewMatrix, bool aUpdatePatternTransform) { AzureState &state = CurrentState(); if (aUpdatePatternTransform && (state.pattern || state.sourceSurface) && !state.patternTransformChanged) { state.patternTransform = mTransform; state.patternTransformChanged = true; } if (mPathIsRect) { Matrix invMatrix = aNewMatrix; invMatrix.Invert(); Matrix toNewUS = mTransform * invMatrix; if (toNewUS.IsRectilinear()) { mRect = toNewUS.TransformBounds(mRect); mRect.NudgeToIntegers(); } else { mPathBuilder = mDT->CreatePathBuilder(CurrentState().fillRule); mPathBuilder->MoveTo(toNewUS * mRect.TopLeft()); mPathBuilder->LineTo(toNewUS * mRect.TopRight()); mPathBuilder->LineTo(toNewUS * mRect.BottomRight()); mPathBuilder->LineTo(toNewUS * mRect.BottomLeft()); mPathBuilder->Close(); mPathIsRect = false; } // No need to consider the transform changed now! mTransformChanged = false; } else if ((mPath || mPathBuilder) && !mTransformChanged) { mTransformChanged = true; mPathTransform = mTransform; } mTransform = aNewMatrix; mDT->SetTransform(GetDTTransform()); } Rect gfxContext::GetAzureDeviceSpaceClipBounds() { unsigned int lastReset = 0; for (int i = mStateStack.Length() - 1; i > 0; i--) { if (mStateStack[i].clipWasReset) { lastReset = i; break; } } Rect rect(CurrentState().deviceOffset.x, CurrentState().deviceOffset.y, Float(mDT->GetSize().width), Float(mDT->GetSize().height)); for (unsigned int i = lastReset; i < mStateStack.Length(); i++) { for (unsigned int c = 0; c < mStateStack[i].pushedClips.Length(); c++) { AzureState::PushedClip &clip = mStateStack[i].pushedClips[c]; if (clip.path) { Rect bounds = clip.path->GetBounds(clip.transform); rect.IntersectRect(rect, bounds); } else { rect.IntersectRect(rect, clip.transform.TransformBounds(clip.rect)); } } } return rect; } Matrix gfxContext::GetDeviceTransform() const { Matrix mat; mat.Translate(-CurrentState().deviceOffset.x, -CurrentState().deviceOffset.y); return mat; } Matrix gfxContext::GetDTTransform() const { Matrix mat = mTransform; mat._31 -= CurrentState().deviceOffset.x; mat._32 -= CurrentState().deviceOffset.y; return mat; } void gfxContext::PushNewDT(gfxContentType content) { Rect clipBounds = GetAzureDeviceSpaceClipBounds(); clipBounds.RoundOut(); clipBounds.width = std::max(1.0f, clipBounds.width); clipBounds.height = std::max(1.0f, clipBounds.height); RefPtr newDT = mDT->CreateSimilarDrawTarget(IntSize(int32_t(clipBounds.width), int32_t(clipBounds.height)), gfxPlatform::GetPlatform()->Optimal2DFormatForContent(content)); Save(); CurrentState().drawTarget = newDT; CurrentState().deviceOffset = clipBounds.TopLeft(); mDT = newDT; } /** * Work out whether cairo will snap inter-glyph spacing to pixels. * * Layout does not align text to pixel boundaries, so, with font drawing * backends that snap glyph positions to pixels, it is important that * inter-glyph spacing within words is always an integer number of pixels. * This ensures that the drawing backend snaps all of the word's glyphs in the * same direction and so inter-glyph spacing remains the same. */ void gfxContext::GetRoundOffsetsToPixels(bool *aRoundX, bool *aRoundY) { *aRoundX = false; // Could do something fancy here for ScaleFactors of // AxisAlignedTransforms, but we leave things simple. // Not much point rounding if a matrix will mess things up anyway. // Also return false for non-cairo contexts. if (CurrentMatrix().HasNonTranslation() || mDT) { *aRoundY = false; return; } // All raster backends snap glyphs to pixels vertically. // Print backends set CAIRO_HINT_METRICS_OFF. *aRoundY = true; cairo_t *cr = GetCairo(); cairo_scaled_font_t *scaled_font = cairo_get_scaled_font(cr); // Sometimes hint metrics gets set for us, most notably for printing. cairo_font_options_t *font_options = cairo_font_options_create(); cairo_scaled_font_get_font_options(scaled_font, font_options); cairo_hint_metrics_t hint_metrics = cairo_font_options_get_hint_metrics(font_options); cairo_font_options_destroy(font_options); switch (hint_metrics) { case CAIRO_HINT_METRICS_OFF: *aRoundY = false; return; case CAIRO_HINT_METRICS_DEFAULT: // Here we mimic what cairo surface/font backends do. Printing // surfaces have already been handled by hint_metrics. The // fallback show_glyphs implementation composites pixel-aligned // glyph surfaces, so we just pick surface/font combinations that // override this. switch (cairo_scaled_font_get_type(scaled_font)) { #if CAIRO_HAS_DWRITE_FONT // dwrite backend is not in std cairo releases yet case CAIRO_FONT_TYPE_DWRITE: // show_glyphs is implemented on the font and so is used for // all surface types; however, it may pixel-snap depending on // the dwrite rendering mode if (!cairo_dwrite_scaled_font_get_force_GDI_classic(scaled_font) && gfxWindowsPlatform::GetPlatform()->DWriteMeasuringMode() == DWRITE_MEASURING_MODE_NATURAL) { return; } #endif case CAIRO_FONT_TYPE_QUARTZ: // Quartz surfaces implement show_glyphs for Quartz fonts if (cairo_surface_get_type(cairo_get_target(cr)) == CAIRO_SURFACE_TYPE_QUARTZ) { return; } default: break; } // fall through: case CAIRO_HINT_METRICS_ON: break; } *aRoundX = true; return; }