/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is mozilla.org code. * * The Initial Developer of the Original Code is * Netscape Communications Corporation. * Portions created by the Initial Developer are Copyright (C) 1998 * the Initial Developer. All Rights Reserved. * * Contributor(s): * * Alternatively, the contents of this file may be used under the terms of * either of the GNU General Public License Version 2 or later (the "GPL"), * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef NSCOORD_H #define NSCOORD_H #include "nscore.h" #include "nsMathUtils.h" #include #include #include "nsDebug.h" /* * Basic type used for the geometry classes. * * Normally all coordinates are maintained in an app unit coordinate * space. An app unit is 1/60th of a CSS device pixel, which is, in turn * an integer number of device pixels, such at the CSS DPI is as close to * 96dpi as possible. */ // This controls whether we're using integers or floats for coordinates. We // want to eventually use floats. If you change this, you need to manually // change the definition of nscoord in gfx/idl/gfxtypes.idl. //#define NS_COORD_IS_FLOAT inline float NS_IEEEPositiveInfinity() { union { PRUint32 mPRUint32; float mFloat; } pun; pun.mPRUint32 = 0x7F800000; return pun.mFloat; } inline PRBool NS_IEEEIsNan(float aF) { union { PRUint32 mBits; float mFloat; } pun; pun.mFloat = aF; return (pun.mBits & 0x7F800000) == 0x7F800000 && (pun.mBits & 0x007FFFFF) != 0; } #ifdef NS_COORD_IS_FLOAT typedef float nscoord; #define nscoord_MAX NS_IEEEPositiveInfinity() #else typedef PRInt32 nscoord; #define nscoord_MAX nscoord(1 << 30) #endif #define nscoord_MIN (-nscoord_MAX) inline void VERIFY_COORD(nscoord aCoord) { #ifdef NS_COORD_IS_FLOAT NS_ASSERTION(floorf(aCoord) == aCoord, "Coords cannot have fractions"); #endif } inline nscoord NSCoordMultiply(nscoord aCoord, float aVal) { VERIFY_COORD(aCoord); #ifdef NS_COORD_IS_FLOAT return floorf(aCoord*aVal); #else return (PRInt32)(aCoord*aVal); #endif } inline nscoord NSCoordMultiply(nscoord aCoord, PRInt32 aVal) { VERIFY_COORD(aCoord); return aCoord*aVal; } inline nscoord NSCoordDivide(nscoord aCoord, float aVal) { VERIFY_COORD(aCoord); #ifdef NS_COORD_IS_FLOAT return floorf(aCoord/aVal); #else return (PRInt32)(aCoord/aVal); #endif } inline nscoord NSCoordDivide(nscoord aCoord, PRInt32 aVal) { VERIFY_COORD(aCoord); #ifdef NS_COORD_IS_FLOAT return floorf(aCoord/aVal); #else return aCoord/aVal; #endif } /** * Returns a + b, capping the sum to nscoord_MAX. * * This function assumes that neither argument is nscoord_MIN. * * Note: If/when we start using floats for nscoords, this function won't be as * necessary. Normal float addition correctly handles adding with infinity, * assuming we aren't adding nscoord_MIN. (-infinity) */ inline nscoord NSCoordSaturatingAdd(nscoord a, nscoord b) { VERIFY_COORD(a); VERIFY_COORD(b); NS_ASSERTION(a != nscoord_MIN && b != nscoord_MIN, "NSCoordSaturatingAdd got nscoord_MIN as argument"); #ifdef NS_COORD_IS_FLOAT // Float math correctly handles a+b, given that neither is -infinity. return a + b; #else if (a == nscoord_MAX || b == nscoord_MAX) { // infinity + anything = anything + infinity = infinity return nscoord_MAX; } else { // a + b = a + b NS_ASSERTION(a < nscoord_MAX && b < nscoord_MAX, "Doing nscoord addition with values > nscoord_MAX"); NS_ASSERTION((PRInt64)a + (PRInt64)b > (PRInt64)nscoord_MIN, "nscoord addition will reach or pass nscoord_MIN"); // This one's only a warning because the PR_MIN below means that // we'll handle this case correctly. NS_WARN_IF_FALSE((PRInt64)a + (PRInt64)b < (PRInt64)nscoord_MAX, "nscoord addition capped to nscoord_MAX"); // Cap the result, just in case we're dealing with numbers near nscoord_MAX return PR_MIN(nscoord_MAX, a + b); } #endif } /** * Returns a - b, gracefully handling cases involving nscoord_MAX. * This function assumes that neither argument is nscoord_MIN. * * The behavior is as follows: * * a) infinity - infinity -> infMinusInfResult * b) N - infinity -> 0 (unexpected -- triggers NOTREACHED) * c) infinity - N -> infinity * d) N1 - N2 -> N1 - N2 * * Note: For float nscoords, cases (c) and (d) are handled by normal float * math. We still need to explicitly specify the behavior for cases (a) * and (b), though. (Under normal float math, those cases would return NaN * and -infinity, respectively.) */ inline nscoord NSCoordSaturatingSubtract(nscoord a, nscoord b, nscoord infMinusInfResult) { VERIFY_COORD(a); VERIFY_COORD(b); NS_ASSERTION(a != nscoord_MIN && b != nscoord_MIN, "NSCoordSaturatingSubtract got nscoord_MIN as argument"); if (b == nscoord_MAX) { if (a == nscoord_MAX) { // case (a) return infMinusInfResult; } else { // case (b) NS_NOTREACHED("Attempted to subtract [n - nscoord_MAX]"); return 0; } } else { #ifdef NS_COORD_IS_FLOAT // case (c) and (d) for floats. (float math handles both) return a - b; #else if (a == nscoord_MAX) { // case (c) for integers return nscoord_MAX; } else { // case (d) for integers NS_ASSERTION(a < nscoord_MAX && b < nscoord_MAX, "Doing nscoord subtraction with values > nscoord_MAX"); NS_ASSERTION((PRInt64)a - (PRInt64)b > (PRInt64)nscoord_MIN, "nscoord subtraction will reach or pass nscoord_MIN"); // This one's only a warning because the PR_MIN below means that // we'll handle this case correctly. NS_WARN_IF_FALSE((PRInt64)a - (PRInt64)b < (PRInt64)nscoord_MAX, "nscoord subtraction capped to nscoord_MAX"); // Cap the result, in case we're dealing with numbers near nscoord_MAX return PR_MIN(nscoord_MAX, a - b); } } #endif } /** * Convert an nscoord to a PRInt32. This *does not* do rounding because * coords are never fractional. They can be out of range, so this does * clamp out of bounds coord values to PR_INT32_MIN and PR_INT32_MAX. */ inline PRInt32 NSCoordToInt(nscoord aCoord) { VERIFY_COORD(aCoord); #ifdef NS_COORD_IS_FLOAT NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in int conversion"); if (aCoord < -2147483648.0f) { // -2147483648 is the smallest 32-bit signed integer that can be // exactly represented as a float return PR_INT32_MIN; } else if (aCoord > 2147483520.0f) { // 2147483520 is the largest 32-bit signed integer that can be // exactly represented as an IEEE float return PR_INT32_MAX; } else { return (PRInt32)aCoord; } #else return aCoord; #endif } inline float NSCoordToFloat(nscoord aCoord) { VERIFY_COORD(aCoord); #ifdef NS_COORD_IS_FLOAT NS_ASSERTION(!NS_IEEEIsNan(aCoord), "NaN encountered in float conversion"); #endif return (float)aCoord; } /* * Coord Rounding Functions */ inline nscoord NSToCoordFloor(float aValue) { return nscoord(NS_floorf(aValue)); } inline nscoord NSToCoordCeil(float aValue) { return nscoord(NS_ceilf(aValue)); } inline nscoord NSToCoordRound(float aValue) { return nscoord(NS_floorf(aValue + 0.5f)); } /* * Int Rounding Functions */ inline PRInt32 NSToIntFloor(float aValue) { return PRInt32(NS_floorf(aValue)); } inline PRInt32 NSToIntCeil(float aValue) { return PRInt32(NS_ceilf(aValue)); } inline PRInt32 NSToIntRound(float aValue) { return NS_lroundf(aValue); } /* * App Unit/Pixel conversions */ inline nscoord NSFloatPixelsToAppUnits(float aPixels, PRInt32 aAppUnitsPerPixel) { float product = aPixels * aAppUnitsPerPixel; nscoord result; #ifdef NS_COORD_IS_FLOAT // No need to bounds-check if converting float to float result = NSToCoordRound(product); #else // Bounds-check before converting out of float, to avoid overflow if (product >= nscoord_MAX) { NS_WARNING("Overflowed nscoord_MAX in conversion to nscoord"); result = nscoord_MAX; } else if (product <= nscoord_MIN) { NS_WARNING("Overflowed nscoord_MIN in conversion to nscoord"); result = nscoord_MIN; } else { result = NSToCoordRound(product); } #endif VERIFY_COORD(result); return result; } inline nscoord NSIntPixelsToAppUnits(PRInt32 aPixels, PRInt32 aAppUnitsPerPixel) { // The cast to nscoord makes sure we don't overflow if we ever change // nscoord to float nscoord r = aPixels * (nscoord)aAppUnitsPerPixel; VERIFY_COORD(r); return r; } inline float NSAppUnitsToFloatPixels(nscoord aAppUnits, PRInt32 aAppUnitsPerPixel) { return (float(aAppUnits) / aAppUnitsPerPixel); } inline PRInt32 NSAppUnitsToIntPixels(nscoord aAppUnits, PRInt32 aAppUnitsPerPixel) { return NSToIntRound(float(aAppUnits) / aAppUnitsPerPixel); } /// handy constants #define TWIPS_PER_POINT_INT 20 #define TWIPS_PER_POINT_FLOAT 20.0f /* * Twips/unit conversions */ inline nscoord NSUnitsToTwips(float aValue, float aPointsPerUnit) { return NSToCoordRound(aValue * aPointsPerUnit * TWIPS_PER_POINT_FLOAT); } inline float NSTwipsToUnits(nscoord aTwips, float aUnitsPerPoint) { return (aTwips * (aUnitsPerPoint / TWIPS_PER_POINT_FLOAT)); } /// Unit conversion macros //@{ #define NS_POINTS_TO_TWIPS(x) NSUnitsToTwips((x), 1.0f) #define NS_INCHES_TO_TWIPS(x) NSUnitsToTwips((x), 72.0f) // 72 points per inch #define NS_FEET_TO_TWIPS(x) NSUnitsToTwips((x), (72.0f * 12.0f)) // 12 inches per foot #define NS_MILES_TO_TWIPS(x) NSUnitsToTwips((x), (72.0f * 12.0f * 5280.0f)) // 5280 feet per mile #define NS_MILLIMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (72.0f * 0.03937f)) #define NS_CENTIMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (72.0f * 0.3937f)) #define NS_METERS_TO_TWIPS(x) NSUnitsToTwips((x), (72.0f * 39.37f)) #define NS_KILOMETERS_TO_TWIPS(x) NSUnitsToTwips((x), (72.0f * 39370.0f)) #define NS_PICAS_TO_TWIPS(x) NSUnitsToTwips((x), 12.0f) // 12 points per pica #define NS_DIDOTS_TO_TWIPS(x) NSUnitsToTwips((x), (16.0f / 15.0f)) // 15 didots per 16 points #define NS_CICEROS_TO_TWIPS(x) NSUnitsToTwips((x), (12.0f * (16.0f / 15.0f))) // 12 didots per cicero #define NS_TWIPS_TO_POINTS(x) NSTwipsToUnits((x), 1.0f) #define NS_TWIPS_TO_INCHES(x) NSTwipsToUnits((x), 1.0f / 72.0f) #define NS_TWIPS_TO_FEET(x) NSTwipsToUnits((x), 1.0f / (72.0f * 12.0f)) #define NS_TWIPS_TO_MILES(x) NSTwipsToUnits((x), 1.0f / (72.0f * 12.0f * 5280.0f)) #define NS_TWIPS_TO_MILLIMETERS(x) NSTwipsToUnits((x), 1.0f / (72.0f * 0.03937f)) #define NS_TWIPS_TO_CENTIMETERS(x) NSTwipsToUnits((x), 1.0f / (72.0f * 0.3937f)) #define NS_TWIPS_TO_METERS(x) NSTwipsToUnits((x), 1.0f / (72.0f * 39.37f)) #define NS_TWIPS_TO_KILOMETERS(x) NSTwipsToUnits((x), 1.0f / (72.0f * 39370.0f)) #define NS_TWIPS_TO_PICAS(x) NSTwipsToUnits((x), 1.0f / 12.0f) #define NS_TWIPS_TO_DIDOTS(x) NSTwipsToUnits((x), 1.0f / (16.0f / 15.0f)) #define NS_TWIPS_TO_CICEROS(x) NSTwipsToUnits((x), 1.0f / (12.0f * (16.0f / 15.0f))) //@} #endif /* NSCOORD_H */