/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "VideoUtils.h" #include #include #include "CubebUtils.h" #include "ImageContainer.h" #include "MediaContainerType.h" #include "MediaResource.h" #include "TimeUnits.h" #include "VorbisUtils.h" #include "mozilla/Base64.h" #include "mozilla/dom/ContentChild.h" #include "mozilla/SchedulerGroup.h" #include "mozilla/SharedThreadPool.h" #include "mozilla/StaticPrefs_accessibility.h" #include "mozilla/StaticPrefs_media.h" #include "mozilla/TaskCategory.h" #include "mozilla/TaskQueue.h" #include "mozilla/Telemetry.h" #include "nsCharSeparatedTokenizer.h" #include "nsContentTypeParser.h" #include "nsIConsoleService.h" #include "nsINetworkLinkService.h" #include "nsIRandomGenerator.h" #include "nsMathUtils.h" #include "nsNetCID.h" #include "nsServiceManagerUtils.h" #include "nsThreadUtils.h" #include "AudioStream.h" namespace mozilla { using layers::PlanarYCbCrImage; using media::TimeUnit; CheckedInt64 SaferMultDiv(int64_t aValue, uint64_t aMul, uint64_t aDiv) { if (aMul > INT64_MAX || aDiv > INT64_MAX) { return CheckedInt64(INT64_MAX) + 1; // Return an invalid checked int. } int64_t mul = aMul; int64_t div = aDiv; int64_t major = aValue / div; int64_t remainder = aValue % div; return CheckedInt64(remainder) * mul / div + CheckedInt64(major) * mul; } // Converts from number of audio frames to microseconds, given the specified // audio rate. CheckedInt64 FramesToUsecs(int64_t aFrames, uint32_t aRate) { return SaferMultDiv(aFrames, USECS_PER_S, aRate); } TimeUnit FramesToTimeUnit(int64_t aFrames, uint32_t aRate) { if (MOZ_UNLIKELY(!aRate)) { return TimeUnit::Invalid(); } int64_t major = aFrames / aRate; int64_t remainder = aFrames % aRate; return TimeUnit::FromMicroseconds(major) * USECS_PER_S + (TimeUnit::FromMicroseconds(remainder) * USECS_PER_S) / aRate; } // Converts from microseconds to number of audio frames, given the specified // audio rate. CheckedInt64 UsecsToFrames(int64_t aUsecs, uint32_t aRate) { return SaferMultDiv(aUsecs, aRate, USECS_PER_S); } // Format TimeUnit as number of frames at given rate. CheckedInt64 TimeUnitToFrames(const TimeUnit& aTime, uint32_t aRate) { return aTime.IsValid() ? UsecsToFrames(aTime.ToMicroseconds(), aRate) : CheckedInt64(INT64_MAX) + 1; } nsresult SecondsToUsecs(double aSeconds, int64_t& aOutUsecs) { if (aSeconds * double(USECS_PER_S) > double(INT64_MAX)) { return NS_ERROR_FAILURE; } aOutUsecs = int64_t(aSeconds * double(USECS_PER_S)); return NS_OK; } static int32_t ConditionDimension(float aValue) { // This will exclude NaNs and too-big values. if (aValue > 1.0 && aValue <= float(INT32_MAX)) { return int32_t(NS_round(aValue)); } return 0; } void ScaleDisplayByAspectRatio(gfx::IntSize& aDisplay, float aAspectRatio) { if (aAspectRatio > 1.0) { // Increase the intrinsic width aDisplay.width = ConditionDimension(aAspectRatio * aDisplay.width); } else { // Increase the intrinsic height aDisplay.height = ConditionDimension(aDisplay.height / aAspectRatio); } } static int64_t BytesToTime(int64_t offset, int64_t length, int64_t durationUs) { NS_ASSERTION(length > 0, "Must have positive length"); double r = double(offset) / double(length); if (r > 1.0) { r = 1.0; } return int64_t(double(durationUs) * r); } media::TimeIntervals GetEstimatedBufferedTimeRanges( mozilla::MediaResource* aStream, int64_t aDurationUsecs) { media::TimeIntervals buffered; // Nothing to cache if the media takes 0us to play. if (aDurationUsecs <= 0 || !aStream) { return buffered; } // Special case completely cached files. This also handles local files. if (aStream->IsDataCachedToEndOfResource(0)) { buffered += media::TimeInterval(TimeUnit::Zero(), TimeUnit::FromMicroseconds(aDurationUsecs)); return buffered; } int64_t totalBytes = aStream->GetLength(); // If we can't determine the total size, pretend that we have nothing // buffered. This will put us in a state of eternally-low-on-undecoded-data // which is not great, but about the best we can do. if (totalBytes <= 0) { return buffered; } int64_t startOffset = aStream->GetNextCachedData(0); while (startOffset >= 0) { int64_t endOffset = aStream->GetCachedDataEnd(startOffset); // Bytes [startOffset..endOffset] are cached. NS_ASSERTION(startOffset >= 0, "Integer underflow in GetBuffered"); NS_ASSERTION(endOffset >= 0, "Integer underflow in GetBuffered"); int64_t startUs = BytesToTime(startOffset, totalBytes, aDurationUsecs); int64_t endUs = BytesToTime(endOffset, totalBytes, aDurationUsecs); if (startUs != endUs) { buffered += media::TimeInterval(TimeUnit::FromMicroseconds(startUs), TimeUnit::FromMicroseconds(endUs)); } startOffset = aStream->GetNextCachedData(endOffset); } return buffered; } void DownmixStereoToMono(mozilla::AudioDataValue* aBuffer, uint32_t aFrames) { MOZ_ASSERT(aBuffer); const int channels = 2; for (uint32_t fIdx = 0; fIdx < aFrames; ++fIdx) { #ifdef MOZ_SAMPLE_TYPE_FLOAT32 float sample = 0.0; #else int sample = 0; #endif // The sample of the buffer would be interleaved. sample = (aBuffer[fIdx * channels] + aBuffer[fIdx * channels + 1]) * 0.5f; aBuffer[fIdx * channels] = aBuffer[fIdx * channels + 1] = sample; } } uint32_t DecideAudioPlaybackChannels(const AudioInfo& info) { if (StaticPrefs::accessibility_monoaudio_enable()) { return 1; } if (StaticPrefs::media_forcestereo_enabled()) { return 2; } return info.mChannels; } uint32_t DecideAudioPlaybackSampleRate(const AudioInfo& aInfo) { bool resampling = StaticPrefs::media_resampling_enabled(); uint32_t rate = 0; if (resampling) { rate = 48000; } else if (aInfo.mRate == 44100 || aInfo.mRate == 48000) { // The original rate is of good quality and we want to minimize unecessary // resampling. The common scenario being that the sampling rate is one or // the other. This minimizes audio quality regressions but depends on // content providers not changing rates mid-stream. rate = aInfo.mRate; } else { // We will resample all data to match cubeb's preferred sampling rate. rate = AudioStream::GetPreferredRate(); } MOZ_DIAGNOSTIC_ASSERT(rate, "output rate can't be 0."); return rate; } bool IsDefaultPlaybackDeviceMono() { return CubebUtils::MaxNumberOfChannels() == 1; } bool IsVideoContentType(const nsCString& aContentType) { constexpr auto video = "video"_ns; return FindInReadable(video, aContentType); } bool IsValidVideoRegion(const gfx::IntSize& aFrame, const gfx::IntRect& aPicture, const gfx::IntSize& aDisplay) { return aFrame.width > 0 && aFrame.width <= PlanarYCbCrImage::MAX_DIMENSION && aFrame.height > 0 && aFrame.height <= PlanarYCbCrImage::MAX_DIMENSION && aFrame.width * aFrame.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT && aPicture.width > 0 && aPicture.width <= PlanarYCbCrImage::MAX_DIMENSION && aPicture.x < PlanarYCbCrImage::MAX_DIMENSION && aPicture.x + aPicture.width < PlanarYCbCrImage::MAX_DIMENSION && aPicture.height > 0 && aPicture.height <= PlanarYCbCrImage::MAX_DIMENSION && aPicture.y < PlanarYCbCrImage::MAX_DIMENSION && aPicture.y + aPicture.height < PlanarYCbCrImage::MAX_DIMENSION && aPicture.width * aPicture.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT && aDisplay.width > 0 && aDisplay.width <= PlanarYCbCrImage::MAX_DIMENSION && aDisplay.height > 0 && aDisplay.height <= PlanarYCbCrImage::MAX_DIMENSION && aDisplay.width * aDisplay.height <= MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT; } already_AddRefed GetMediaThreadPool(MediaThreadType aType) { const char* name; uint32_t threads = 4; switch (aType) { case MediaThreadType::PLATFORM_DECODER: name = "MediaPDecoder"; break; case MediaThreadType::WEBRTC_DECODER: name = "WebRTCPD"; break; case MediaThreadType::MDSM: name = "MediaDecoderStateMachine"; threads = 1; break; case MediaThreadType::PLATFORM_ENCODER: name = "MediaPEncoder"; break; default: MOZ_FALLTHROUGH_ASSERT("Unexpected MediaThreadType"); case MediaThreadType::SUPERVISOR: name = "MediaSupervisor"; break; } RefPtr pool = SharedThreadPool::Get(nsDependentCString(name), threads); // Ensure a larger stack for platform decoder threads if (aType == MediaThreadType::PLATFORM_DECODER) { const uint32_t minStackSize = 512 * 1024; uint32_t stackSize; MOZ_ALWAYS_SUCCEEDS(pool->GetThreadStackSize(&stackSize)); if (stackSize < minStackSize) { MOZ_ALWAYS_SUCCEEDS(pool->SetThreadStackSize(minStackSize)); } } return pool.forget(); } bool ExtractVPXCodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aLevel, uint8_t& aBitDepth) { uint8_t dummyChromaSubsampling = 1; VideoColorSpace dummyColorspace; return ExtractVPXCodecDetails(aCodec, aProfile, aLevel, aBitDepth, dummyChromaSubsampling, dummyColorspace); } bool ExtractVPXCodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aLevel, uint8_t& aBitDepth, uint8_t& aChromaSubsampling, VideoColorSpace& aColorSpace) { // Assign default value. aChromaSubsampling = 1; auto splitter = aCodec.Split(u'.'); auto fieldsItr = splitter.begin(); auto fourCC = *fieldsItr; if (!fourCC.EqualsLiteral("vp09") && !fourCC.EqualsLiteral("vp08")) { // Invalid 4CC return false; } ++fieldsItr; uint8_t* fields[] = {&aProfile, &aLevel, &aBitDepth, &aChromaSubsampling, &aColorSpace.mPrimaryId, &aColorSpace.mTransferId, &aColorSpace.mMatrixId, &aColorSpace.mRangeId}; int fieldsCount = 0; nsresult rv; for (; fieldsItr != splitter.end(); ++fieldsItr, ++fieldsCount) { if (fieldsCount > 7) { // No more than 8 fields are expected. return false; } *(fields[fieldsCount]) = static_cast((*fieldsItr).ToInteger(&rv, 10)); // We got invalid field value, parsing error. NS_ENSURE_SUCCESS(rv, false); } // Mandatory Fields // .... // Optional Fields // ... // . // First three fields are mandatory(we have parsed 4CC). if (fieldsCount < 3) { // Invalid number of fields. return false; } // Start to validate the parsing value. // profile should be 0,1,2 or 3. // See https://www.webmproject.org/vp9/profiles/ // We don't support more than profile 2 if (aProfile > 2) { // Invalid profile. return false; } // level, See https://www.webmproject.org/vp9/mp4/#semantics_1 switch (aLevel) { case 10: case 11: case 20: case 21: case 30: case 31: case 40: case 41: case 50: case 51: case 52: case 60: case 61: case 62: break; default: // Invalid level. return false; } if (aBitDepth != 8 && aBitDepth != 10 && aBitDepth != 12) { // Invalid bitDepth: return false; } if (fieldsCount == 3) { // No more options. return true; } // chromaSubsampling should be 0,1,2,3...4~7 are reserved. if (aChromaSubsampling > 3) { return false; } if (fieldsCount == 4) { // No more options. return true; } // It is an integer that is defined by the "Colour primaries" // section of ISO/IEC 23001-8:2016 Table 2. // We treat reserved value as false case. const auto& primaryId = aColorSpace.mPrimaryId; if (primaryId == 0 || primaryId == 3 || primaryId > 22) { // reserved value. return false; } if (primaryId > 12 && primaryId < 22) { // 13~21 are reserved values. return false; } if (fieldsCount == 5) { // No more options. return true; } // It is an integer that is defined by the // "Transfer characteristics" section of ISO/IEC 23001-8:2016 Table 3. // We treat reserved value as false case. const auto& transferId = aColorSpace.mTransferId; if (transferId == 0 || transferId == 3 || transferId > 18) { // reserved value. return false; } if (fieldsCount == 6) { // No more options. return true; } // It is an integer that is defined by the // "Matrix coefficients" section of ISO/IEC 23001-8:2016 Table 4. // We treat reserved value as false case. const auto& matrixId = aColorSpace.mMatrixId; if (matrixId == 3 || matrixId > 11) { return false; } // If matrixCoefficients is 0 (RGB), then chroma subsampling MUST be 3 // (4:4:4). if (matrixId == 0 && aChromaSubsampling != 3) { return false; } if (fieldsCount == 7) { // No more options. return true; } // videoFullRangeFlag indicates the black level and range of the luma and // chroma signals. 0 = legal range (e.g. 16-235 for 8 bit sample depth); // 1 = full range (e.g. 0-255 for 8-bit sample depth). const auto& rangeId = aColorSpace.mRangeId; return rangeId <= 1; } bool ExtractH264CodecDetails(const nsAString& aCodec, uint8_t& aProfile, uint8_t& aConstraint, uint8_t& aLevel) { // H.264 codecs parameters have a type defined as avcN.PPCCLL, where // N = avc type. avc3 is avcc with SPS & PPS implicit (within stream) // PP = profile_idc, CC = constraint_set flags, LL = level_idc. // We ignore the constraint_set flags, as it's not clear from any // documentation what constraints the platform decoders support. // See // http://blog.pearce.org.nz/2013/11/what-does-h264avc1-codecs-parameters.html // for more details. if (aCodec.Length() != strlen("avc1.PPCCLL")) { return false; } // Verify the codec starts with "avc1." or "avc3.". const nsAString& sample = Substring(aCodec, 0, 5); if (!sample.EqualsASCII("avc1.") && !sample.EqualsASCII("avc3.")) { return false; } // Extract the profile_idc, constraint_flags and level_idc. nsresult rv = NS_OK; aProfile = Substring(aCodec, 5, 2).ToInteger(&rv, 16); NS_ENSURE_SUCCESS(rv, false); // Constraint flags are stored on the 6 most significant bits, first two bits // are reserved_zero_2bits. aConstraint = Substring(aCodec, 7, 2).ToInteger(&rv, 16); NS_ENSURE_SUCCESS(rv, false); aLevel = Substring(aCodec, 9, 2).ToInteger(&rv, 16); NS_ENSURE_SUCCESS(rv, false); if (aLevel == 9) { aLevel = H264_LEVEL_1_b; } else if (aLevel <= 5) { aLevel *= 10; } return true; } nsresult GenerateRandomName(nsCString& aOutSalt, uint32_t aLength) { nsresult rv; nsCOMPtr rg = do_GetService("@mozilla.org/security/random-generator;1", &rv); if (NS_FAILED(rv)) { return rv; } // For each three bytes of random data we will get four bytes of ASCII. const uint32_t requiredBytesLength = static_cast((aLength + 3) / 4 * 3); uint8_t* buffer; rv = rg->GenerateRandomBytes(requiredBytesLength, &buffer); if (NS_FAILED(rv)) { return rv; } nsCString temp; nsDependentCSubstring randomData(reinterpret_cast(buffer), requiredBytesLength); rv = Base64Encode(randomData, temp); free(buffer); buffer = nullptr; if (NS_FAILED(rv)) { return rv; } aOutSalt = std::move(temp); return NS_OK; } nsresult GenerateRandomPathName(nsCString& aOutSalt, uint32_t aLength) { nsresult rv = GenerateRandomName(aOutSalt, aLength); if (NS_FAILED(rv)) { return rv; } // Base64 characters are alphanumeric (a-zA-Z0-9) and '+' and '/', so we need // to replace illegal characters -- notably '/' aOutSalt.ReplaceChar(FILE_PATH_SEPARATOR FILE_ILLEGAL_CHARACTERS, '_'); return NS_OK; } already_AddRefed CreateMediaDecodeTaskQueue(const char* aName) { RefPtr queue = new TaskQueue( GetMediaThreadPool(MediaThreadType::PLATFORM_DECODER), aName); return queue.forget(); } void SimpleTimer::Cancel() { if (mTimer) { #ifdef DEBUG nsCOMPtr target; mTimer->GetTarget(getter_AddRefs(target)); bool onCurrent; nsresult rv = target->IsOnCurrentThread(&onCurrent); MOZ_ASSERT(NS_SUCCEEDED(rv) && onCurrent); #endif mTimer->Cancel(); mTimer = nullptr; } mTask = nullptr; } NS_IMETHODIMP SimpleTimer::Notify(nsITimer* timer) { RefPtr deathGrip(this); if (mTask) { mTask->Run(); mTask = nullptr; } return NS_OK; } NS_IMETHODIMP SimpleTimer::GetName(nsACString& aName) { aName.AssignLiteral("SimpleTimer"); return NS_OK; } nsresult SimpleTimer::Init(nsIRunnable* aTask, uint32_t aTimeoutMs, nsIEventTarget* aTarget) { nsresult rv; // Get target thread first, so we don't have to cancel the timer if it fails. nsCOMPtr target; if (aTarget) { target = aTarget; } else { target = GetMainThreadEventTarget(); if (!target) { return NS_ERROR_NOT_AVAILABLE; } } rv = NS_NewTimerWithCallback(getter_AddRefs(mTimer), this, aTimeoutMs, nsITimer::TYPE_ONE_SHOT, target); if (NS_FAILED(rv)) { return rv; } mTask = aTask; return NS_OK; } NS_IMPL_ISUPPORTS(SimpleTimer, nsITimerCallback, nsINamed) already_AddRefed SimpleTimer::Create(nsIRunnable* aTask, uint32_t aTimeoutMs, nsIEventTarget* aTarget) { RefPtr t(new SimpleTimer()); if (NS_FAILED(t->Init(aTask, aTimeoutMs, aTarget))) { return nullptr; } return t.forget(); } void LogToBrowserConsole(const nsAString& aMsg) { if (!NS_IsMainThread()) { nsString msg(aMsg); nsCOMPtr task = NS_NewRunnableFunction( "LogToBrowserConsole", [msg]() { LogToBrowserConsole(msg); }); SchedulerGroup::Dispatch(TaskCategory::Other, task.forget()); return; } nsCOMPtr console( do_GetService("@mozilla.org/consoleservice;1")); if (!console) { NS_WARNING("Failed to log message to console."); return; } nsAutoString msg(aMsg); console->LogStringMessage(msg.get()); } bool ParseCodecsString(const nsAString& aCodecs, nsTArray& aOutCodecs) { aOutCodecs.Clear(); bool expectMoreTokens = false; nsCharSeparatedTokenizer tokenizer(aCodecs, ','); while (tokenizer.hasMoreTokens()) { const nsAString& token = tokenizer.nextToken(); expectMoreTokens = tokenizer.separatorAfterCurrentToken(); aOutCodecs.AppendElement(token); } if (expectMoreTokens) { // Last codec name was empty return false; } return true; } bool ParseMIMETypeString(const nsAString& aMIMEType, nsString& aOutContainerType, nsTArray& aOutCodecs) { nsContentTypeParser parser(aMIMEType); nsresult rv = parser.GetType(aOutContainerType); if (NS_FAILED(rv)) { return false; } nsString codecsStr; parser.GetParameter("codecs", codecsStr); return ParseCodecsString(codecsStr, aOutCodecs); } template static bool StartsWith(const nsACString& string, const char (&prefix)[N]) { if (N - 1 > string.Length()) { return false; } return memcmp(string.Data(), prefix, N - 1) == 0; } bool IsH264CodecString(const nsAString& aCodec) { uint8_t profile = 0; uint8_t constraint = 0; uint8_t level = 0; return ExtractH264CodecDetails(aCodec, profile, constraint, level); } bool IsAACCodecString(const nsAString& aCodec) { return aCodec.EqualsLiteral("mp4a.40.2") || // MPEG4 AAC-LC aCodec.EqualsLiteral( "mp4a.40.02") || // MPEG4 AAC-LC(for compatibility) aCodec.EqualsLiteral("mp4a.40.5") || // MPEG4 HE-AAC aCodec.EqualsLiteral( "mp4a.40.05") || // MPEG4 HE-AAC(for compatibility) aCodec.EqualsLiteral("mp4a.67") || // MPEG2 AAC-LC aCodec.EqualsLiteral("mp4a.40.29"); // MPEG4 HE-AACv2 } bool IsVP8CodecString(const nsAString& aCodec) { uint8_t profile = 0; uint8_t level = 0; uint8_t bitDepth = 0; return aCodec.EqualsLiteral("vp8") || aCodec.EqualsLiteral("vp8.0") || (StartsWith(NS_ConvertUTF16toUTF8(aCodec), "vp08") && ExtractVPXCodecDetails(aCodec, profile, level, bitDepth)); } bool IsVP9CodecString(const nsAString& aCodec) { uint8_t profile = 0; uint8_t level = 0; uint8_t bitDepth = 0; return aCodec.EqualsLiteral("vp9") || aCodec.EqualsLiteral("vp9.0") || (StartsWith(NS_ConvertUTF16toUTF8(aCodec), "vp09") && ExtractVPXCodecDetails(aCodec, profile, level, bitDepth)); } bool IsAV1CodecString(const nsAString& aCodec) { return aCodec.EqualsLiteral("av1") || StartsWith(NS_ConvertUTF16toUTF8(aCodec), "av01"); } UniquePtr CreateTrackInfoWithMIMEType( const nsACString& aCodecMIMEType) { UniquePtr trackInfo; if (StartsWith(aCodecMIMEType, "audio/")) { trackInfo.reset(new AudioInfo()); trackInfo->mMimeType = aCodecMIMEType; } else if (StartsWith(aCodecMIMEType, "video/")) { trackInfo.reset(new VideoInfo()); trackInfo->mMimeType = aCodecMIMEType; } return trackInfo; } UniquePtr CreateTrackInfoWithMIMETypeAndContainerTypeExtraParameters( const nsACString& aCodecMIMEType, const MediaContainerType& aContainerType) { UniquePtr trackInfo = CreateTrackInfoWithMIMEType(aCodecMIMEType); if (trackInfo) { VideoInfo* videoInfo = trackInfo->GetAsVideoInfo(); if (videoInfo) { Maybe maybeWidth = aContainerType.ExtendedType().GetWidth(); if (maybeWidth && *maybeWidth > 0) { videoInfo->mImage.width = *maybeWidth; videoInfo->mDisplay.width = *maybeWidth; } Maybe maybeHeight = aContainerType.ExtendedType().GetHeight(); if (maybeHeight && *maybeHeight > 0) { videoInfo->mImage.height = *maybeHeight; videoInfo->mDisplay.height = *maybeHeight; } } else if (trackInfo->GetAsAudioInfo()) { AudioInfo* audioInfo = trackInfo->GetAsAudioInfo(); Maybe maybeChannels = aContainerType.ExtendedType().GetChannels(); if (maybeChannels && *maybeChannels > 0) { audioInfo->mChannels = *maybeChannels; } Maybe maybeSamplerate = aContainerType.ExtendedType().GetSamplerate(); if (maybeSamplerate && *maybeSamplerate > 0) { audioInfo->mRate = *maybeSamplerate; } } } return trackInfo; } bool OnCellularConnection() { uint32_t linkType = nsINetworkLinkService::LINK_TYPE_UNKNOWN; if (XRE_IsContentProcess()) { mozilla::dom::ContentChild* cpc = mozilla::dom::ContentChild::GetSingleton(); if (!cpc) { NS_WARNING("Can't get ContentChild singleton in content process!"); return false; } linkType = cpc->NetworkLinkType(); } else { nsresult rv; nsCOMPtr nls = do_GetService(NS_NETWORK_LINK_SERVICE_CONTRACTID, &rv); if (NS_FAILED(rv)) { NS_WARNING("Can't get nsINetworkLinkService."); return false; } rv = nls->GetLinkType(&linkType); if (NS_FAILED(rv)) { NS_WARNING("Can't get network link type."); return false; } } switch (linkType) { case nsINetworkLinkService::LINK_TYPE_UNKNOWN: case nsINetworkLinkService::LINK_TYPE_ETHERNET: case nsINetworkLinkService::LINK_TYPE_USB: case nsINetworkLinkService::LINK_TYPE_WIFI: return false; case nsINetworkLinkService::LINK_TYPE_WIMAX: case nsINetworkLinkService::LINK_TYPE_2G: case nsINetworkLinkService::LINK_TYPE_3G: case nsINetworkLinkService::LINK_TYPE_4G: return true; } return false; } } // end namespace mozilla