/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "MediaData.h" #include "ImageContainer.h" #include "MediaInfo.h" #include "VideoUtils.h" #include "YCbCrUtils.h" #include "mozilla/layers/ImageBridgeChild.h" #include "mozilla/layers/KnowsCompositor.h" #include "mozilla/layers/SharedRGBImage.h" #include #ifdef XP_WIN # include "mozilla/WindowsVersion.h" # include "mozilla/layers/D3D11YCbCrImage.h" #endif namespace mozilla { using namespace mozilla::gfx; using layers::ImageContainer; using layers::PlanarYCbCrData; using layers::PlanarYCbCrImage; using media::TimeUnit; const char* AudioData::sTypeName = "audio"; const char* VideoData::sTypeName = "video"; bool IsDataLoudnessHearable(const AudioDataValue aData) { // We can transfer the digital value to dBFS via following formula. According // to American SMPTE standard, 0 dBu equals -20 dBFS. In theory 0 dBu is still // hearable, so we choose a smaller value as our threshold. If the loudness // is under this threshold, it might not be hearable. return 20.0f * std::log10(AudioSampleToFloat(aData)) > -100; } AudioData::AudioData(int64_t aOffset, const media::TimeUnit& aTime, AlignedAudioBuffer&& aData, uint32_t aChannels, uint32_t aRate, uint32_t aChannelMap) : MediaData(sType, aOffset, aTime, FramesToTimeUnit(aData.Length() / aChannels, aRate)), mChannels(aChannels), mChannelMap(aChannelMap), mRate(aRate), mOriginalTime(aTime), mAudioData(std::move(aData)), mFrames(mAudioData.Length() / aChannels) {} Span AudioData::Data() const { return MakeSpan(GetAdjustedData(), mFrames * mChannels); } bool AudioData::AdjustForStartTime(const media::TimeUnit& aStartTime) { mOriginalTime -= aStartTime; if (mTrimWindow) { *mTrimWindow -= aStartTime; } return MediaData::AdjustForStartTime(aStartTime) && mOriginalTime.IsValid(); } bool AudioData::SetTrimWindow(const media::TimeInterval& aTrim) { MOZ_DIAGNOSTIC_ASSERT(aTrim.mStart.IsValid() && aTrim.mEnd.IsValid(), "An overflow occurred on the provided TimeInterval"); if (!mAudioData) { // MoveableData got called. Can no longer work on it. return false; } const size_t originalFrames = mAudioData.Length() / mChannels; const TimeUnit originalDuration = FramesToTimeUnit(originalFrames, mRate); if (aTrim.mStart < mOriginalTime || aTrim.mEnd > mOriginalTime + originalDuration) { return false; } auto trimBefore = TimeUnitToFrames(aTrim.mStart - mOriginalTime, mRate); auto trimAfter = aTrim.mEnd == GetEndTime() ? originalFrames : TimeUnitToFrames(aTrim.mEnd - mOriginalTime, mRate); if (!trimBefore.isValid() || !trimAfter.isValid()) { // Overflow. return false; } MOZ_DIAGNOSTIC_ASSERT(trimAfter.value() >= trimBefore.value(), "Something went wrong with trimming value"); if (!mTrimWindow && trimBefore == 0 && trimAfter == originalFrames) { // Nothing to change, abort early to prevent rounding errors. return true; } mTrimWindow = Some(aTrim); mDataOffset = trimBefore.value() * mChannels; MOZ_DIAGNOSTIC_ASSERT(mDataOffset <= mAudioData.Length(), "Data offset outside original buffer"); mFrames = (trimAfter - trimBefore).value(); MOZ_DIAGNOSTIC_ASSERT(mFrames <= originalFrames, "More frames than found in container"); mTime = mOriginalTime + FramesToTimeUnit(trimBefore.value(), mRate); mDuration = FramesToTimeUnit(mFrames, mRate); return true; } AudioDataValue* AudioData::GetAdjustedData() const { if (!mAudioData) { return nullptr; } return mAudioData.Data() + mDataOffset; } void AudioData::EnsureAudioBuffer() { if (mAudioBuffer || !mAudioData) { return; } const AudioDataValue* srcData = GetAdjustedData(); mAudioBuffer = SharedBuffer::Create(mFrames * mChannels * sizeof(AudioDataValue)); AudioDataValue* destData = static_cast(mAudioBuffer->Data()); for (uint32_t i = 0; i < mFrames; ++i) { for (uint32_t j = 0; j < mChannels; ++j) { destData[j * mFrames + i] = srcData[i * mChannels + j]; } } } size_t AudioData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { size_t size = aMallocSizeOf(this) + mAudioData.SizeOfExcludingThis(aMallocSizeOf); if (mAudioBuffer) { size += mAudioBuffer->SizeOfIncludingThis(aMallocSizeOf); } return size; } bool AudioData::IsAudible() const { if (!mAudioData) { return false; } const AudioDataValue* data = GetAdjustedData(); for (uint32_t frame = 0; frame < mFrames; ++frame) { for (uint32_t channel = 0; channel < mChannels; ++channel) { if (IsDataLoudnessHearable(data[frame * mChannels + channel])) { return true; } } } return false; } AlignedAudioBuffer AudioData::MoveableData() { // Trim buffer according to trimming mask. mAudioData.PopFront(mDataOffset); mAudioData.SetLength(mFrames * mChannels); mDataOffset = 0; mFrames = 0; mTrimWindow.reset(); return std::move(mAudioData); } static bool ValidatePlane(const VideoData::YCbCrBuffer::Plane& aPlane) { return aPlane.mWidth <= PlanarYCbCrImage::MAX_DIMENSION && aPlane.mHeight <= PlanarYCbCrImage::MAX_DIMENSION && aPlane.mWidth * aPlane.mHeight < MAX_VIDEO_WIDTH * MAX_VIDEO_HEIGHT && aPlane.mStride > 0 && aPlane.mWidth <= aPlane.mStride; } static bool ValidateBufferAndPicture(const VideoData::YCbCrBuffer& aBuffer, const IntRect& aPicture) { // The following situation should never happen unless there is a bug // in the decoder if (aBuffer.mPlanes[1].mWidth != aBuffer.mPlanes[2].mWidth || aBuffer.mPlanes[1].mHeight != aBuffer.mPlanes[2].mHeight) { NS_ERROR("C planes with different sizes"); return false; } // The following situations could be triggered by invalid input if (aPicture.width <= 0 || aPicture.height <= 0) { NS_WARNING("Empty picture rect"); return false; } if (!ValidatePlane(aBuffer.mPlanes[0]) || !ValidatePlane(aBuffer.mPlanes[1]) || !ValidatePlane(aBuffer.mPlanes[2])) { NS_WARNING("Invalid plane size"); return false; } // Ensure the picture size specified in the headers can be extracted out of // the frame we've been supplied without indexing out of bounds. CheckedUint32 xLimit = aPicture.x + CheckedUint32(aPicture.width); CheckedUint32 yLimit = aPicture.y + CheckedUint32(aPicture.height); if (!xLimit.isValid() || xLimit.value() > aBuffer.mPlanes[0].mStride || !yLimit.isValid() || yLimit.value() > aBuffer.mPlanes[0].mHeight) { // The specified picture dimensions can't be contained inside the video // frame, we'll stomp memory if we try to copy it. Fail. NS_WARNING("Overflowing picture rect"); return false; } return true; } VideoData::VideoData(int64_t aOffset, const TimeUnit& aTime, const TimeUnit& aDuration, bool aKeyframe, const TimeUnit& aTimecode, IntSize aDisplay, layers::ImageContainer::FrameID aFrameID) : MediaData(Type::VIDEO_DATA, aOffset, aTime, aDuration), mDisplay(aDisplay), mFrameID(aFrameID), mSentToCompositor(false), mNextKeyFrameTime(TimeUnit::Invalid()) { MOZ_ASSERT(!mDuration.IsNegative(), "Frame must have non-negative duration."); mKeyframe = aKeyframe; mTimecode = aTimecode; } VideoData::~VideoData() {} void VideoData::SetListener(UniquePtr aListener) { MOZ_ASSERT(!mSentToCompositor, "Listener should be registered before sending data"); mListener = std::move(aListener); } void VideoData::MarkSentToCompositor() { if (mSentToCompositor) { return; } mSentToCompositor = true; if (mListener != nullptr) { mListener->OnSentToCompositor(); mListener = nullptr; } } size_t VideoData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { size_t size = aMallocSizeOf(this); // Currently only PLANAR_YCBCR has a well defined function for determining // it's size, so reporting is limited to that type. if (mImage && mImage->GetFormat() == ImageFormat::PLANAR_YCBCR) { const mozilla::layers::PlanarYCbCrImage* img = static_cast(mImage.get()); size += img->SizeOfIncludingThis(aMallocSizeOf); } return size; } void VideoData::UpdateDuration(const TimeUnit& aDuration) { MOZ_ASSERT(!aDuration.IsNegative()); mDuration = aDuration; } void VideoData::UpdateTimestamp(const TimeUnit& aTimestamp) { MOZ_ASSERT(!aTimestamp.IsNegative()); auto updatedDuration = GetEndTime() - aTimestamp; MOZ_ASSERT(!updatedDuration.IsNegative()); mTime = aTimestamp; mDuration = updatedDuration; } PlanarYCbCrData ConstructPlanarYCbCrData(const VideoInfo& aInfo, const VideoData::YCbCrBuffer& aBuffer, const IntRect& aPicture) { const VideoData::YCbCrBuffer::Plane& Y = aBuffer.mPlanes[0]; const VideoData::YCbCrBuffer::Plane& Cb = aBuffer.mPlanes[1]; const VideoData::YCbCrBuffer::Plane& Cr = aBuffer.mPlanes[2]; PlanarYCbCrData data; data.mYChannel = Y.mData + Y.mOffset; data.mYSize = IntSize(Y.mWidth, Y.mHeight); data.mYStride = Y.mStride; data.mYSkip = Y.mSkip; data.mCbChannel = Cb.mData + Cb.mOffset; data.mCrChannel = Cr.mData + Cr.mOffset; data.mCbCrSize = IntSize(Cb.mWidth, Cb.mHeight); data.mCbCrStride = Cb.mStride; data.mCbSkip = Cb.mSkip; data.mCrSkip = Cr.mSkip; data.mPicX = aPicture.x; data.mPicY = aPicture.y; data.mPicSize = aPicture.Size(); data.mStereoMode = aInfo.mStereoMode; data.mYUVColorSpace = aBuffer.mYUVColorSpace; data.mColorDepth = aBuffer.mColorDepth; return data; } /* static */ bool VideoData::SetVideoDataToImage(PlanarYCbCrImage* aVideoImage, const VideoInfo& aInfo, const YCbCrBuffer& aBuffer, const IntRect& aPicture, bool aCopyData) { if (!aVideoImage) { return false; } PlanarYCbCrData data = ConstructPlanarYCbCrData(aInfo, aBuffer, aPicture); aVideoImage->SetDelayedConversion(true); if (aCopyData) { return aVideoImage->CopyData(data); } else { return aVideoImage->AdoptData(data); } } /* static */ already_AddRefed VideoData::CreateAndCopyData( const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset, const TimeUnit& aTime, const TimeUnit& aDuration, const YCbCrBuffer& aBuffer, bool aKeyframe, const TimeUnit& aTimecode, const IntRect& aPicture, layers::KnowsCompositor* aAllocator) { if (!aContainer) { // Create a dummy VideoData with no image. This gives us something to // send to media streams if necessary. RefPtr v(new VideoData(aOffset, aTime, aDuration, aKeyframe, aTimecode, aInfo.mDisplay, 0)); return v.forget(); } if (!ValidateBufferAndPicture(aBuffer, aPicture)) { return nullptr; } RefPtr v(new VideoData(aOffset, aTime, aDuration, aKeyframe, aTimecode, aInfo.mDisplay, 0)); // Currently our decoder only knows how to output to ImageFormat::PLANAR_YCBCR // format. #if XP_WIN // We disable this code path on Windows version earlier of Windows 8 due to // intermittent crashes with old drivers. See bug 1405110. // D3D11YCbCrImage can only handle YCbCr images using 3 non-interleaved planes // non-zero mSkip value indicates that one of the plane would be interleaved. if (IsWin8OrLater() && !XRE_IsParentProcess() && aAllocator && aAllocator->SupportsD3D11() && aBuffer.mPlanes[0].mSkip == 0 && aBuffer.mPlanes[1].mSkip == 0 && aBuffer.mPlanes[2].mSkip == 0) { RefPtr d3d11Image = new layers::D3D11YCbCrImage(); PlanarYCbCrData data = ConstructPlanarYCbCrData(aInfo, aBuffer, aPicture); if (d3d11Image->SetData(layers::ImageBridgeChild::GetSingleton() ? layers::ImageBridgeChild::GetSingleton().get() : aAllocator, aContainer, data)) { v->mImage = d3d11Image; return v.forget(); } } #endif if (!v->mImage) { v->mImage = aContainer->CreatePlanarYCbCrImage(); } if (!v->mImage) { return nullptr; } NS_ASSERTION(v->mImage->GetFormat() == ImageFormat::PLANAR_YCBCR, "Wrong format?"); PlanarYCbCrImage* videoImage = v->mImage->AsPlanarYCbCrImage(); MOZ_ASSERT(videoImage); if (!VideoData::SetVideoDataToImage(videoImage, aInfo, aBuffer, aPicture, true /* aCopyData */)) { return nullptr; } return v.forget(); } /* static */ already_AddRefed VideoData::CreateAndCopyData( const VideoInfo& aInfo, ImageContainer* aContainer, int64_t aOffset, const TimeUnit& aTime, const TimeUnit& aDuration, const YCbCrBuffer& aBuffer, const YCbCrBuffer::Plane& aAlphaPlane, bool aKeyframe, const TimeUnit& aTimecode, const IntRect& aPicture) { if (!aContainer) { // Create a dummy VideoData with no image. This gives us something to // send to media streams if necessary. RefPtr v(new VideoData(aOffset, aTime, aDuration, aKeyframe, aTimecode, aInfo.mDisplay, 0)); return v.forget(); } if (!ValidateBufferAndPicture(aBuffer, aPicture)) { return nullptr; } RefPtr v(new VideoData(aOffset, aTime, aDuration, aKeyframe, aTimecode, aInfo.mDisplay, 0)); // Convert from YUVA to BGRA format on the software side. RefPtr videoImage = aContainer->CreateSharedRGBImage(); v->mImage = videoImage; if (!v->mImage) { return nullptr; } if (!videoImage->Allocate( IntSize(aBuffer.mPlanes[0].mWidth, aBuffer.mPlanes[0].mHeight), SurfaceFormat::B8G8R8A8)) { return nullptr; } RefPtr texture = videoImage->GetTextureClient(/* aForwarder */ nullptr); if (!texture) { NS_WARNING("Failed to allocate TextureClient"); return nullptr; } layers::TextureClientAutoLock autoLock(texture, layers::OpenMode::OPEN_WRITE_ONLY); if (!autoLock.Succeeded()) { NS_WARNING("Failed to lock TextureClient"); return nullptr; } layers::MappedTextureData buffer; if (!texture->BorrowMappedData(buffer)) { NS_WARNING("Failed to borrow mapped data"); return nullptr; } // The naming convention for libyuv and associated utils is word-order. // The naming convention in the gfx stack is byte-order. ConvertYCbCrAToARGB(aBuffer.mPlanes[0].mData, aBuffer.mPlanes[1].mData, aBuffer.mPlanes[2].mData, aAlphaPlane.mData, aBuffer.mPlanes[0].mStride, aBuffer.mPlanes[1].mStride, buffer.data, buffer.stride, buffer.size.width, buffer.size.height); return v.forget(); } /* static */ already_AddRefed VideoData::CreateFromImage( const IntSize& aDisplay, int64_t aOffset, const TimeUnit& aTime, const TimeUnit& aDuration, const RefPtr& aImage, bool aKeyframe, const TimeUnit& aTimecode) { RefPtr v(new VideoData(aOffset, aTime, aDuration, aKeyframe, aTimecode, aDisplay, 0)); v->mImage = aImage; return v.forget(); } MediaRawData::MediaRawData() : MediaData(Type::RAW_DATA), mCrypto(mCryptoInternal) {} MediaRawData::MediaRawData(const uint8_t* aData, size_t aSize) : MediaData(Type::RAW_DATA), mCrypto(mCryptoInternal), mBuffer(aData, aSize) {} MediaRawData::MediaRawData(const uint8_t* aData, size_t aSize, const uint8_t* aAlphaData, size_t aAlphaSize) : MediaData(Type::RAW_DATA), mCrypto(mCryptoInternal), mBuffer(aData, aSize), mAlphaBuffer(aAlphaData, aAlphaSize) {} already_AddRefed MediaRawData::Clone() const { RefPtr s = new MediaRawData; s->mTimecode = mTimecode; s->mTime = mTime; s->mDuration = mDuration; s->mOffset = mOffset; s->mKeyframe = mKeyframe; s->mExtraData = mExtraData; s->mCryptoInternal = mCryptoInternal; s->mTrackInfo = mTrackInfo; s->mEOS = mEOS; s->mOriginalPresentationWindow = mOriginalPresentationWindow; if (!s->mBuffer.Append(mBuffer.Data(), mBuffer.Length())) { return nullptr; } if (!s->mAlphaBuffer.Append(mAlphaBuffer.Data(), mAlphaBuffer.Length())) { return nullptr; } return s.forget(); } MediaRawData::~MediaRawData() {} size_t MediaRawData::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { size_t size = aMallocSizeOf(this); size += mBuffer.SizeOfExcludingThis(aMallocSizeOf); return size; } UniquePtr MediaRawData::CreateWriter() { UniquePtr p(new MediaRawDataWriter(this)); return p; } MediaRawDataWriter::MediaRawDataWriter(MediaRawData* aMediaRawData) : mCrypto(aMediaRawData->mCryptoInternal), mTarget(aMediaRawData) {} bool MediaRawDataWriter::SetSize(size_t aSize) { return mTarget->mBuffer.SetLength(aSize); } bool MediaRawDataWriter::Prepend(const uint8_t* aData, size_t aSize) { return mTarget->mBuffer.Prepend(aData, aSize); } bool MediaRawDataWriter::Append(const uint8_t* aData, size_t aSize) { return mTarget->mBuffer.Append(aData, aSize); } bool MediaRawDataWriter::Replace(const uint8_t* aData, size_t aSize) { return mTarget->mBuffer.Replace(aData, aSize); } void MediaRawDataWriter::Clear() { mTarget->mBuffer.Clear(); } uint8_t* MediaRawDataWriter::Data() { return mTarget->mBuffer.Data(); } size_t MediaRawDataWriter::Size() { return mTarget->Size(); } void MediaRawDataWriter::PopFront(size_t aSize) { mTarget->mBuffer.PopFront(aSize); } } // namespace mozilla