/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ /* vim: set ts=8 sts=4 et sw=4 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ // // This file implements a garbage-cycle collector based on the paper // // Concurrent Cycle Collection in Reference Counted Systems // Bacon & Rajan (2001), ECOOP 2001 / Springer LNCS vol 2072 // // We are not using the concurrent or acyclic cases of that paper; so // the green, red and orange colors are not used. // // The collector is based on tracking pointers of four colors: // // Black nodes are definitely live. If we ever determine a node is // black, it's ok to forget about, drop from our records. // // White nodes are definitely garbage cycles. Once we finish with our // scanning, we unlink all the white nodes and expect that by // unlinking them they will self-destruct (since a garbage cycle is // only keeping itself alive with internal links, by definition). // // Snow-white is an addition to the original algorithm. Snow-white object // has reference count zero and is just waiting for deletion. // // Grey nodes are being scanned. Nodes that turn grey will turn // either black if we determine that they're live, or white if we // determine that they're a garbage cycle. After the main collection // algorithm there should be no grey nodes. // // Purple nodes are *candidates* for being scanned. They are nodes we // haven't begun scanning yet because they're not old enough, or we're // still partway through the algorithm. // // XPCOM objects participating in garbage-cycle collection are obliged // to inform us when they ought to turn purple; that is, when their // refcount transitions from N+1 -> N, for nonzero N. Furthermore we // require that *after* an XPCOM object has informed us of turning // purple, they will tell us when they either transition back to being // black (incremented refcount) or are ultimately deleted. // Safety: // // An XPCOM object is either scan-safe or scan-unsafe, purple-safe or // purple-unsafe. // // An nsISupports object is scan-safe if: // // - It can be QI'ed to |nsXPCOMCycleCollectionParticipant|, though // this operation loses ISupports identity (like nsIClassInfo). // - Additionally, the operation |traverse| on the resulting // nsXPCOMCycleCollectionParticipant does not cause *any* refcount // adjustment to occur (no AddRef / Release calls). // // A non-nsISupports ("native") object is scan-safe by explicitly // providing its nsCycleCollectionParticipant. // // An object is purple-safe if it satisfies the following properties: // // - The object is scan-safe. // // When we receive a pointer |ptr| via // |nsCycleCollector::suspect(ptr)|, we assume it is purple-safe. We // can check the scan-safety, but have no way to ensure the // purple-safety; objects must obey, or else the entire system falls // apart. Don't involve an object in this scheme if you can't // guarantee its purple-safety. The easiest way to ensure that an // object is purple-safe is to use nsCycleCollectingAutoRefCnt. // // When we have a scannable set of purple nodes ready, we begin // our walks. During the walks, the nodes we |traverse| should only // feed us more scan-safe nodes, and should not adjust the refcounts // of those nodes. // // We do not |AddRef| or |Release| any objects during scanning. We // rely on the purple-safety of the roots that call |suspect| to // hold, such that we will clear the pointer from the purple buffer // entry to the object before it is destroyed. The pointers that are // merely scan-safe we hold only for the duration of scanning, and // there should be no objects released from the scan-safe set during // the scan. // // We *do* call |Root| and |Unroot| on every white object, on // either side of the calls to |Unlink|. This keeps the set of white // objects alive during the unlinking. // #if !defined(__MINGW32__) #ifdef WIN32 #include #include #endif #endif #include "base/process_util.h" /* This must occur *after* base/process_util.h to avoid typedefs conflicts. */ #include "mozilla/MemoryReporting.h" #include "mozilla/Util.h" #include "mozilla/CycleCollectedJSRuntime.h" #include "nsCycleCollectionParticipant.h" #include "nsCycleCollectionNoteRootCallback.h" #include "nsHashKeys.h" #include "nsDeque.h" #include "nsCycleCollector.h" #include "nsThreadUtils.h" #include "prenv.h" #include "prprf.h" #include "plstr.h" #include "nsPrintfCString.h" #include "nsTArray.h" #include "nsIConsoleService.h" #include "nsTArray.h" #include "mozilla/Attributes.h" #include "nsICycleCollectorListener.h" #include "nsIMemoryReporter.h" #include "nsIFile.h" #include "nsDirectoryServiceDefs.h" #include "nsMemoryInfoDumper.h" #include "xpcpublic.h" #include "nsXPCOMPrivate.h" #include "GeckoProfiler.h" #include #include #include #include "mozilla/CondVar.h" #include "mozilla/Likely.h" #include "mozilla/mozPoisonWrite.h" #include "mozilla/Mutex.h" #include "mozilla/Telemetry.h" #include "mozilla/ThreadLocal.h" using namespace mozilla; //#define COLLECT_TIME_DEBUG // Enable assertions that are useful for diagnosing errors in graph construction. //#define DEBUG_CC_GRAPH #define DEFAULT_SHUTDOWN_COLLECTIONS 5 // One to do the freeing, then another to detect there is no more work to do. #define NORMAL_SHUTDOWN_COLLECTIONS 2 // Cycle collector environment variables // // XPCOM_CC_LOG_ALL: If defined, always log cycle collector heaps. // // XPCOM_CC_LOG_SHUTDOWN: If defined, log cycle collector heaps at shutdown. // // XPCOM_CC_ALL_TRACES_AT_SHUTDOWN: If defined, any cycle collector // logging done at shutdown will be WantAllTraces, which disables // various cycle collector optimizations to give a fuller picture of // the heap. // // XPCOM_CC_RUN_DURING_SHUTDOWN: In non-DEBUG or builds, if this is set, // run cycle collections at shutdown. // // MOZ_CC_LOG_DIRECTORY: The directory in which logs are placed (such as // logs from XPCOM_CC_LOG_ALL and XPCOM_CC_LOG_SHUTDOWN, or other uses // of nsICycleCollectorListener) MOZ_NEVER_INLINE void CC_AbortIfNull(void *ptr) { if (!ptr) MOZ_CRASH(); } // Various parameters of this collector can be tuned using environment // variables. struct nsCycleCollectorParams { bool mLogAll; bool mLogShutdown; bool mAllTracesAtShutdown; nsCycleCollectorParams() : mLogAll (PR_GetEnv("XPCOM_CC_LOG_ALL") != NULL), mLogShutdown (PR_GetEnv("XPCOM_CC_LOG_SHUTDOWN") != NULL), mAllTracesAtShutdown (PR_GetEnv("XPCOM_CC_ALL_TRACES_AT_SHUTDOWN") != NULL) { } }; #ifdef COLLECT_TIME_DEBUG class TimeLog { public: TimeLog() : mLastCheckpoint(TimeStamp::Now()) {} void Checkpoint(const char* aEvent) { TimeStamp now = TimeStamp::Now(); uint32_t dur = (uint32_t) ((now - mLastCheckpoint).ToMilliseconds()); if (dur > 0) { printf("cc: %s took %dms\n", aEvent, dur); } mLastCheckpoint = now; } private: TimeStamp mLastCheckpoint; }; #else class TimeLog { public: TimeLog() {} void Checkpoint(const char* aEvent) {} }; #endif //////////////////////////////////////////////////////////////////////// // Base types //////////////////////////////////////////////////////////////////////// struct PtrInfo; class EdgePool { public: // EdgePool allocates arrays of void*, primarily to hold PtrInfo*. // However, at the end of a block, the last two pointers are a null // and then a void** pointing to the next block. This allows // EdgePool::Iterators to be a single word but still capable of crossing // block boundaries. EdgePool() { mSentinelAndBlocks[0].block = nullptr; mSentinelAndBlocks[1].block = nullptr; } ~EdgePool() { MOZ_ASSERT(!mSentinelAndBlocks[0].block && !mSentinelAndBlocks[1].block, "Didn't call Clear()?"); } void Clear() { Block *b = Blocks(); while (b) { Block *next = b->Next(); delete b; b = next; } mSentinelAndBlocks[0].block = nullptr; mSentinelAndBlocks[1].block = nullptr; } private: struct Block; union PtrInfoOrBlock { // Use a union to avoid reinterpret_cast and the ensuing // potential aliasing bugs. PtrInfo *ptrInfo; Block *block; }; struct Block { enum { BlockSize = 16 * 1024 }; PtrInfoOrBlock mPointers[BlockSize]; Block() { mPointers[BlockSize - 2].block = nullptr; // sentinel mPointers[BlockSize - 1].block = nullptr; // next block pointer } Block*& Next() { return mPointers[BlockSize - 1].block; } PtrInfoOrBlock* Start() { return &mPointers[0]; } PtrInfoOrBlock* End() { return &mPointers[BlockSize - 2]; } }; // Store the null sentinel so that we can have valid iterators // before adding any edges and without adding any blocks. PtrInfoOrBlock mSentinelAndBlocks[2]; Block*& Blocks() { return mSentinelAndBlocks[1].block; } Block* Blocks() const { return mSentinelAndBlocks[1].block; } public: class Iterator { public: Iterator() : mPointer(nullptr) {} Iterator(PtrInfoOrBlock *aPointer) : mPointer(aPointer) {} Iterator(const Iterator& aOther) : mPointer(aOther.mPointer) {} Iterator& operator++() { if (mPointer->ptrInfo == nullptr) { // Null pointer is a sentinel for link to the next block. mPointer = (mPointer + 1)->block->mPointers; } ++mPointer; return *this; } PtrInfo* operator*() const { if (mPointer->ptrInfo == nullptr) { // Null pointer is a sentinel for link to the next block. return (mPointer + 1)->block->mPointers->ptrInfo; } return mPointer->ptrInfo; } bool operator==(const Iterator& aOther) const { return mPointer == aOther.mPointer; } bool operator!=(const Iterator& aOther) const { return mPointer != aOther.mPointer; } #ifdef DEBUG_CC_GRAPH bool Initialized() const { return mPointer != nullptr; } #endif private: PtrInfoOrBlock *mPointer; }; class Builder; friend class Builder; class Builder { public: Builder(EdgePool &aPool) : mCurrent(&aPool.mSentinelAndBlocks[0]), mBlockEnd(&aPool.mSentinelAndBlocks[0]), mNextBlockPtr(&aPool.Blocks()) { } Iterator Mark() { return Iterator(mCurrent); } void Add(PtrInfo* aEdge) { if (mCurrent == mBlockEnd) { Block *b = new Block(); *mNextBlockPtr = b; mCurrent = b->Start(); mBlockEnd = b->End(); mNextBlockPtr = &b->Next(); } (mCurrent++)->ptrInfo = aEdge; } private: // mBlockEnd points to space for null sentinel PtrInfoOrBlock *mCurrent, *mBlockEnd; Block **mNextBlockPtr; }; size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t n = 0; Block *b = Blocks(); while (b) { n += aMallocSizeOf(b); b = b->Next(); } return n; } }; #ifdef DEBUG_CC_GRAPH #define CC_GRAPH_ASSERT(b) MOZ_ASSERT(b) #else #define CC_GRAPH_ASSERT(b) #endif enum NodeColor { black, white, grey }; // This structure should be kept as small as possible; we may expect // hundreds of thousands of them to be allocated and touched // repeatedly during each cycle collection. struct PtrInfo { void *mPointer; nsCycleCollectionParticipant *mParticipant; uint32_t mColor : 2; uint32_t mInternalRefs : 30; uint32_t mRefCount; private: EdgePool::Iterator mFirstChild; public: PtrInfo(void *aPointer, nsCycleCollectionParticipant *aParticipant) : mPointer(aPointer), mParticipant(aParticipant), mColor(grey), mInternalRefs(0), mRefCount(0), mFirstChild() { MOZ_ASSERT(aParticipant); } // Allow NodePool::Block's constructor to compile. PtrInfo() { NS_NOTREACHED("should never be called"); } EdgePool::Iterator FirstChild() { CC_GRAPH_ASSERT(mFirstChild.Initialized()); return mFirstChild; } // this PtrInfo must be part of a NodePool EdgePool::Iterator LastChild() { CC_GRAPH_ASSERT((this + 1)->mFirstChild.Initialized()); return (this + 1)->mFirstChild; } void SetFirstChild(EdgePool::Iterator aFirstChild) { CC_GRAPH_ASSERT(aFirstChild.Initialized()); mFirstChild = aFirstChild; } // this PtrInfo must be part of a NodePool void SetLastChild(EdgePool::Iterator aLastChild) { CC_GRAPH_ASSERT(aLastChild.Initialized()); (this + 1)->mFirstChild = aLastChild; } }; /** * A structure designed to be used like a linked list of PtrInfo, except * that allocates the PtrInfo 32K-at-a-time. */ class NodePool { private: enum { BlockSize = 8 * 1024 }; // could be int template parameter struct Block { // We create and destroy Block using NS_Alloc/NS_Free rather // than new and delete to avoid calling its constructor and // destructor. Block() { NS_NOTREACHED("should never be called"); } ~Block() { NS_NOTREACHED("should never be called"); } Block* mNext; PtrInfo mEntries[BlockSize + 1]; // +1 to store last child of last node }; public: NodePool() : mBlocks(nullptr), mLast(nullptr) { } ~NodePool() { MOZ_ASSERT(!mBlocks, "Didn't call Clear()?"); } void Clear() { Block *b = mBlocks; while (b) { Block *n = b->mNext; NS_Free(b); b = n; } mBlocks = nullptr; mLast = nullptr; } class Builder; friend class Builder; class Builder { public: Builder(NodePool& aPool) : mNextBlock(&aPool.mBlocks), mNext(aPool.mLast), mBlockEnd(nullptr) { MOZ_ASSERT(aPool.mBlocks == nullptr && aPool.mLast == nullptr, "pool not empty"); } PtrInfo *Add(void *aPointer, nsCycleCollectionParticipant *aParticipant) { if (mNext == mBlockEnd) { Block *block = static_cast(NS_Alloc(sizeof(Block))); *mNextBlock = block; mNext = block->mEntries; mBlockEnd = block->mEntries + BlockSize; block->mNext = nullptr; mNextBlock = &block->mNext; } return new (mNext++) PtrInfo(aPointer, aParticipant); } private: Block **mNextBlock; PtrInfo *&mNext; PtrInfo *mBlockEnd; }; class Enumerator; friend class Enumerator; class Enumerator { public: Enumerator(NodePool& aPool) : mFirstBlock(aPool.mBlocks), mCurBlock(nullptr), mNext(nullptr), mBlockEnd(nullptr), mLast(aPool.mLast) { } bool IsDone() const { return mNext == mLast; } bool AtBlockEnd() const { return mNext == mBlockEnd; } PtrInfo* GetNext() { MOZ_ASSERT(!IsDone(), "calling GetNext when done"); if (mNext == mBlockEnd) { Block *nextBlock = mCurBlock ? mCurBlock->mNext : mFirstBlock; mNext = nextBlock->mEntries; mBlockEnd = mNext + BlockSize; mCurBlock = nextBlock; } return mNext++; } private: // mFirstBlock is a reference to allow an Enumerator to be constructed // for an empty graph. Block *&mFirstBlock; Block *mCurBlock; // mNext is the next value we want to return, unless mNext == mBlockEnd // NB: mLast is a reference to allow enumerating while building! PtrInfo *mNext, *mBlockEnd, *&mLast; }; size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { // We don't measure the things pointed to by mEntries[] because those // pointers are non-owning. size_t n = 0; Block *b = mBlocks; while (b) { n += aMallocSizeOf(b); b = b->mNext; } return n; } private: Block *mBlocks; PtrInfo *mLast; }; struct WeakMapping { // map and key will be null if the corresponding objects are GC marked PtrInfo *mMap; PtrInfo *mKey; PtrInfo *mKeyDelegate; PtrInfo *mVal; }; class GCGraphBuilder; struct GCGraph { NodePool mNodes; EdgePool mEdges; nsTArray mWeakMaps; uint32_t mRootCount; GCGraph() : mRootCount(0) { } ~GCGraph() { } void SizeOfExcludingThis(MallocSizeOf aMallocSizeOf, size_t *aNodesSize, size_t *aEdgesSize) const { *aNodesSize = mNodes.SizeOfExcludingThis(aMallocSizeOf); *aEdgesSize = mEdges.SizeOfExcludingThis(aMallocSizeOf); // These fields are deliberately not measured: // - mWeakMaps entries, because the pointers are non-owning } }; static nsISupports * CanonicalizeXPCOMParticipant(nsISupports *in) { nsISupports* out; in->QueryInterface(NS_GET_IID(nsCycleCollectionISupports), reinterpret_cast(&out)); return out; } static inline void ToParticipant(nsISupports *s, nsXPCOMCycleCollectionParticipant **cp); static void CanonicalizeParticipant(void **parti, nsCycleCollectionParticipant **cp) { // If the participant is null, this is an nsISupports participant, // so we must QI to get the real participant. if (!*cp) { nsISupports *nsparti = static_cast(*parti); nsparti = CanonicalizeXPCOMParticipant(nsparti); NS_ASSERTION(nsparti, "Don't add objects that don't participate in collection!"); nsXPCOMCycleCollectionParticipant *xcp; ToParticipant(nsparti, &xcp); *parti = nsparti; *cp = xcp; } } class nsCycleCollector; struct nsPurpleBuffer { private: struct Block { Block *mNext; // Try to match the size of a jemalloc bucket, to minimize slop bytes. // - On 32-bit platforms sizeof(nsPurpleBufferEntry) is 12, so mEntries // is 16,380 bytes, which leaves 4 bytes for mNext. // - On 64-bit platforms sizeof(nsPurpleBufferEntry) is 24, so mEntries // is 32,544 bytes, which leaves 8 bytes for mNext. nsPurpleBufferEntry mEntries[1365]; Block() : mNext(nullptr) { // Ensure Block is the right size (see above). static_assert( sizeof(Block) == 16384 || // 32-bit sizeof(Block) == 32768, // 64-bit "ill-sized nsPurpleBuffer::Block" ); } template void VisitEntries(nsPurpleBuffer &aBuffer, PurpleVisitor &aVisitor) { nsPurpleBufferEntry *eEnd = ArrayEnd(mEntries); for (nsPurpleBufferEntry *e = mEntries; e != eEnd; ++e) { if (!(uintptr_t(e->mObject) & uintptr_t(1))) { aVisitor.Visit(aBuffer, e); } } } }; // This class wraps a linked list of the elements in the purple // buffer. uint32_t mCount; Block mFirstBlock; nsPurpleBufferEntry *mFreeList; public: nsPurpleBuffer() { InitBlocks(); } ~nsPurpleBuffer() { FreeBlocks(); } template void VisitEntries(PurpleVisitor &aVisitor) { for (Block *b = &mFirstBlock; b; b = b->mNext) { b->VisitEntries(*this, aVisitor); } } void InitBlocks() { mCount = 0; mFreeList = nullptr; StartBlock(&mFirstBlock); } void StartBlock(Block *aBlock) { NS_ABORT_IF_FALSE(!mFreeList, "should not have free list"); // Put all the entries in the block on the free list. nsPurpleBufferEntry *entries = aBlock->mEntries; mFreeList = entries; for (uint32_t i = 1; i < ArrayLength(aBlock->mEntries); ++i) { entries[i - 1].mNextInFreeList = (nsPurpleBufferEntry*)(uintptr_t(entries + i) | 1); } entries[ArrayLength(aBlock->mEntries) - 1].mNextInFreeList = (nsPurpleBufferEntry*)1; } void FreeBlocks() { if (mCount > 0) UnmarkRemainingPurple(&mFirstBlock); Block *b = mFirstBlock.mNext; while (b) { if (mCount > 0) UnmarkRemainingPurple(b); Block *next = b->mNext; delete b; b = next; } mFirstBlock.mNext = nullptr; } struct UnmarkRemainingPurpleVisitor { void Visit(nsPurpleBuffer &aBuffer, nsPurpleBufferEntry *aEntry) { if (aEntry->mRefCnt) { aEntry->mRefCnt->RemoveFromPurpleBuffer(); aEntry->mRefCnt = nullptr; } aEntry->mObject = nullptr; --aBuffer.mCount; } }; void UnmarkRemainingPurple(Block *b) { UnmarkRemainingPurpleVisitor visitor; b->VisitEntries(*this, visitor); } void SelectPointers(GCGraphBuilder &builder); // RemoveSkippable removes entries from the purple buffer synchronously // (1) if aAsyncSnowWhiteFreeing is false and nsPurpleBufferEntry::mRefCnt is 0 or // (2) if the object's nsXPCOMCycleCollectionParticipant::CanSkip() returns true or // (3) if nsPurpleBufferEntry::mRefCnt->IsPurple() is false. // (4) If removeChildlessNodes is true, then any nodes in the purple buffer // that will have no children in the cycle collector graph will also be // removed. CanSkip() may be run on these children. void RemoveSkippable(nsCycleCollector* aCollector, bool removeChildlessNodes, bool aAsyncSnowWhiteFreeing, CC_ForgetSkippableCallback aCb); nsPurpleBufferEntry* NewEntry() { if (!mFreeList) { Block *b = new Block; StartBlock(b); // Add the new block as the second block in the list. b->mNext = mFirstBlock.mNext; mFirstBlock.mNext = b; } nsPurpleBufferEntry *e = mFreeList; mFreeList = (nsPurpleBufferEntry*) (uintptr_t(mFreeList->mNextInFreeList) & ~uintptr_t(1)); return e; } void Put(void *p, nsCycleCollectionParticipant *cp, nsCycleCollectingAutoRefCnt *aRefCnt) { nsPurpleBufferEntry *e = NewEntry(); ++mCount; e->mObject = p; e->mRefCnt = aRefCnt; e->mParticipant = cp; } void Remove(nsPurpleBufferEntry *e) { MOZ_ASSERT(mCount != 0, "must have entries"); if (e->mRefCnt) { e->mRefCnt->RemoveFromPurpleBuffer(); e->mRefCnt = nullptr; } e->mNextInFreeList = (nsPurpleBufferEntry*)(uintptr_t(mFreeList) | uintptr_t(1)); mFreeList = e; --mCount; } uint32_t Count() const { return mCount; } size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const { size_t n = 0; // Don't measure mFirstBlock because it's within |this|. const Block *block = mFirstBlock.mNext; while (block) { n += aMallocSizeOf(block); block = block->mNext; } // mFreeList is deliberately not measured because it points into // the purple buffer, which is within mFirstBlock and thus within |this|. // // We also don't measure the things pointed to by mEntries[] because // those pointers are non-owning. return n; } }; static bool AddPurpleRoot(GCGraphBuilder &aBuilder, void *aRoot, nsCycleCollectionParticipant *aParti); struct SelectPointersVisitor { SelectPointersVisitor(GCGraphBuilder &aBuilder) : mBuilder(aBuilder) {} void Visit(nsPurpleBuffer &aBuffer, nsPurpleBufferEntry *aEntry) { MOZ_ASSERT(aEntry->mObject, "Null object in purple buffer"); MOZ_ASSERT(aEntry->mRefCnt->get() != 0, "SelectPointersVisitor: snow-white object in the purple buffer"); if (!aEntry->mRefCnt->IsPurple() || AddPurpleRoot(mBuilder, aEntry->mObject, aEntry->mParticipant)) { aBuffer.Remove(aEntry); } } private: GCGraphBuilder &mBuilder; }; void nsPurpleBuffer::SelectPointers(GCGraphBuilder &aBuilder) { SelectPointersVisitor visitor(aBuilder); VisitEntries(visitor); NS_ASSERTION(mCount == 0, "AddPurpleRoot failed"); if (mCount == 0) { FreeBlocks(); InitBlocks(); } } enum ccType { ScheduledCC, /* Automatically triggered, based on time or the purple buffer. */ ManualCC, /* Explicitly triggered. */ ShutdownCC /* Shutdown CC, used for finding leaks. */ }; //////////////////////////////////////////////////////////////////////// // Top level structure for the cycle collector. //////////////////////////////////////////////////////////////////////// class nsCycleCollector { friend class GCGraphBuilder; bool mCollectionInProgress; // mScanInProgress should be false when we're collecting white objects. bool mScanInProgress; nsCycleCollectorResults *mResults; TimeStamp mCollectionStart; CycleCollectedJSRuntime *mJSRuntime; GCGraph mGraph; nsIThread* mThread; public: nsCycleCollectorParams mParams; private: nsTArray *mWhiteNodes; uint32_t mWhiteNodeCount; // mVisitedRefCounted and mVisitedGCed are only used for telemetry uint32_t mVisitedRefCounted; uint32_t mVisitedGCed; CC_BeforeUnlinkCallback mBeforeUnlinkCB; CC_ForgetSkippableCallback mForgetSkippableCB; nsCOMPtr mReporter; nsPurpleBuffer mPurpleBuf; uint32_t mUnmergedNeeded; uint32_t mMergedInARow; public: void RegisterJSRuntime(CycleCollectedJSRuntime *aJSRuntime); void ForgetJSRuntime(); inline CycleCollectedJSRuntime* JSRuntime() const { return mJSRuntime; } void SetBeforeUnlinkCallback(CC_BeforeUnlinkCallback aBeforeUnlinkCB) { CheckThreadSafety(); mBeforeUnlinkCB = aBeforeUnlinkCB; } void SetForgetSkippableCallback(CC_ForgetSkippableCallback aForgetSkippableCB) { CheckThreadSafety(); mForgetSkippableCB = aForgetSkippableCB; } void MarkRoots(GCGraphBuilder &aBuilder); void ScanRoots(); void ScanWeakMaps(); void ForgetSkippable(bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing); // returns whether anything was collected bool CollectWhite(nsICycleCollectorListener *aListener); nsCycleCollector(); ~nsCycleCollector(); void Suspect(void *n, nsCycleCollectionParticipant *cp, nsCycleCollectingAutoRefCnt *aRefCnt); void CheckThreadSafety(); private: void ShutdownCollect(nsICycleCollectorListener *aListener); public: bool Collect(ccType aCCType, nsTArray *aWhiteNodes, nsCycleCollectorResults *aResults, nsICycleCollectorListener *aListener); // Prepare for and cleanup after one or more collection(s). bool PrepareForCollection(nsCycleCollectorResults *aResults, nsTArray *aWhiteNodes); void FixGrayBits(bool aForceGC); bool ShouldMergeZones(ccType aCCType); void CleanupAfterCollection(); // Start and finish an individual collection. void BeginCollection(ccType aCCType, nsICycleCollectorListener *aListener); bool FinishCollection(nsICycleCollectorListener *aListener); bool FreeSnowWhite(bool aUntilNoSWInPurpleBuffer); uint32_t SuspectedCount(); void Shutdown(); void ClearGraph() { mGraph.mNodes.Clear(); mGraph.mEdges.Clear(); mGraph.mWeakMaps.Clear(); mGraph.mRootCount = 0; } void SizeOfIncludingThis(MallocSizeOf aMallocSizeOf, size_t *aObjectSize, size_t *aGraphNodesSize, size_t *aGraphEdgesSize, size_t *aWhiteNodeSize, size_t *aPurpleBufferSize) const; }; /** * GraphWalker is templatized over a Visitor class that must provide * the following two methods: * * bool ShouldVisitNode(PtrInfo const *pi); * void VisitNode(PtrInfo *pi); */ template class GraphWalker { private: Visitor mVisitor; void DoWalk(nsDeque &aQueue); void CheckedPush(nsDeque &aQueue, PtrInfo *pi) { CC_AbortIfNull(pi); if (!aQueue.Push(pi, fallible_t())) { mVisitor.Failed(); } } public: void Walk(PtrInfo *s0); void WalkFromRoots(GCGraph &aGraph); // copy-constructing the visitor should be cheap, and less // indirection than using a reference GraphWalker(const Visitor aVisitor) : mVisitor(aVisitor) {} }; //////////////////////////////////////////////////////////////////////// // The static collector struct //////////////////////////////////////////////////////////////////////// struct CollectorData { nsCycleCollector* mCollector; CycleCollectedJSRuntime* mRuntime; }; static mozilla::ThreadLocal sCollectorData; //////////////////////////////////////////////////////////////////////// // Utility functions //////////////////////////////////////////////////////////////////////// MOZ_NEVER_INLINE static void Fault(const char *msg, const void *ptr=nullptr) { if (ptr) printf("Fault in cycle collector: %s (ptr: %p)\n", msg, ptr); else printf("Fault in cycle collector: %s\n", msg); NS_RUNTIMEABORT("cycle collector fault"); } static void Fault(const char *msg, PtrInfo *pi) { Fault(msg, pi->mPointer); } static inline void ToParticipant(nsISupports *s, nsXPCOMCycleCollectionParticipant **cp) { // We use QI to move from an nsISupports to an // nsXPCOMCycleCollectionParticipant, which is a per-class singleton helper // object that implements traversal and unlinking logic for the nsISupports // in question. CallQueryInterface(s, cp); } template MOZ_NEVER_INLINE void GraphWalker::Walk(PtrInfo *s0) { nsDeque queue; CheckedPush(queue, s0); DoWalk(queue); } template MOZ_NEVER_INLINE void GraphWalker::WalkFromRoots(GCGraph& aGraph) { nsDeque queue; NodePool::Enumerator etor(aGraph.mNodes); for (uint32_t i = 0; i < aGraph.mRootCount; ++i) { CheckedPush(queue, etor.GetNext()); } DoWalk(queue); } template MOZ_NEVER_INLINE void GraphWalker::DoWalk(nsDeque &aQueue) { // Use a aQueue to match the breadth-first traversal used when we // built the graph, for hopefully-better locality. while (aQueue.GetSize() > 0) { PtrInfo *pi = static_cast(aQueue.PopFront()); CC_AbortIfNull(pi); if (mVisitor.ShouldVisitNode(pi)) { mVisitor.VisitNode(pi); for (EdgePool::Iterator child = pi->FirstChild(), child_end = pi->LastChild(); child != child_end; ++child) { CheckedPush(aQueue, *child); } } } } struct CCGraphDescriber { CCGraphDescriber() : mAddress("0x"), mToAddress("0x"), mCnt(0), mType(eUnknown) {} enum Type { eRefCountedObject, eGCedObject, eGCMarkedObject, eEdge, eRoot, eGarbage, eUnknown }; nsCString mAddress; nsCString mToAddress; nsCString mName; uint32_t mCnt; Type mType; }; class nsCycleCollectorLogger MOZ_FINAL : public nsICycleCollectorListener { public: nsCycleCollectorLogger() : mStream(nullptr), mWantAllTraces(false), mDisableLog(false), mWantAfterProcessing(false), mNextIndex(0) { } ~nsCycleCollectorLogger() { if (mStream) { MozillaUnRegisterDebugFILE(mStream); fclose(mStream); } } NS_DECL_ISUPPORTS void SetAllTraces() { mWantAllTraces = true; } NS_IMETHOD AllTraces(nsICycleCollectorListener** aListener) { SetAllTraces(); NS_ADDREF(*aListener = this); return NS_OK; } NS_IMETHOD GetWantAllTraces(bool* aAllTraces) { *aAllTraces = mWantAllTraces; return NS_OK; } NS_IMETHOD GetDisableLog(bool* aDisableLog) { *aDisableLog = mDisableLog; return NS_OK; } NS_IMETHOD SetDisableLog(bool aDisableLog) { mDisableLog = aDisableLog; return NS_OK; } NS_IMETHOD GetWantAfterProcessing(bool* aWantAfterProcessing) { *aWantAfterProcessing = mWantAfterProcessing; return NS_OK; } NS_IMETHOD SetWantAfterProcessing(bool aWantAfterProcessing) { mWantAfterProcessing = aWantAfterProcessing; return NS_OK; } NS_IMETHOD GetFilenameIdentifier(nsAString& aIdentifier) { aIdentifier = mFilenameIdentifier; return NS_OK; } NS_IMETHOD SetFilenameIdentifier(const nsAString& aIdentifier) { mFilenameIdentifier = aIdentifier; return NS_OK; } NS_IMETHOD Begin() { mCurrentAddress.AssignLiteral("0x"); mDescribers.Clear(); mNextIndex = 0; if (mDisableLog) { return NS_OK; } // Initially create the log in a file starting with // "incomplete-gc-edges". We'll move the file and strip off the // "incomplete-" once the dump completes. (We do this because we don't // want scripts which poll the filesystem looking for gc/cc dumps to // grab a file before we're finished writing to it.) nsCOMPtr gcLogFile = CreateTempFile("incomplete-gc-edges"); NS_ENSURE_STATE(gcLogFile); // Dump the JS heap. FILE* gcLogANSIFile = nullptr; gcLogFile->OpenANSIFileDesc("w", &gcLogANSIFile); NS_ENSURE_STATE(gcLogANSIFile); MozillaRegisterDebugFILE(gcLogANSIFile); CollectorData *data = sCollectorData.get(); if (data && data->mRuntime) data->mRuntime->DumpJSHeap(gcLogANSIFile); MozillaUnRegisterDebugFILE(gcLogANSIFile); fclose(gcLogANSIFile); // Strip off "incomplete-". nsCOMPtr gcLogFileFinalDestination = CreateTempFile("gc-edges"); NS_ENSURE_STATE(gcLogFileFinalDestination); nsAutoString gcLogFileFinalDestinationName; gcLogFileFinalDestination->GetLeafName(gcLogFileFinalDestinationName); NS_ENSURE_STATE(!gcLogFileFinalDestinationName.IsEmpty()); gcLogFile->MoveTo(/* directory */ nullptr, gcLogFileFinalDestinationName); // Log to the error console. nsCOMPtr cs = do_GetService(NS_CONSOLESERVICE_CONTRACTID); if (cs) { nsAutoString gcLogPath; gcLogFileFinalDestination->GetPath(gcLogPath); nsString msg = NS_LITERAL_STRING("Garbage Collector log dumped to ") + gcLogPath; cs->LogStringMessage(msg.get()); } // Open a file for dumping the CC graph. We again prefix with // "incomplete-". mOutFile = CreateTempFile("incomplete-cc-edges"); NS_ENSURE_STATE(mOutFile); MOZ_ASSERT(!mStream); mOutFile->OpenANSIFileDesc("w", &mStream); NS_ENSURE_STATE(mStream); MozillaRegisterDebugFILE(mStream); fprintf(mStream, "# WantAllTraces=%s\n", mWantAllTraces ? "true" : "false"); return NS_OK; } NS_IMETHOD NoteRefCountedObject(uint64_t aAddress, uint32_t refCount, const char *aObjectDescription) { if (!mDisableLog) { fprintf(mStream, "%p [rc=%u] %s\n", (void*)aAddress, refCount, aObjectDescription); } if (mWantAfterProcessing) { CCGraphDescriber* d = mDescribers.AppendElement(); mCurrentAddress.AssignLiteral("0x"); mCurrentAddress.AppendInt(aAddress, 16); d->mType = CCGraphDescriber::eRefCountedObject; d->mAddress = mCurrentAddress; d->mCnt = refCount; d->mName.Append(aObjectDescription); } return NS_OK; } NS_IMETHOD NoteGCedObject(uint64_t aAddress, bool aMarked, const char *aObjectDescription) { if (!mDisableLog) { fprintf(mStream, "%p [gc%s] %s\n", (void*)aAddress, aMarked ? ".marked" : "", aObjectDescription); } if (mWantAfterProcessing) { CCGraphDescriber* d = mDescribers.AppendElement(); mCurrentAddress.AssignLiteral("0x"); mCurrentAddress.AppendInt(aAddress, 16); d->mType = aMarked ? CCGraphDescriber::eGCMarkedObject : CCGraphDescriber::eGCedObject; d->mAddress = mCurrentAddress; d->mName.Append(aObjectDescription); } return NS_OK; } NS_IMETHOD NoteEdge(uint64_t aToAddress, const char *aEdgeName) { if (!mDisableLog) { fprintf(mStream, "> %p %s\n", (void*)aToAddress, aEdgeName); } if (mWantAfterProcessing) { CCGraphDescriber* d = mDescribers.AppendElement(); d->mType = CCGraphDescriber::eEdge; d->mAddress = mCurrentAddress; d->mToAddress.AppendInt(aToAddress, 16); d->mName.Append(aEdgeName); } return NS_OK; } NS_IMETHOD NoteWeakMapEntry(uint64_t aMap, uint64_t aKey, uint64_t aKeyDelegate, uint64_t aValue) { if (!mDisableLog) { fprintf(mStream, "WeakMapEntry map=%p key=%p keyDelegate=%p value=%p\n", (void*)aMap, (void*)aKey, (void*)aKeyDelegate, (void*)aValue); } // We don't support after-processing for weak map entries. return NS_OK; } NS_IMETHOD BeginResults() { if (!mDisableLog) { fputs("==========\n", mStream); } return NS_OK; } NS_IMETHOD DescribeRoot(uint64_t aAddress, uint32_t aKnownEdges) { if (!mDisableLog) { fprintf(mStream, "%p [known=%u]\n", (void*)aAddress, aKnownEdges); } if (mWantAfterProcessing) { CCGraphDescriber* d = mDescribers.AppendElement(); d->mType = CCGraphDescriber::eRoot; d->mAddress.AppendInt(aAddress, 16); d->mCnt = aKnownEdges; } return NS_OK; } NS_IMETHOD DescribeGarbage(uint64_t aAddress) { if (!mDisableLog) { fprintf(mStream, "%p [garbage]\n", (void*)aAddress); } if (mWantAfterProcessing) { CCGraphDescriber* d = mDescribers.AppendElement(); d->mType = CCGraphDescriber::eGarbage; d->mAddress.AppendInt(aAddress, 16); } return NS_OK; } NS_IMETHOD End() { if (!mDisableLog) { MOZ_ASSERT(mStream); MOZ_ASSERT(mOutFile); MozillaUnRegisterDebugFILE(mStream); fclose(mStream); mStream = nullptr; // Strip off "incomplete-" from the log file's name. nsCOMPtr logFileFinalDestination = CreateTempFile("cc-edges"); NS_ENSURE_STATE(logFileFinalDestination); nsAutoString logFileFinalDestinationName; logFileFinalDestination->GetLeafName(logFileFinalDestinationName); NS_ENSURE_STATE(!logFileFinalDestinationName.IsEmpty()); mOutFile->MoveTo(/* directory = */ nullptr, logFileFinalDestinationName); mOutFile = nullptr; // Log to the error console. nsCOMPtr cs = do_GetService(NS_CONSOLESERVICE_CONTRACTID); if (cs) { nsAutoString ccLogPath; logFileFinalDestination->GetPath(ccLogPath); nsString msg = NS_LITERAL_STRING("Cycle Collector log dumped to ") + ccLogPath; cs->LogStringMessage(msg.get()); } } return NS_OK; } NS_IMETHOD ProcessNext(nsICycleCollectorHandler* aHandler, bool* aCanContinue) { NS_ENSURE_STATE(aHandler && mWantAfterProcessing); if (mNextIndex < mDescribers.Length()) { CCGraphDescriber& d = mDescribers[mNextIndex++]; switch (d.mType) { case CCGraphDescriber::eRefCountedObject: aHandler->NoteRefCountedObject(d.mAddress, d.mCnt, d.mName); break; case CCGraphDescriber::eGCedObject: case CCGraphDescriber::eGCMarkedObject: aHandler->NoteGCedObject(d.mAddress, d.mType == CCGraphDescriber::eGCMarkedObject, d.mName); break; case CCGraphDescriber::eEdge: aHandler->NoteEdge(d.mAddress, d.mToAddress, d.mName); break; case CCGraphDescriber::eRoot: aHandler->DescribeRoot(d.mAddress, d.mCnt); break; case CCGraphDescriber::eGarbage: aHandler->DescribeGarbage(d.mAddress); break; case CCGraphDescriber::eUnknown: NS_NOTREACHED("CCGraphDescriber::eUnknown"); break; } } if (!(*aCanContinue = mNextIndex < mDescribers.Length())) { mCurrentAddress.AssignLiteral("0x"); mDescribers.Clear(); mNextIndex = 0; } return NS_OK; } private: /** * Create a new file named something like aPrefix.$PID.$IDENTIFIER.log in * $MOZ_CC_LOG_DIRECTORY or in the system's temp directory. No existing * file will be overwritten; if aPrefix.$PID.$IDENTIFIER.log exists, we'll * try a file named something like aPrefix.$PID.$IDENTIFIER-1.log, and so * on. */ already_AddRefed CreateTempFile(const char* aPrefix) { nsPrintfCString filename("%s.%d%s%s.log", aPrefix, base::GetCurrentProcId(), mFilenameIdentifier.IsEmpty() ? "" : ".", NS_ConvertUTF16toUTF8(mFilenameIdentifier).get()); // Get the log directory either from $MOZ_CC_LOG_DIRECTORY or from // the fallback directories in OpenTempFile. We don't use an nsCOMPtr // here because OpenTempFile uses an in/out param and getter_AddRefs // wouldn't work. nsIFile* logFile = nullptr; if (char* env = PR_GetEnv("MOZ_CC_LOG_DIRECTORY")) { NS_NewNativeLocalFile(nsCString(env), /* followLinks = */ true, &logFile); } nsresult rv = nsMemoryInfoDumper::OpenTempFile(filename, &logFile); if (NS_FAILED(rv)) { NS_IF_RELEASE(logFile); return nullptr; } return dont_AddRef(logFile); } FILE *mStream; nsCOMPtr mOutFile; bool mWantAllTraces; bool mDisableLog; bool mWantAfterProcessing; nsString mFilenameIdentifier; nsCString mCurrentAddress; nsTArray mDescribers; uint32_t mNextIndex; }; NS_IMPL_ISUPPORTS1(nsCycleCollectorLogger, nsICycleCollectorListener) nsresult nsCycleCollectorLoggerConstructor(nsISupports* aOuter, const nsIID& aIID, void* *aInstancePtr) { NS_ENSURE_TRUE(!aOuter, NS_ERROR_NO_AGGREGATION); nsISupports *logger = new nsCycleCollectorLogger(); return logger->QueryInterface(aIID, aInstancePtr); } //////////////////////////////////////////////////////////////////////// // Bacon & Rajan's |MarkRoots| routine. //////////////////////////////////////////////////////////////////////// struct PtrToNodeEntry : public PLDHashEntryHdr { // The key is mNode->mPointer PtrInfo *mNode; }; static bool PtrToNodeMatchEntry(PLDHashTable *table, const PLDHashEntryHdr *entry, const void *key) { const PtrToNodeEntry *n = static_cast(entry); return n->mNode->mPointer == key; } static PLDHashTableOps PtrNodeOps = { PL_DHashAllocTable, PL_DHashFreeTable, PL_DHashVoidPtrKeyStub, PtrToNodeMatchEntry, PL_DHashMoveEntryStub, PL_DHashClearEntryStub, PL_DHashFinalizeStub, nullptr }; class GCGraphBuilder : public nsCycleCollectionTraversalCallback, public nsCycleCollectionNoteRootCallback { private: nsCycleCollector *mCollector; NodePool::Builder mNodeBuilder; EdgePool::Builder mEdgeBuilder; nsTArray &mWeakMaps; PLDHashTable mPtrToNodeMap; PtrInfo *mCurrPi; nsCycleCollectionParticipant *mJSParticipant; nsCycleCollectionParticipant *mJSZoneParticipant; nsCString mNextEdgeName; nsICycleCollectorListener *mListener; bool mMergeZones; bool mRanOutOfMemory; public: GCGraphBuilder(nsCycleCollector *aCollector, GCGraph &aGraph, CycleCollectedJSRuntime *aJSRuntime, nsICycleCollectorListener *aListener, bool aMergeZones); ~GCGraphBuilder(); bool WantAllTraces() const { return nsCycleCollectionNoteRootCallback::WantAllTraces(); } uint32_t Count() const { return mPtrToNodeMap.entryCount; } PtrInfo* AddNode(void *s, nsCycleCollectionParticipant *aParticipant); PtrInfo* AddWeakMapNode(void* node); void Traverse(PtrInfo* aPtrInfo); void SetLastChild(); bool RanOutOfMemory() const { return mRanOutOfMemory; } private: void DescribeNode(uint32_t refCount, const char *objName) { mCurrPi->mRefCount = refCount; } public: // nsCycleCollectionNoteRootCallback methods. NS_IMETHOD_(void) NoteXPCOMRoot(nsISupports *root); NS_IMETHOD_(void) NoteJSRoot(void *root); NS_IMETHOD_(void) NoteNativeRoot(void *root, nsCycleCollectionParticipant *participant); NS_IMETHOD_(void) NoteWeakMapping(void *map, void *key, void *kdelegate, void *val); // nsCycleCollectionTraversalCallback methods. NS_IMETHOD_(void) DescribeRefCountedNode(nsrefcnt refCount, const char *objName); NS_IMETHOD_(void) DescribeGCedNode(bool isMarked, const char *objName); NS_IMETHOD_(void) NoteXPCOMChild(nsISupports *child); NS_IMETHOD_(void) NoteJSChild(void *child); NS_IMETHOD_(void) NoteNativeChild(void *child, nsCycleCollectionParticipant *participant); NS_IMETHOD_(void) NoteNextEdgeName(const char* name); private: NS_IMETHOD_(void) NoteRoot(void *root, nsCycleCollectionParticipant *participant) { MOZ_ASSERT(root); MOZ_ASSERT(participant); if (!participant->CanSkipInCC(root) || MOZ_UNLIKELY(WantAllTraces())) { AddNode(root, participant); } } NS_IMETHOD_(void) NoteChild(void *child, nsCycleCollectionParticipant *cp, nsCString edgeName) { PtrInfo *childPi = AddNode(child, cp); if (!childPi) return; mEdgeBuilder.Add(childPi); if (mListener) { mListener->NoteEdge((uint64_t)child, edgeName.get()); } ++childPi->mInternalRefs; } JS::Zone *MergeZone(void *gcthing) { if (!mMergeZones) { return nullptr; } JS::Zone *zone = JS::GetGCThingZone(gcthing); if (js::IsSystemZone(zone)) { return nullptr; } return zone; } }; GCGraphBuilder::GCGraphBuilder(nsCycleCollector *aCollector, GCGraph &aGraph, CycleCollectedJSRuntime *aJSRuntime, nsICycleCollectorListener *aListener, bool aMergeZones) : mCollector(aCollector), mNodeBuilder(aGraph.mNodes), mEdgeBuilder(aGraph.mEdges), mWeakMaps(aGraph.mWeakMaps), mJSParticipant(nullptr), mJSZoneParticipant(nullptr), mListener(aListener), mMergeZones(aMergeZones), mRanOutOfMemory(false) { if (!PL_DHashTableInit(&mPtrToNodeMap, &PtrNodeOps, nullptr, sizeof(PtrToNodeEntry), 32768)) { MOZ_CRASH(); } if (aJSRuntime) { mJSParticipant = aJSRuntime->GCThingParticipant(); mJSZoneParticipant = aJSRuntime->ZoneParticipant(); } uint32_t flags = 0; if (!flags && mListener) { flags = nsCycleCollectionTraversalCallback::WANT_DEBUG_INFO; bool all = false; mListener->GetWantAllTraces(&all); if (all) { flags |= nsCycleCollectionTraversalCallback::WANT_ALL_TRACES; mWantAllTraces = true; // for nsCycleCollectionNoteRootCallback } } mFlags |= flags; mMergeZones = mMergeZones && MOZ_LIKELY(!WantAllTraces()); MOZ_ASSERT(nsCycleCollectionNoteRootCallback::WantAllTraces() == nsCycleCollectionTraversalCallback::WantAllTraces()); } GCGraphBuilder::~GCGraphBuilder() { if (mPtrToNodeMap.ops) PL_DHashTableFinish(&mPtrToNodeMap); } PtrInfo* GCGraphBuilder::AddNode(void *s, nsCycleCollectionParticipant *aParticipant) { PtrToNodeEntry *e = static_cast(PL_DHashTableOperate(&mPtrToNodeMap, s, PL_DHASH_ADD)); if (!e) { mRanOutOfMemory = true; return nullptr; } PtrInfo *result; if (!e->mNode) { // New entry. result = mNodeBuilder.Add(s, aParticipant); e->mNode = result; NS_ASSERTION(result, "mNodeBuilder.Add returned null"); } else { result = e->mNode; MOZ_ASSERT(result->mParticipant == aParticipant, "nsCycleCollectionParticipant shouldn't change!"); } return result; } MOZ_NEVER_INLINE void GCGraphBuilder::Traverse(PtrInfo* aPtrInfo) { mCurrPi = aPtrInfo; mCurrPi->SetFirstChild(mEdgeBuilder.Mark()); nsresult rv = aPtrInfo->mParticipant->Traverse(aPtrInfo->mPointer, *this); if (NS_FAILED(rv)) { Fault("script pointer traversal failed", aPtrInfo); } } void GCGraphBuilder::SetLastChild() { mCurrPi->SetLastChild(mEdgeBuilder.Mark()); } NS_IMETHODIMP_(void) GCGraphBuilder::NoteXPCOMRoot(nsISupports *root) { root = CanonicalizeXPCOMParticipant(root); NS_ASSERTION(root, "Don't add objects that don't participate in collection!"); nsXPCOMCycleCollectionParticipant *cp; ToParticipant(root, &cp); NoteRoot(root, cp); } NS_IMETHODIMP_(void) GCGraphBuilder::NoteJSRoot(void *root) { if (JS::Zone *zone = MergeZone(root)) { NoteRoot(zone, mJSZoneParticipant); } else { NoteRoot(root, mJSParticipant); } } NS_IMETHODIMP_(void) GCGraphBuilder::NoteNativeRoot(void *root, nsCycleCollectionParticipant *participant) { NoteRoot(root, participant); } NS_IMETHODIMP_(void) GCGraphBuilder::DescribeRefCountedNode(nsrefcnt refCount, const char *objName) { if (refCount == 0) Fault("zero refcount", mCurrPi); if (refCount == UINT32_MAX) Fault("overflowing refcount", mCurrPi); mCollector->mVisitedRefCounted++; if (mListener) { mListener->NoteRefCountedObject((uint64_t)mCurrPi->mPointer, refCount, objName); } DescribeNode(refCount, objName); } NS_IMETHODIMP_(void) GCGraphBuilder::DescribeGCedNode(bool isMarked, const char *objName) { uint32_t refCount = isMarked ? UINT32_MAX : 0; mCollector->mVisitedGCed++; if (mListener) { mListener->NoteGCedObject((uint64_t)mCurrPi->mPointer, isMarked, objName); } DescribeNode(refCount, objName); } NS_IMETHODIMP_(void) GCGraphBuilder::NoteXPCOMChild(nsISupports *child) { nsCString edgeName; if (WantDebugInfo()) { edgeName.Assign(mNextEdgeName); mNextEdgeName.Truncate(); } if (!child || !(child = CanonicalizeXPCOMParticipant(child))) return; nsXPCOMCycleCollectionParticipant *cp; ToParticipant(child, &cp); if (cp && (!cp->CanSkipThis(child) || WantAllTraces())) { NoteChild(child, cp, edgeName); } } NS_IMETHODIMP_(void) GCGraphBuilder::NoteNativeChild(void *child, nsCycleCollectionParticipant *participant) { nsCString edgeName; if (WantDebugInfo()) { edgeName.Assign(mNextEdgeName); mNextEdgeName.Truncate(); } if (!child) return; MOZ_ASSERT(participant, "Need a nsCycleCollectionParticipant!"); NoteChild(child, participant, edgeName); } NS_IMETHODIMP_(void) GCGraphBuilder::NoteJSChild(void *child) { if (!child) { return; } nsCString edgeName; if (MOZ_UNLIKELY(WantDebugInfo())) { edgeName.Assign(mNextEdgeName); mNextEdgeName.Truncate(); } if (xpc_GCThingIsGrayCCThing(child) || MOZ_UNLIKELY(WantAllTraces())) { if (JS::Zone *zone = MergeZone(child)) { NoteChild(zone, mJSZoneParticipant, edgeName); } else { NoteChild(child, mJSParticipant, edgeName); } } } NS_IMETHODIMP_(void) GCGraphBuilder::NoteNextEdgeName(const char* name) { if (WantDebugInfo()) { mNextEdgeName = name; } } PtrInfo* GCGraphBuilder::AddWeakMapNode(void *node) { MOZ_ASSERT(node, "Weak map node should be non-null."); if (!xpc_GCThingIsGrayCCThing(node) && !WantAllTraces()) return nullptr; if (JS::Zone *zone = MergeZone(node)) { return AddNode(zone, mJSZoneParticipant); } else { return AddNode(node, mJSParticipant); } } NS_IMETHODIMP_(void) GCGraphBuilder::NoteWeakMapping(void *map, void *key, void *kdelegate, void *val) { // Don't try to optimize away the entry here, as we've already attempted to // do that in TraceWeakMapping in nsXPConnect. WeakMapping *mapping = mWeakMaps.AppendElement(); mapping->mMap = map ? AddWeakMapNode(map) : nullptr; mapping->mKey = key ? AddWeakMapNode(key) : nullptr; mapping->mKeyDelegate = kdelegate ? AddWeakMapNode(kdelegate) : mapping->mKey; mapping->mVal = val ? AddWeakMapNode(val) : nullptr; if (mListener) { mListener->NoteWeakMapEntry((uint64_t)map, (uint64_t)key, (uint64_t)kdelegate, (uint64_t)val); } } static bool AddPurpleRoot(GCGraphBuilder &aBuilder, void *aRoot, nsCycleCollectionParticipant *aParti) { CanonicalizeParticipant(&aRoot, &aParti); if (aBuilder.WantAllTraces() || !aParti->CanSkipInCC(aRoot)) { PtrInfo *pinfo = aBuilder.AddNode(aRoot, aParti); if (!pinfo) { return false; } } return true; } // MayHaveChild() will be false after a Traverse if the object does // not have any children the CC will visit. class ChildFinder : public nsCycleCollectionTraversalCallback { public: ChildFinder() : mMayHaveChild(false) {} // The logic of the Note*Child functions must mirror that of their // respective functions in GCGraphBuilder. NS_IMETHOD_(void) NoteXPCOMChild(nsISupports *child); NS_IMETHOD_(void) NoteNativeChild(void *child, nsCycleCollectionParticipant *helper); NS_IMETHOD_(void) NoteJSChild(void *child); NS_IMETHOD_(void) DescribeRefCountedNode(nsrefcnt refcount, const char *objname) {} NS_IMETHOD_(void) DescribeGCedNode(bool ismarked, const char *objname) {} NS_IMETHOD_(void) NoteNextEdgeName(const char* name) {} bool MayHaveChild() { return mMayHaveChild; } private: bool mMayHaveChild; }; NS_IMETHODIMP_(void) ChildFinder::NoteXPCOMChild(nsISupports *child) { if (!child || !(child = CanonicalizeXPCOMParticipant(child))) return; nsXPCOMCycleCollectionParticipant *cp; ToParticipant(child, &cp); if (cp && !cp->CanSkip(child, true)) mMayHaveChild = true; } NS_IMETHODIMP_(void) ChildFinder::NoteNativeChild(void *child, nsCycleCollectionParticipant *helper) { if (child) mMayHaveChild = true; } NS_IMETHODIMP_(void) ChildFinder::NoteJSChild(void *child) { if (child && xpc_GCThingIsGrayCCThing(child)) { mMayHaveChild = true; } } static bool MayHaveChild(void *o, nsCycleCollectionParticipant* cp) { ChildFinder cf; cp->Traverse(o, cf); return cf.MayHaveChild(); } struct SnowWhiteObject { void* mPointer; nsCycleCollectionParticipant* mParticipant; nsCycleCollectingAutoRefCnt* mRefCnt; }; class SnowWhiteKiller { public: SnowWhiteKiller(uint32_t aMaxCount) { while (true) { if (mObjects.SetCapacity(aMaxCount)) { break; } if (aMaxCount == 1) { NS_RUNTIMEABORT("Not enough memory to even delete objects!"); } aMaxCount /= 2; } } ~SnowWhiteKiller() { for (uint32_t i = 0; i < mObjects.Length(); ++i) { SnowWhiteObject& o = mObjects[i]; if (!o.mRefCnt->get() && !o.mRefCnt->IsInPurpleBuffer()) { o.mRefCnt->stabilizeForDeletion(); o.mParticipant->DeleteCycleCollectable(o.mPointer); } } } void Visit(nsPurpleBuffer& aBuffer, nsPurpleBufferEntry* aEntry) { MOZ_ASSERT(aEntry->mObject, "Null object in purple buffer"); if (!aEntry->mRefCnt->get()) { void *o = aEntry->mObject; nsCycleCollectionParticipant *cp = aEntry->mParticipant; CanonicalizeParticipant(&o, &cp); SnowWhiteObject swo = { o, cp, aEntry->mRefCnt }; if (mObjects.AppendElement(swo)) { aBuffer.Remove(aEntry); } } } bool HasSnowWhiteObjects() const { return mObjects.Length() > 0; } private: FallibleTArray mObjects; }; class RemoveSkippableVisitor : public SnowWhiteKiller { public: RemoveSkippableVisitor(nsCycleCollector* aCollector, uint32_t aMaxCount, bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing, CC_ForgetSkippableCallback aCb) : SnowWhiteKiller(aAsyncSnowWhiteFreeing ? 0 : aMaxCount), mRemoveChildlessNodes(aRemoveChildlessNodes), mAsyncSnowWhiteFreeing(aAsyncSnowWhiteFreeing), mDispatchedDeferredDeletion(false), mCallback(aCb) {} ~RemoveSkippableVisitor() { // Note, we must call the callback before SnowWhiteKiller calls // DeleteCycleCollectable! if (mCallback) { mCallback(); } if (HasSnowWhiteObjects()) { // Effectively a continuation. nsCycleCollector_dispatchDeferredDeletion(true); } } void Visit(nsPurpleBuffer &aBuffer, nsPurpleBufferEntry *aEntry) { MOZ_ASSERT(aEntry->mObject, "null mObject in purple buffer"); if (!aEntry->mRefCnt->get()) { if (!mAsyncSnowWhiteFreeing) { SnowWhiteKiller::Visit(aBuffer, aEntry); } else if (!mDispatchedDeferredDeletion) { mDispatchedDeferredDeletion = true; nsCycleCollector_dispatchDeferredDeletion(false); } return; } void *o = aEntry->mObject; nsCycleCollectionParticipant *cp = aEntry->mParticipant; CanonicalizeParticipant(&o, &cp); if (aEntry->mRefCnt->IsPurple() && !cp->CanSkip(o, false) && (!mRemoveChildlessNodes || MayHaveChild(o, cp))) { return; } aBuffer.Remove(aEntry); } private: bool mRemoveChildlessNodes; bool mAsyncSnowWhiteFreeing; bool mDispatchedDeferredDeletion; CC_ForgetSkippableCallback mCallback; }; void nsPurpleBuffer::RemoveSkippable(nsCycleCollector* aCollector, bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing, CC_ForgetSkippableCallback aCb) { RemoveSkippableVisitor visitor(aCollector, Count(), aRemoveChildlessNodes, aAsyncSnowWhiteFreeing, aCb); VisitEntries(visitor); } bool nsCycleCollector::FreeSnowWhite(bool aUntilNoSWInPurpleBuffer) { CheckThreadSafety(); bool hadSnowWhiteObjects = false; do { SnowWhiteKiller visitor(mPurpleBuf.Count()); mPurpleBuf.VisitEntries(visitor); hadSnowWhiteObjects = hadSnowWhiteObjects || visitor.HasSnowWhiteObjects(); if (!visitor.HasSnowWhiteObjects()) { break; } } while (aUntilNoSWInPurpleBuffer); return hadSnowWhiteObjects; } void nsCycleCollector::ForgetSkippable(bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing) { CheckThreadSafety(); if (mJSRuntime) { mJSRuntime->PrepareForForgetSkippable(); } mPurpleBuf.RemoveSkippable(this, aRemoveChildlessNodes, aAsyncSnowWhiteFreeing, mForgetSkippableCB); } MOZ_NEVER_INLINE void nsCycleCollector::MarkRoots(GCGraphBuilder &aBuilder) { mGraph.mRootCount = aBuilder.Count(); // read the PtrInfo out of the graph that we are building NodePool::Enumerator queue(mGraph.mNodes); while (!queue.IsDone()) { PtrInfo *pi = queue.GetNext(); CC_AbortIfNull(pi); aBuilder.Traverse(pi); if (queue.AtBlockEnd()) { aBuilder.SetLastChild(); } } if (mGraph.mRootCount > 0) { aBuilder.SetLastChild(); } if (aBuilder.RanOutOfMemory()) { NS_ASSERTION(false, "Ran out of memory while building cycle collector graph"); Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_OOM, true); } } //////////////////////////////////////////////////////////////////////// // Bacon & Rajan's |ScanRoots| routine. //////////////////////////////////////////////////////////////////////// struct ScanBlackVisitor { ScanBlackVisitor(uint32_t &aWhiteNodeCount, bool &aFailed) : mWhiteNodeCount(aWhiteNodeCount), mFailed(aFailed) { } bool ShouldVisitNode(PtrInfo const *pi) { return pi->mColor != black; } MOZ_NEVER_INLINE void VisitNode(PtrInfo *pi) { if (pi->mColor == white) --mWhiteNodeCount; pi->mColor = black; } void Failed() { mFailed = true; } private: uint32_t &mWhiteNodeCount; bool &mFailed; }; struct scanVisitor { scanVisitor(uint32_t &aWhiteNodeCount, bool &aFailed) : mWhiteNodeCount(aWhiteNodeCount), mFailed(aFailed) { } bool ShouldVisitNode(PtrInfo const *pi) { return pi->mColor == grey; } MOZ_NEVER_INLINE void VisitNode(PtrInfo *pi) { if (pi->mInternalRefs > pi->mRefCount && pi->mRefCount > 0) Fault("traversed refs exceed refcount", pi); if (pi->mInternalRefs == pi->mRefCount || pi->mRefCount == 0) { pi->mColor = white; ++mWhiteNodeCount; } else { GraphWalker(ScanBlackVisitor(mWhiteNodeCount, mFailed)).Walk(pi); MOZ_ASSERT(pi->mColor == black, "Why didn't ScanBlackVisitor make pi black?"); } } void Failed() { mFailed = true; } private: uint32_t &mWhiteNodeCount; bool &mFailed; }; // Iterate over the WeakMaps. If we mark anything while iterating // over the WeakMaps, we must iterate over all of the WeakMaps again. void nsCycleCollector::ScanWeakMaps() { bool anyChanged; bool failed = false; do { anyChanged = false; for (uint32_t i = 0; i < mGraph.mWeakMaps.Length(); i++) { WeakMapping *wm = &mGraph.mWeakMaps[i]; // If any of these are null, the original object was marked black. uint32_t mColor = wm->mMap ? wm->mMap->mColor : black; uint32_t kColor = wm->mKey ? wm->mKey->mColor : black; uint32_t kdColor = wm->mKeyDelegate ? wm->mKeyDelegate->mColor : black; uint32_t vColor = wm->mVal ? wm->mVal->mColor : black; // All non-null weak mapping maps, keys and values are // roots (in the sense of WalkFromRoots) in the cycle // collector graph, and thus should have been colored // either black or white in ScanRoots(). MOZ_ASSERT(mColor != grey, "Uncolored weak map"); MOZ_ASSERT(kColor != grey, "Uncolored weak map key"); MOZ_ASSERT(kdColor != grey, "Uncolored weak map key delegate"); MOZ_ASSERT(vColor != grey, "Uncolored weak map value"); if (mColor == black && kColor != black && kdColor == black) { GraphWalker(ScanBlackVisitor(mWhiteNodeCount, failed)).Walk(wm->mKey); anyChanged = true; } if (mColor == black && kColor == black && vColor != black) { GraphWalker(ScanBlackVisitor(mWhiteNodeCount, failed)).Walk(wm->mVal); anyChanged = true; } } } while (anyChanged); if (failed) { NS_ASSERTION(false, "Ran out of memory in ScanWeakMaps"); Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_OOM, true); } } void nsCycleCollector::ScanRoots() { mWhiteNodeCount = 0; // On the assumption that most nodes will be black, it's // probably faster to use a GraphWalker than a // NodePool::Enumerator. bool failed = false; GraphWalker(scanVisitor(mWhiteNodeCount, failed)).WalkFromRoots(mGraph); if (failed) { NS_ASSERTION(false, "Ran out of memory in ScanRoots"); Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_OOM, true); } ScanWeakMaps(); } //////////////////////////////////////////////////////////////////////// // Bacon & Rajan's |CollectWhite| routine, somewhat modified. //////////////////////////////////////////////////////////////////////// bool nsCycleCollector::CollectWhite(nsICycleCollectorListener *aListener) { // Explanation of "somewhat modified": we have no way to collect the // set of whites "all at once", we have to ask each of them to drop // their outgoing links and assume this will cause the garbage cycle // to *mostly* self-destruct (except for the reference we continue // to hold). // // To do this "safely" we must make sure that the white nodes we're // operating on are stable for the duration of our operation. So we // make 3 sets of calls to language runtimes: // // - Root(whites), which should pin the whites in memory. // - Unlink(whites), which drops outgoing links on each white. // - Unroot(whites), which returns the whites to normal GC. nsresult rv; TimeLog timeLog; MOZ_ASSERT(mWhiteNodes->IsEmpty(), "FinishCollection wasn't called?"); mWhiteNodes->SetCapacity(mWhiteNodeCount); uint32_t numWhiteGCed = 0; NodePool::Enumerator etor(mGraph.mNodes); while (!etor.IsDone()) { PtrInfo *pinfo = etor.GetNext(); if (pinfo->mColor == white) { mWhiteNodes->AppendElement(pinfo); rv = pinfo->mParticipant->Root(pinfo->mPointer); if (NS_FAILED(rv)) { Fault("Failed root call while unlinking", pinfo); mWhiteNodes->RemoveElementAt(mWhiteNodes->Length() - 1); } else if (pinfo->mRefCount == 0) { // only JS objects have a refcount of 0 ++numWhiteGCed; } } } uint32_t count = mWhiteNodes->Length(); MOZ_ASSERT(numWhiteGCed <= count, "More freed GCed nodes than total freed nodes."); if (mResults) { mResults->mFreedRefCounted += count - numWhiteGCed; mResults->mFreedGCed += numWhiteGCed; } timeLog.Checkpoint("CollectWhite::Root"); if (mBeforeUnlinkCB) { mBeforeUnlinkCB(); timeLog.Checkpoint("CollectWhite::BeforeUnlinkCB"); } if (aListener) { for (uint32_t i = 0; i < count; ++i) { PtrInfo *pinfo = mWhiteNodes->ElementAt(i); aListener->DescribeGarbage((uint64_t)pinfo->mPointer); } aListener->End(); } for (uint32_t i = 0; i < count; ++i) { PtrInfo *pinfo = mWhiteNodes->ElementAt(i); #ifdef DEBUG if (mJSRuntime) { mJSRuntime->SetObjectToUnlink(pinfo->mPointer); } #endif rv = pinfo->mParticipant->Unlink(pinfo->mPointer); #ifdef DEBUG if (mJSRuntime) { mJSRuntime->SetObjectToUnlink(nullptr); mJSRuntime->AssertNoObjectsToTrace(pinfo->mPointer); } #endif if (NS_FAILED(rv)) { Fault("Failed unlink call while unlinking", pinfo); } } timeLog.Checkpoint("CollectWhite::Unlink"); for (uint32_t i = 0; i < count; ++i) { PtrInfo *pinfo = mWhiteNodes->ElementAt(i); rv = pinfo->mParticipant->Unroot(pinfo->mPointer); if (NS_FAILED(rv)) Fault("Failed unroot call while unlinking", pinfo); } timeLog.Checkpoint("CollectWhite::Unroot"); nsCycleCollector_dispatchDeferredDeletion(false); return count > 0; } //////////////////////// // Memory reporter //////////////////////// class CycleCollectorMultiReporter MOZ_FINAL : public nsIMemoryMultiReporter { public: CycleCollectorMultiReporter(nsCycleCollector* aCollector) : mCollector(aCollector) {} NS_DECL_ISUPPORTS NS_IMETHOD GetName(nsACString& name) { name.AssignLiteral("cycle-collector"); return NS_OK; } NS_IMETHOD CollectReports(nsIMemoryMultiReporterCallback* aCb, nsISupports* aClosure) { size_t objectSize, graphNodesSize, graphEdgesSize, whiteNodesSize, purpleBufferSize; mCollector->SizeOfIncludingThis(MallocSizeOf, &objectSize, &graphNodesSize, &graphEdgesSize, &whiteNodesSize, &purpleBufferSize); #define REPORT(_path, _amount, _desc) \ do { \ size_t amount = _amount; /* evaluate |_amount| only once */ \ if (amount > 0) { \ nsresult rv; \ rv = aCb->Callback(EmptyCString(), NS_LITERAL_CSTRING(_path), \ nsIMemoryReporter::KIND_HEAP, \ nsIMemoryReporter::UNITS_BYTES, _amount, \ NS_LITERAL_CSTRING(_desc), aClosure); \ NS_ENSURE_SUCCESS(rv, rv); \ } \ } while (0) REPORT("explicit/cycle-collector/collector-object", objectSize, "Memory used for the cycle collector object itself."); REPORT("explicit/cycle-collector/graph-nodes", graphNodesSize, "Memory used for the nodes of the cycle collector's graph. " "This should be zero when the collector is idle."); REPORT("explicit/cycle-collector/graph-edges", graphEdgesSize, "Memory used for the edges of the cycle collector's graph. " "This should be zero when the collector is idle."); REPORT("explicit/cycle-collector/white-nodes", whiteNodesSize, "Memory used for the cycle collector's white nodes array. " "This should be zero when the collector is idle."); REPORT("explicit/cycle-collector/purple-buffer", purpleBufferSize, "Memory used for the cycle collector's purple buffer."); #undef REPORT return NS_OK; } private: NS_MEMORY_REPORTER_MALLOC_SIZEOF_FUN(MallocSizeOf) nsCycleCollector* mCollector; }; NS_IMPL_ISUPPORTS1(CycleCollectorMultiReporter, nsIMemoryMultiReporter) //////////////////////////////////////////////////////////////////////// // Collector implementation //////////////////////////////////////////////////////////////////////// nsCycleCollector::nsCycleCollector() : mCollectionInProgress(false), mScanInProgress(false), mResults(nullptr), mJSRuntime(nullptr), mThread(NS_GetCurrentThread()), mWhiteNodes(nullptr), mWhiteNodeCount(0), mVisitedRefCounted(0), mVisitedGCed(0), mBeforeUnlinkCB(nullptr), mForgetSkippableCB(nullptr), mReporter(nullptr), mUnmergedNeeded(0), mMergedInARow(0) { } nsCycleCollector::~nsCycleCollector() { NS_UnregisterMemoryMultiReporter(mReporter); } void nsCycleCollector::RegisterJSRuntime(CycleCollectedJSRuntime *aJSRuntime) { if (mJSRuntime) Fault("multiple registrations of cycle collector JS runtime", aJSRuntime); mJSRuntime = aJSRuntime; // We can't register the reporter in nsCycleCollector() because that runs // before the memory reporter manager is initialized. So we do it here // instead. static bool registered = false; if (!registered) { NS_RegisterMemoryMultiReporter(new CycleCollectorMultiReporter(this)); registered = true; } } void nsCycleCollector::ForgetJSRuntime() { if (!mJSRuntime) Fault("forgetting non-registered cycle collector JS runtime"); mJSRuntime = nullptr; } #ifdef DEBUG static bool nsCycleCollector_isScanSafe(void *s, nsCycleCollectionParticipant *cp) { if (!s) return false; if (cp) return true; nsXPCOMCycleCollectionParticipant *xcp; ToParticipant(static_cast(s), &xcp); return xcp != nullptr; } #endif void nsCycleCollector::Suspect(void *n, nsCycleCollectionParticipant *cp, nsCycleCollectingAutoRefCnt *aRefCnt) { CheckThreadSafety(); // Re-entering ::Suspect during collection used to be a fault, but // we are canonicalizing nsISupports pointers using QI, so we will // see some spurious refcount traffic here. if (mScanInProgress) return; MOZ_ASSERT(nsCycleCollector_isScanSafe(n, cp), "suspected a non-scansafe pointer"); mPurpleBuf.Put(n, cp, aRefCnt); } void nsCycleCollector::CheckThreadSafety() { #ifdef DEBUG nsIThread* currentThread = NS_GetCurrentThread(); // XXXkhuey we can be called so late in shutdown that NS_GetCurrentThread // returns null (after the thread manager has shut down) MOZ_ASSERT(mThread == currentThread || !currentThread); #endif } // The cycle collector uses the mark bitmap to discover what JS objects // were reachable only from XPConnect roots that might participate in // cycles. We ask the JS runtime whether we need to force a GC before // this CC. It returns true on startup (before the mark bits have been set), // and also when UnmarkGray has run out of stack. We also force GCs on shut // down to collect cycles involving both DOM and JS. void nsCycleCollector::FixGrayBits(bool aForceGC) { CheckThreadSafety(); if (!mJSRuntime) return; if (!aForceGC) { mJSRuntime->FixWeakMappingGrayBits(); bool needGC = mJSRuntime->NeedCollect(); // Only do a telemetry ping for non-shutdown CCs. Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_NEED_GC, needGC); if (!needGC) return; if (mResults) mResults->mForcedGC = true; } TimeLog timeLog; mJSRuntime->Collect(aForceGC ? JS::gcreason::SHUTDOWN_CC : JS::gcreason::CC_FORCED); timeLog.Checkpoint("GC()"); } bool nsCycleCollector::PrepareForCollection(nsCycleCollectorResults *aResults, nsTArray *aWhiteNodes) { // This can legitimately happen in a few cases. See bug 383651. if (mCollectionInProgress) return false; TimeLog timeLog; mCollectionStart = TimeStamp::Now(); mVisitedRefCounted = 0; mVisitedGCed = 0; mCollectionInProgress = true; if (mJSRuntime) { mJSRuntime->PrepareForCollection(); } mResults = aResults; mWhiteNodes = aWhiteNodes; timeLog.Checkpoint("PrepareForCollection()"); return true; } void nsCycleCollector::CleanupAfterCollection() { mWhiteNodes = nullptr; mCollectionInProgress = false; #ifdef XP_OS2 // Now that the cycle collector has freed some memory, we can try to // force the C library to give back as much memory to the system as // possible. _heapmin(); #endif uint32_t interval = (uint32_t) ((TimeStamp::Now() - mCollectionStart).ToMilliseconds()); #ifdef COLLECT_TIME_DEBUG printf("cc: total cycle collector time was %ums\n", interval); if (mResults) { printf("cc: visited %u ref counted and %u GCed objects, freed %d ref counted and %d GCed objects.\n", mVisitedRefCounted, mVisitedGCed, mResults->mFreedRefCounted, mResults->mFreedGCed); } else { printf("cc: visited %u ref counted and %u GCed objects, freed %d.\n", mVisitedRefCounted, mVisitedGCed, mWhiteNodeCount); } printf("cc: \n"); #endif if (mResults) { mResults->mVisitedRefCounted = mVisitedRefCounted; mResults->mVisitedGCed = mVisitedGCed; mResults = nullptr; } Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR, interval); Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_VISITED_REF_COUNTED, mVisitedRefCounted); Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_VISITED_GCED, mVisitedGCed); Telemetry::Accumulate(Telemetry::CYCLE_COLLECTOR_COLLECTED, mWhiteNodeCount); } void nsCycleCollector::ShutdownCollect(nsICycleCollectorListener *aListener) { nsAutoTArray whiteNodes; for (uint32_t i = 0; i < DEFAULT_SHUTDOWN_COLLECTIONS; ++i) { NS_ASSERTION(i < NORMAL_SHUTDOWN_COLLECTIONS, "Extra shutdown CC"); if (!Collect(ShutdownCC, &whiteNodes, nullptr, aListener)) { break; } } } bool nsCycleCollector::Collect(ccType aCCType, nsTArray *aWhiteNodes, nsCycleCollectorResults *aResults, nsICycleCollectorListener *aListener) { CheckThreadSafety(); if (!PrepareForCollection(aResults, aWhiteNodes)) { return false; } bool forceGC = (aCCType == ShutdownCC); if (!forceGC && aListener) { // On a WantAllTraces CC, force a synchronous global GC to prevent // hijinks from ForgetSkippable and compartmental GCs. aListener->GetWantAllTraces(&forceGC); } FixGrayBits(forceGC); FreeSnowWhite(true); if (aListener && NS_FAILED(aListener->Begin())) { aListener = nullptr; } BeginCollection(aCCType, aListener); bool collectedAny = FinishCollection(aListener); CleanupAfterCollection(); return collectedAny; } // Don't merge too many times in a row, and do at least a minimum // number of unmerged CCs in a row. static const uint32_t kMinConsecutiveUnmerged = 3; static const uint32_t kMaxConsecutiveMerged = 3; bool nsCycleCollector::ShouldMergeZones(ccType aCCType) { if (!mJSRuntime) { return false; } MOZ_ASSERT(mUnmergedNeeded <= kMinConsecutiveUnmerged); MOZ_ASSERT(mMergedInARow <= kMaxConsecutiveMerged); if (mMergedInARow == kMaxConsecutiveMerged) { MOZ_ASSERT(mUnmergedNeeded == 0); mUnmergedNeeded = kMinConsecutiveUnmerged; } if (mUnmergedNeeded > 0) { mUnmergedNeeded--; mMergedInARow = 0; return false; } if (aCCType == ScheduledCC && mJSRuntime->UsefulToMergeZones()) { mMergedInARow++; return true; } else { mMergedInARow = 0; return false; } } void nsCycleCollector::BeginCollection(ccType aCCType, nsICycleCollectorListener *aListener) { // aListener should be Begin()'d before this TimeLog timeLog; bool mergeZones = ShouldMergeZones(aCCType); if (mResults) { mResults->mMergedZones = mergeZones; } GCGraphBuilder builder(this, mGraph, mJSRuntime, aListener, mergeZones); if (mJSRuntime) { mJSRuntime->BeginCycleCollection(builder); timeLog.Checkpoint("mJSRuntime->BeginCycleCollection()"); } mScanInProgress = true; mPurpleBuf.SelectPointers(builder); timeLog.Checkpoint("SelectPointers()"); if (builder.Count() > 0) { // The main Bacon & Rajan collection algorithm. MarkRoots(builder); timeLog.Checkpoint("MarkRoots()"); ScanRoots(); timeLog.Checkpoint("ScanRoots()"); mScanInProgress = false; if (aListener) { aListener->BeginResults(); NodePool::Enumerator etor(mGraph.mNodes); while (!etor.IsDone()) { PtrInfo *pi = etor.GetNext(); if (pi->mColor == black && pi->mRefCount > 0 && pi->mRefCount < UINT32_MAX && pi->mInternalRefs != pi->mRefCount) { aListener->DescribeRoot((uint64_t)pi->mPointer, pi->mInternalRefs); } } } } else { mScanInProgress = false; } } bool nsCycleCollector::FinishCollection(nsICycleCollectorListener *aListener) { TimeLog timeLog; bool collected = CollectWhite(aListener); timeLog.Checkpoint("CollectWhite()"); mWhiteNodes->Clear(); ClearGraph(); timeLog.Checkpoint("ClearGraph()"); return collected; } uint32_t nsCycleCollector::SuspectedCount() { CheckThreadSafety(); return mPurpleBuf.Count(); } void nsCycleCollector::Shutdown() { CheckThreadSafety(); // Always delete snow white objects. FreeSnowWhite(true); #ifndef DEBUG if (PR_GetEnv("XPCOM_CC_RUN_DURING_SHUTDOWN")) #endif { nsCOMPtr listener; if (mParams.mLogAll || mParams.mLogShutdown) { listener = new nsCycleCollectorLogger(); if (mParams.mAllTracesAtShutdown) { listener->SetAllTraces(); } } ShutdownCollect(listener); } } void nsCycleCollector::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf, size_t *aObjectSize, size_t *aGraphNodesSize, size_t *aGraphEdgesSize, size_t *aWhiteNodeSize, size_t *aPurpleBufferSize) const { *aObjectSize = aMallocSizeOf(this); mGraph.SizeOfExcludingThis(aMallocSizeOf, aGraphNodesSize, aGraphEdgesSize); // No need to measure what the entries point to; the pointers are // non-owning. *aWhiteNodeSize = mWhiteNodes ? mWhiteNodes->SizeOfIncludingThis(aMallocSizeOf) : 0; *aPurpleBufferSize = mPurpleBuf.SizeOfExcludingThis(aMallocSizeOf); // These fields are deliberately not measured: // - mResults: because it's tiny and only contains scalars. // - mJSRuntime: because it's non-owning and measured by JS reporters. // - mParams: because it only contains scalars. } //////////////////////////////////////////////////////////////////////// // Module public API (exported in nsCycleCollector.h) // Just functions that redirect into the singleton, once it's built. //////////////////////////////////////////////////////////////////////// void nsCycleCollector_registerJSRuntime(CycleCollectedJSRuntime *rt) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); // But we shouldn't already have a runtime. MOZ_ASSERT(!data->mRuntime); data->mRuntime = rt; data->mCollector->RegisterJSRuntime(rt); } void nsCycleCollector_forgetJSRuntime() { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); // And we shouldn't have already forgotten our runtime. MOZ_ASSERT(data->mRuntime); // But it may have shutdown already. if (data->mCollector) { data->mCollector->ForgetJSRuntime(); data->mRuntime = nullptr; } else { data->mRuntime = nullptr; delete data; sCollectorData.set(nullptr); } } mozilla::CycleCollectedJSRuntime* nsCycleCollector_currentJSRuntime() { CollectorData* data = sCollectorData.get(); if (data) { return data->mRuntime; } return nullptr; } namespace mozilla { namespace cyclecollector { void HoldJSObjectsImpl(void* aHolder, nsScriptObjectTracer* aTracer) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); // And we should have a runtime. MOZ_ASSERT(data->mRuntime); data->mRuntime->AddJSHolder(aHolder, aTracer); } void HoldJSObjectsImpl(nsISupports* aHolder) { nsXPCOMCycleCollectionParticipant* participant; CallQueryInterface(aHolder, &participant); MOZ_ASSERT(participant, "Failed to QI to nsXPCOMCycleCollectionParticipant!"); MOZ_ASSERT(participant->CheckForRightISupports(aHolder), "The result of QIing a JS holder should be the same as ToSupports"); HoldJSObjectsImpl(aHolder, participant); } void DropJSObjectsImpl(void* aHolder) { CollectorData* data = sCollectorData.get(); // We should have started the cycle collector by now, and not completely // shut down. MOZ_ASSERT(data); // And we should have a runtime. MOZ_ASSERT(data->mRuntime); data->mRuntime->RemoveJSHolder(aHolder); } void DropJSObjectsImpl(nsISupports* aHolder) { #ifdef DEBUG nsXPCOMCycleCollectionParticipant* participant; CallQueryInterface(aHolder, &participant); MOZ_ASSERT(participant, "Failed to QI to nsXPCOMCycleCollectionParticipant!"); MOZ_ASSERT(participant->CheckForRightISupports(aHolder), "The result of QIing a JS holder should be the same as ToSupports"); #endif DropJSObjectsImpl(static_cast(aHolder)); } #ifdef DEBUG bool IsJSHolder(void* aHolder) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now, and not completely // shut down. MOZ_ASSERT(data); // And we should have a runtime. MOZ_ASSERT(data->mRuntime); return data->mRuntime->IsJSHolder(aHolder); } #endif void DeferredFinalize(nsISupports* aSupports) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now, and not completely // shut down. MOZ_ASSERT(data); // And we should have a runtime. MOZ_ASSERT(data->mRuntime); data->mRuntime->DeferredFinalize(aSupports); } void DeferredFinalize(DeferredFinalizeAppendFunction aAppendFunc, DeferredFinalizeFunction aFunc, void* aThing) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now, and not completely // shut down. MOZ_ASSERT(data); // And we should have a runtime. MOZ_ASSERT(data->mRuntime); data->mRuntime->DeferredFinalize(aAppendFunc, aFunc, aThing); } } // namespace cyclecollector } // namespace mozilla void NS_CycleCollectorSuspect3(void *n, nsCycleCollectionParticipant *cp, nsCycleCollectingAutoRefCnt *aRefCnt, bool* aShouldDelete) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); if (!data->mCollector) { if (aRefCnt->get() == 0) { if (!aShouldDelete) { CanonicalizeParticipant(&n, &cp); aRefCnt->stabilizeForDeletion(); cp->DeleteCycleCollectable(n); } else { *aShouldDelete = true; } } else { // Make sure we'll get called again. aRefCnt->RemoveFromPurpleBuffer(); } return; } return data->mCollector->Suspect(n, cp, aRefCnt); } uint32_t nsCycleCollector_suspectedCount() { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); if (!data->mCollector) { return 0; } return data->mCollector->SuspectedCount(); } bool nsCycleCollector_init() { MOZ_ASSERT(NS_IsMainThread(), "Wrong thread!"); MOZ_ASSERT(!sCollectorData.initialized(), "Called twice!?"); return sCollectorData.init(); } void nsCycleCollector_startup() { MOZ_ASSERT(sCollectorData.initialized(), "Forgot to call nsCycleCollector_init!"); if (sCollectorData.get()) { MOZ_CRASH(); } nsAutoPtr collector(new nsCycleCollector()); nsAutoPtr data(new CollectorData); data->mRuntime = nullptr; data->mCollector = collector.forget(); sCollectorData.set(data.forget()); } void nsCycleCollector_setBeforeUnlinkCallback(CC_BeforeUnlinkCallback aCB) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); data->mCollector->SetBeforeUnlinkCallback(aCB); } void nsCycleCollector_setForgetSkippableCallback(CC_ForgetSkippableCallback aCB) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); data->mCollector->SetForgetSkippableCallback(aCB); } void nsCycleCollector_forgetSkippable(bool aRemoveChildlessNodes, bool aAsyncSnowWhiteFreeing) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); PROFILER_LABEL("CC", "nsCycleCollector_forgetSkippable"); TimeLog timeLog; data->mCollector->ForgetSkippable(aRemoveChildlessNodes, aAsyncSnowWhiteFreeing); timeLog.Checkpoint("ForgetSkippable()"); } void nsCycleCollector_dispatchDeferredDeletion(bool aContinuation) { CollectorData *data = sCollectorData.get(); if (!data || !data->mRuntime) { return; } data->mRuntime->DispatchDeferredDeletion(aContinuation); } bool nsCycleCollector_doDeferredDeletion() { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); MOZ_ASSERT(data->mRuntime); return data->mCollector->FreeSnowWhite(false); } void nsCycleCollector_collect(bool aManuallyTriggered, nsCycleCollectorResults *aResults, nsICycleCollectorListener *aListener) { CollectorData *data = sCollectorData.get(); // We should have started the cycle collector by now. MOZ_ASSERT(data); MOZ_ASSERT(data->mCollector); PROFILER_LABEL("CC", "nsCycleCollector_collect"); nsCOMPtr listener(aListener); if (!aListener && data->mCollector->mParams.mLogAll) { listener = new nsCycleCollectorLogger(); } nsAutoTArray whiteNodes; data->mCollector->Collect(aManuallyTriggered ? ManualCC : ScheduledCC, &whiteNodes, aResults, listener); } void nsCycleCollector_shutdown() { CollectorData *data = sCollectorData.get(); if (data) { MOZ_ASSERT(data->mCollector); PROFILER_LABEL("CC", "nsCycleCollector_shutdown"); data->mCollector->Shutdown(); delete data->mCollector; data->mCollector = nullptr; if (!data->mRuntime) { delete data; sCollectorData.set(nullptr); } } }