/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- * * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * Downscaler is a high-quality, streaming image downscaler based upon Skia's * scaling implementation. */ #ifndef mozilla_image_Downscaler_h #define mozilla_image_Downscaler_h #include "mozilla/Maybe.h" #include "mozilla/UniquePtr.h" #include "gfxPoint.h" #include "nsRect.h" #include "mozilla/gfx/ConvolutionFilter.h" namespace mozilla { namespace image { /** * DownscalerInvalidRect wraps two invalidation rects: one in terms of the * original image size, and one in terms of the target size. */ struct DownscalerInvalidRect { nsIntRect mOriginalSizeRect; nsIntRect mTargetSizeRect; }; /** * Downscaler is a high-quality, streaming image downscaler based upon Skia's * scaling implementation. * * Decoders can construct a Downscaler once they know their target size, then * call BeginFrame() for each frame they decode. They should write a decoded row * into the buffer returned by RowBuffer(), and then call CommitRow() to signal * that they have finished. * * Because invalidations need to be computed in terms of the scaled version of * the image, Downscaler also tracks them. Decoders can call HasInvalidation() * and TakeInvalidRect() instead of tracking invalidations themselves. */ class Downscaler { public: /// Constructs a new Downscaler which to scale to size @aTargetSize. explicit Downscaler(const nsIntSize& aTargetSize); ~Downscaler(); const nsIntSize& OriginalSize() const { return mOriginalSize; } const nsIntSize& TargetSize() const { return mTargetSize; } const nsIntSize FrameSize() const { return nsIntSize(mFrameRect.Width(), mFrameRect.Height()); } const gfxSize& Scale() const { return mScale; } /** * Begins a new frame and reinitializes the Downscaler. * * @param aOriginalSize The original size of this frame, before scaling. * @param aFrameRect The region of the original image which has data. * Every pixel outside @aFrameRect is considered blank and * has zero alpha. * @param aOutputBuffer The buffer to which the Downscaler should write its * output; this is the same buffer where the Decoder * would write its output when not downscaling during * decode. * @param aHasAlpha Whether or not this frame has an alpha channel. * Performance is a little better if it doesn't have one. * @param aFlipVertically If true, output rows will be written to the output * buffer in reverse order vertically, which matches * the way they are stored in some image formats. */ nsresult BeginFrame(const nsIntSize& aOriginalSize, const Maybe& aFrameRect, uint8_t* aOutputBuffer, bool aHasAlpha, bool aFlipVertically = false); bool IsFrameComplete() const { return mCurrentInLine >= mOriginalSize.height; } /// Retrieves the buffer into which the Decoder should write each row. uint8_t* RowBuffer() { return mRowBuffer.get() + mFrameRect.X() * sizeof(uint32_t); } /// Clears the current row buffer. void ClearRow() { ClearRestOfRow(0); } /// Clears the current row buffer starting at @aStartingAtCol. void ClearRestOfRow(uint32_t aStartingAtCol); /// Signals that the decoder has finished writing a row into the row buffer. void CommitRow(); /// Returns true if there is a non-empty invalid rect available. bool HasInvalidation() const; /// Takes the Downscaler's current invalid rect and resets it. DownscalerInvalidRect TakeInvalidRect(); /** * Resets the Downscaler's position in the image, for a new progressive pass * over the same frame. Because the same data structures can be reused, this * is more efficient than calling BeginFrame. */ void ResetForNextProgressivePass(); private: void DownscaleInputLine(); void ReleaseWindow(); void SkipToRow(int32_t aRow); nsIntSize mOriginalSize; nsIntSize mTargetSize; nsIntRect mFrameRect; gfxSize mScale; uint8_t* mOutputBuffer; UniquePtr mRowBuffer; UniquePtr mWindow; gfx::ConvolutionFilter mXFilter; gfx::ConvolutionFilter mYFilter; int32_t mWindowCapacity; int32_t mLinesInBuffer; int32_t mPrevInvalidatedLine; int32_t mCurrentOutLine; int32_t mCurrentInLine; bool mHasAlpha : 1; bool mFlipVertically : 1; }; } // namespace image } // namespace mozilla #endif // mozilla_image_Downscaler_h