/* Copyright 2012 Mozilla Foundation and Mozilla contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * This file implements the RIL worker thread. It communicates with * the main thread to provide a high-level API to the phone's RIL * stack, and with the RIL IPC thread to communicate with the RIL * device itself. These communication channels use message events as * known from Web Workers: * * - postMessage()/"message" events for main thread communication * * - postRILMessage()/"RILMessageEvent" events for RIL IPC thread * communication. * * The two main objects in this file represent individual parts of this * communication chain: * * - RILMessageEvent -> Buf -> RIL -> postMessage() -> nsIRadioInterfaceLayer * - nsIRadioInterfaceLayer -> postMessage() -> RIL -> Buf -> postRILMessage() * * Note: The code below is purposely lean on abstractions to be as lean in * terms of object allocations. As a result, it may look more like C than * JavaScript, and that's intended. */ "use strict"; importScripts("ril_consts.js", "systemlibs.js"); // set to true in ril_consts.js to see debug messages let DEBUG = DEBUG_WORKER; const INT32_MAX = 2147483647; const UINT8_SIZE = 1; const UINT16_SIZE = 2; const UINT32_SIZE = 4; const PARCEL_SIZE_SIZE = UINT32_SIZE; const PDU_HEX_OCTET_SIZE = 4; const TLV_COMMAND_DETAILS_SIZE = 5; const TLV_DEVICE_ID_SIZE = 4; const TLV_RESULT_SIZE = 3; const TLV_ITEM_ID_SIZE = 3; const TLV_HELP_REQUESTED_SIZE = 2; const TLV_EVENT_LIST_SIZE = 3; const TLV_LOCATION_STATUS_SIZE = 3; const TLV_LOCATION_INFO_GSM_SIZE = 9; const TLV_LOCATION_INFO_UMTS_SIZE = 11; const DEFAULT_EMERGENCY_NUMBERS = ["112", "911"]; // MMI match groups const MMI_MATCH_GROUP_FULL_MMI = 1; const MMI_MATCH_GROUP_MMI_PROCEDURE = 2; const MMI_MATCH_GROUP_SERVICE_CODE = 3; const MMI_MATCH_GROUP_SIA = 5; const MMI_MATCH_GROUP_SIB = 7; const MMI_MATCH_GROUP_SIC = 9; const MMI_MATCH_GROUP_PWD_CONFIRM = 11; const MMI_MATCH_GROUP_DIALING_NUMBER = 12; const MMI_MAX_LENGTH_SHORT_CODE = 2; const MMI_END_OF_USSD = "#"; let RILQUIRKS_CALLSTATE_EXTRA_UINT32 = libcutils.property_get("ro.moz.ril.callstate_extra_int"); // This may change at runtime since in RIL v6 and later, we get the version // number via the UNSOLICITED_RIL_CONNECTED parcel. let RILQUIRKS_V5_LEGACY = libcutils.property_get("ro.moz.ril.v5_legacy"); let RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL = libcutils.property_get("ro.moz.ril.dial_emergency_call"); let RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE = libcutils.property_get("ro.moz.ril.emergency_by_default"); let RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS = libcutils.property_get("ro.moz.ril.simstate_extra_field"); // Marker object. let PENDING_NETWORK_TYPE = {}; /** * This object contains helpers buffering incoming data & deconstructing it * into parcels as well as buffering outgoing data & constructing parcels. * For that it maintains two buffers and corresponding uint8 views, indexes. * * The incoming buffer is a circular buffer where we store incoming data. * As soon as a complete parcel is received, it is processed right away, so * the buffer only needs to be large enough to hold one parcel. * * The outgoing buffer is to prepare outgoing parcels. The index is reset * every time a parcel is sent. */ let Buf = { INCOMING_BUFFER_LENGTH: 1024, OUTGOING_BUFFER_LENGTH: 1024, init: function init() { this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH); this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH); this.incomingBytes = new Uint8Array(this.incomingBuffer); this.outgoingBytes = new Uint8Array(this.outgoingBuffer); // Track where incoming data is read from and written to. this.incomingWriteIndex = 0; this.incomingReadIndex = 0; // Leave room for the parcel size for outgoing parcels. this.outgoingIndex = PARCEL_SIZE_SIZE; // How many bytes we've read for this parcel so far. this.readIncoming = 0; // How many bytes available as parcel data. this.readAvailable = 0; // Size of the incoming parcel. If this is zero, we're expecting a new // parcel. this.currentParcelSize = 0; // This gets incremented each time we send out a parcel. this.token = 1; // Maps tokens we send out with requests to the request type, so that // when we get a response parcel back, we know what request it was for. this.tokenRequestMap = {}; // This is the token of last solicited response. this.lastSolicitedToken = 0; }, /** * Grow the incoming buffer. * * @param min_size * Minimum new size. The actual new size will be the the smallest * power of 2 that's larger than this number. */ growIncomingBuffer: function growIncomingBuffer(min_size) { if (DEBUG) { debug("Current buffer of " + this.INCOMING_BUFFER_LENGTH + " can't handle incoming " + min_size + " bytes."); } let oldBytes = this.incomingBytes; this.INCOMING_BUFFER_LENGTH = 2 << Math.floor(Math.log(min_size)/Math.log(2)); if (DEBUG) debug("New incoming buffer size: " + this.INCOMING_BUFFER_LENGTH); this.incomingBuffer = new ArrayBuffer(this.INCOMING_BUFFER_LENGTH); this.incomingBytes = new Uint8Array(this.incomingBuffer); if (this.incomingReadIndex <= this.incomingWriteIndex) { // Read and write index are in natural order, so we can just copy // the old buffer over to the bigger one without having to worry // about the indexes. this.incomingBytes.set(oldBytes, 0); } else { // The write index has wrapped around but the read index hasn't yet. // Write whatever the read index has left to read until it would // circle around to the beginning of the new buffer, and the rest // behind that. let head = oldBytes.subarray(this.incomingReadIndex); let tail = oldBytes.subarray(0, this.incomingReadIndex); this.incomingBytes.set(head, 0); this.incomingBytes.set(tail, head.length); this.incomingReadIndex = 0; this.incomingWriteIndex += head.length; } if (DEBUG) { debug("New incoming buffer size is " + this.INCOMING_BUFFER_LENGTH); } }, /** * Grow the outgoing buffer. * * @param min_size * Minimum new size. The actual new size will be the the smallest * power of 2 that's larger than this number. */ growOutgoingBuffer: function growOutgoingBuffer(min_size) { if (DEBUG) { debug("Current buffer of " + this.OUTGOING_BUFFER_LENGTH + " is too small."); } let oldBytes = this.outgoingBytes; this.OUTGOING_BUFFER_LENGTH = 2 << Math.floor(Math.log(min_size)/Math.log(2)); this.outgoingBuffer = new ArrayBuffer(this.OUTGOING_BUFFER_LENGTH); this.outgoingBytes = new Uint8Array(this.outgoingBuffer); this.outgoingBytes.set(oldBytes, 0); if (DEBUG) { debug("New outgoing buffer size is " + this.OUTGOING_BUFFER_LENGTH); } }, /** * Functions for reading data from the incoming buffer. * * These are all little endian, apart from readParcelSize(); */ /** * Ensure position specified is readable. * * @param index * Data position in incoming parcel, valid from 0 to * this.currentParcelSize. */ ensureIncomingAvailable: function ensureIncomingAvailable(index) { if (index >= this.currentParcelSize) { throw new Error("Trying to read data beyond the parcel end!"); } else if (index < 0) { throw new Error("Trying to read data before the parcel begin!"); } }, /** * Seek in current incoming parcel. * * @param offset * Seek offset in relative to current position. */ seekIncoming: function seekIncoming(offset) { // Translate to 0..currentParcelSize let cur = this.currentParcelSize - this.readAvailable; let newIndex = cur + offset; this.ensureIncomingAvailable(newIndex); // ... incomingReadIndex -->| // 0 new cur currentParcelSize // |================|=======|===================| // |<-- cur -->|<- readAvailable ->| // |<-- newIndex -->|<-- new readAvailable -->| this.readAvailable = this.currentParcelSize - newIndex; // Translate back: if (this.incomingReadIndex < cur) { // The incomingReadIndex is wrapped. newIndex += this.INCOMING_BUFFER_LENGTH; } newIndex += (this.incomingReadIndex - cur); newIndex %= this.INCOMING_BUFFER_LENGTH; this.incomingReadIndex = newIndex; }, readUint8Unchecked: function readUint8Unchecked() { let value = this.incomingBytes[this.incomingReadIndex]; this.incomingReadIndex = (this.incomingReadIndex + 1) % this.INCOMING_BUFFER_LENGTH; return value; }, readUint8: function readUint8() { // Translate to 0..currentParcelSize let cur = this.currentParcelSize - this.readAvailable; this.ensureIncomingAvailable(cur); this.readAvailable--; return this.readUint8Unchecked(); }, readUint16: function readUint16() { return this.readUint8() | this.readUint8() << 8; }, readUint32: function readUint32() { return this.readUint8() | this.readUint8() << 8 | this.readUint8() << 16 | this.readUint8() << 24; }, readUint32List: function readUint32List() { let length = this.readUint32(); let ints = []; for (let i = 0; i < length; i++) { ints.push(this.readUint32()); } return ints; }, readString: function readString() { let string_len = this.readUint32(); if (string_len < 0 || string_len >= INT32_MAX) { return null; } let s = ""; for (let i = 0; i < string_len; i++) { s += String.fromCharCode(this.readUint16()); } // Strings are \0\0 delimited, but that isn't part of the length. And // if the string length is even, the delimiter is two characters wide. // It's insane, I know. this.readStringDelimiter(string_len); return s; }, readStringList: function readStringList() { let num_strings = this.readUint32(); let strings = []; for (let i = 0; i < num_strings; i++) { strings.push(this.readString()); } return strings; }, readStringDelimiter: function readStringDelimiter(length) { let delimiter = this.readUint16(); if (!(length & 1)) { delimiter |= this.readUint16(); } if (DEBUG) { if (delimiter != 0) { debug("Something's wrong, found string delimiter: " + delimiter); } } }, readParcelSize: function readParcelSize() { return this.readUint8Unchecked() << 24 | this.readUint8Unchecked() << 16 | this.readUint8Unchecked() << 8 | this.readUint8Unchecked(); }, /** * Functions for writing data to the outgoing buffer. */ /** * Ensure position specified is writable. * * @param index * Data position in outgoing parcel, valid from 0 to * this.OUTGOING_BUFFER_LENGTH. */ ensureOutgoingAvailable: function ensureOutgoingAvailable(index) { if (index >= this.OUTGOING_BUFFER_LENGTH) { this.growOutgoingBuffer(index + 1); } }, writeUint8: function writeUint8(value) { this.ensureOutgoingAvailable(this.outgoingIndex); this.outgoingBytes[this.outgoingIndex] = value; this.outgoingIndex++; }, writeUint16: function writeUint16(value) { this.writeUint8(value & 0xff); this.writeUint8((value >> 8) & 0xff); }, writeUint32: function writeUint32(value) { this.writeUint8(value & 0xff); this.writeUint8((value >> 8) & 0xff); this.writeUint8((value >> 16) & 0xff); this.writeUint8((value >> 24) & 0xff); }, writeString: function writeString(value) { if (value == null) { this.writeUint32(-1); return; } this.writeUint32(value.length); for (let i = 0; i < value.length; i++) { this.writeUint16(value.charCodeAt(i)); } // Strings are \0\0 delimited, but that isn't part of the length. And // if the string length is even, the delimiter is two characters wide. // It's insane, I know. this.writeStringDelimiter(value.length); }, writeStringList: function writeStringList(strings) { this.writeUint32(strings.length); for (let i = 0; i < strings.length; i++) { this.writeString(strings[i]); } }, writeStringDelimiter: function writeStringDelimiter(length) { this.writeUint16(0); if (!(length & 1)) { this.writeUint16(0); } }, writeParcelSize: function writeParcelSize(value) { /** * Parcel size will always be the first thing in the parcel byte * array, but the last thing written. Store the current index off * to a temporary to be reset after we write the size. */ let currentIndex = this.outgoingIndex; this.outgoingIndex = 0; this.writeUint8((value >> 24) & 0xff); this.writeUint8((value >> 16) & 0xff); this.writeUint8((value >> 8) & 0xff); this.writeUint8(value & 0xff); this.outgoingIndex = currentIndex; }, copyIncomingToOutgoing: function copyIncomingToOutgoing(length) { if (!length || (length < 0)) { return; } let translatedReadIndexEnd = this.currentParcelSize - this.readAvailable + length - 1; this.ensureIncomingAvailable(translatedReadIndexEnd); let translatedWriteIndexEnd = this.outgoingIndex + length - 1 this.ensureOutgoingAvailable(translatedWriteIndexEnd); let newIncomingReadIndex = this.incomingReadIndex + length; if (newIncomingReadIndex < this.INCOMING_BUFFER_LENGTH) { // Reading won't cause wrapping, go ahead with builtin copy. this.outgoingBytes.set(this.incomingBytes.subarray(this.incomingReadIndex, newIncomingReadIndex), this.outgoingIndex); } else { // Not so lucky. newIncomingReadIndex %= this.INCOMING_BUFFER_LENGTH; this.outgoingBytes.set(this.incomingBytes.subarray(this.incomingReadIndex, this.INCOMING_BUFFER_LENGTH), this.outgoingIndex); if (newIncomingReadIndex) { let firstPartLength = this.INCOMING_BUFFER_LENGTH - this.incomingReadIndex; this.outgoingBytes.set(this.incomingBytes.subarray(0, newIncomingReadIndex), this.outgoingIndex + firstPartLength); } } this.incomingReadIndex = newIncomingReadIndex; this.readAvailable -= length; this.outgoingIndex += length; }, /** * Parcel management */ /** * Write incoming data to the circular buffer. * * @param incoming * Uint8Array containing the incoming data. */ writeToIncoming: function writeToIncoming(incoming) { // We don't have to worry about the head catching the tail since // we process any backlog in parcels immediately, before writing // new data to the buffer. So the only edge case we need to handle // is when the incoming data is larger than the buffer size. if (incoming.length > this.INCOMING_BUFFER_LENGTH) { this.growIncomingBuffer(incoming.length); } // We can let the typed arrays do the copying if the incoming data won't // wrap around the edges of the circular buffer. let remaining = this.INCOMING_BUFFER_LENGTH - this.incomingWriteIndex; if (remaining >= incoming.length) { this.incomingBytes.set(incoming, this.incomingWriteIndex); } else { // The incoming data would wrap around it. let head = incoming.subarray(0, remaining); let tail = incoming.subarray(remaining); this.incomingBytes.set(head, this.incomingWriteIndex); this.incomingBytes.set(tail, 0); } this.incomingWriteIndex = (this.incomingWriteIndex + incoming.length) % this.INCOMING_BUFFER_LENGTH; }, /** * Process incoming data. * * @param incoming * Uint8Array containing the incoming data. */ processIncoming: function processIncoming(incoming) { if (DEBUG) { debug("Received " + incoming.length + " bytes."); debug("Already read " + this.readIncoming); } this.writeToIncoming(incoming); this.readIncoming += incoming.length; while (true) { if (!this.currentParcelSize) { // We're expecting a new parcel. if (this.readIncoming < PARCEL_SIZE_SIZE) { // We don't know how big the next parcel is going to be, need more // data. if (DEBUG) debug("Next parcel size unknown, going to sleep."); return; } this.currentParcelSize = this.readParcelSize(); if (DEBUG) debug("New incoming parcel of size " + this.currentParcelSize); // The size itself is not included in the size. this.readIncoming -= PARCEL_SIZE_SIZE; } if (this.readIncoming < this.currentParcelSize) { // We haven't read enough yet in order to be able to process a parcel. if (DEBUG) debug("Read " + this.readIncoming + ", but parcel size is " + this.currentParcelSize + ". Going to sleep."); return; } // Alright, we have enough data to process at least one whole parcel. // Let's do that. let expectedAfterIndex = (this.incomingReadIndex + this.currentParcelSize) % this.INCOMING_BUFFER_LENGTH; if (DEBUG) { let parcel; if (expectedAfterIndex < this.incomingReadIndex) { let head = this.incomingBytes.subarray(this.incomingReadIndex); let tail = this.incomingBytes.subarray(0, expectedAfterIndex); parcel = Array.slice(head).concat(Array.slice(tail)); } else { parcel = Array.slice(this.incomingBytes.subarray( this.incomingReadIndex, expectedAfterIndex)); } debug("Parcel (size " + this.currentParcelSize + "): " + parcel); } if (DEBUG) debug("We have at least one complete parcel."); try { this.readAvailable = this.currentParcelSize; this.processParcel(); } catch (ex) { if (DEBUG) debug("Parcel handling threw " + ex + "\n" + ex.stack); } // Ensure that the whole parcel was consumed. if (this.incomingReadIndex != expectedAfterIndex) { if (DEBUG) { debug("Parcel handler didn't consume whole parcel, " + Math.abs(expectedAfterIndex - this.incomingReadIndex) + " bytes left over"); } this.incomingReadIndex = expectedAfterIndex; } this.readIncoming -= this.currentParcelSize; this.readAvailable = 0; this.currentParcelSize = 0; } }, /** * Process one parcel. */ processParcel: function processParcel() { let response_type = this.readUint32(); let request_type, options; if (response_type == RESPONSE_TYPE_SOLICITED) { let token = this.readUint32(); let error = this.readUint32(); options = this.tokenRequestMap[token]; delete this.tokenRequestMap[token]; request_type = options.rilRequestType; options.rilRequestError = error; if (DEBUG) { debug("Solicited response for request type " + request_type + ", token " + token + ", error " + error); } } else if (response_type == RESPONSE_TYPE_UNSOLICITED) { request_type = this.readUint32(); if (DEBUG) debug("Unsolicited response for request type " + request_type); } else { if (DEBUG) debug("Unknown response type: " + response_type); return; } RIL.handleParcel(request_type, this.readAvailable, options); }, /** * Start a new outgoing parcel. * * @param type * Integer specifying the request type. * @param options [optional] * Object containing information about the request, e.g. the * original main thread message object that led to the RIL request. */ newParcel: function newParcel(type, options) { if (DEBUG) debug("New outgoing parcel of type " + type); // We're going to leave room for the parcel size at the beginning. this.outgoingIndex = PARCEL_SIZE_SIZE; this.writeUint32(type); let token = this.token; this.writeUint32(token); if (!options) { options = {}; } options.rilRequestType = type; options.rilRequestError = null; this.tokenRequestMap[token] = options; this.token++; return token; }, /** * Communicate with the RIL IPC thread. */ sendParcel: function sendParcel() { // Compute the size of the parcel and write it to the front of the parcel // where we left room for it. Note that he parcel size does not include // the size itself. let parcelSize = this.outgoingIndex - PARCEL_SIZE_SIZE; this.writeParcelSize(parcelSize); // This assumes that postRILMessage will make a copy of the ArrayBufferView // right away! let parcel = this.outgoingBytes.subarray(0, this.outgoingIndex); if (DEBUG) debug("Outgoing parcel: " + Array.slice(parcel)); postRILMessage(parcel); this.outgoingIndex = PARCEL_SIZE_SIZE; }, simpleRequest: function simpleRequest(type, options) { this.newParcel(type, options); this.sendParcel(); } }; /** * The RIL state machine. * * This object communicates with rild via parcels and with the main thread * via post messages. It maintains state about the radio, ICC, calls, etc. * and acts upon state changes accordingly. */ let RIL = { /** * Valid calls. */ currentCalls: {}, /** * Existing data calls. */ currentDataCalls: {}, /** * Hash map for received multipart sms fragments. Messages are hashed with * its sender address and concatenation reference number. Three additional * attributes `segmentMaxSeq`, `receivedSegments`, `segments` are inserted. */ _receivedSmsSegmentsMap: {}, /** * Outgoing messages waiting for SMS-STATUS-REPORT. */ _pendingSentSmsMap: {}, /** * Index of the RIL_PREFERRED_NETWORK_TYPE_TO_GECKO. Its value should be * preserved over rild reset. */ preferredNetworkType: null, initRILState: function initRILState() { /** * One of the RADIO_STATE_* constants. */ this.radioState = GECKO_RADIOSTATE_UNAVAILABLE; this._isInitialRadioState = true; /** * ICC status. Keeps a reference of the data response to the * getICCStatus request. */ this.iccStatus = null; /** * Card state */ this.cardState = null; /** * Strings */ this.IMEI = null; this.IMEISV = null; this.SMSC = null; /** * ICC information, such as MSISDN, IMSI, ...etc. */ this.iccInfo = {}; /** * Application identification for apps in ICC. */ this.aid = null; /** * Application type for apps in ICC. */ this.appType = null, this.networkSelectionMode = null; this.voiceRegistrationState = {}; this.dataRegistrationState = {}; /** * List of strings identifying the network operator. */ this.operator = null; /** * String containing the baseband version. */ this.basebandVersion = null; // Clean up this.currentCalls: rild might have restarted. for each (let currentCall in this.currentCalls) { delete this.currentCalls[currentCall.callIndex]; this._handleDisconnectedCall(currentCall); } // Deactivate this.currentDataCalls: rild might have restarted. for each (let datacall in this.currentDataCalls) { this.deactivateDataCall(datacall); } // Don't clean up this._receivedSmsSegmentsMap or this._pendingSentSmsMap // because on rild restart: we may continue with the pending segments. /** * Whether or not the multiple requests in requestNetworkInfo() are currently * being processed */ this._processingNetworkInfo = false; /** * Pending messages to be send in batch from requestNetworkInfo() */ this._pendingNetworkInfo = {rilMessageType: "networkinfochanged"}; /** * Mute or unmute the radio. */ this._muted = true; /** * USSD session flag. * Only one USSD session may exist at a time, and the session is assumed * to exist until: * a) There's a call to cancelUSSD() * b) The implementation sends a UNSOLICITED_ON_USSD with a type code * of "0" (USSD-Notify/no further action) or "2" (session terminated) */ this._ussdSession = null; /** * Regular expresion to parse MMI codes. */ this._mmiRegExp = null; }, get muted() { return this._muted; }, set muted(val) { val = Boolean(val); if (this._muted != val) { this.setMute(val); this._muted = val; } }, /** * Parse an integer from a string, falling back to a default value * if the the provided value is not a string or does not contain a valid * number. * * @param string * String to be parsed. * @param defaultValue [optional] * Default value to be used. * @param radix [optional] * A number that represents the numeral system to be used. Default 10. */ parseInt: function RIL_parseInt(string, defaultValue, radix) { let number = parseInt(string, radix || 10); if (!isNaN(number)) { return number; } if (defaultValue === undefined) { defaultValue = null; } return defaultValue; }, /** * Outgoing requests to the RIL. These can be triggered from the * main thread via messages that look like this: * * {rilMessageType: "methodName", * extra: "parameters", * go: "here"} * * So if one of the following methods takes arguments, it takes only one, * an object, which then contains all of the parameters as attributes. * The "@param" documentation is to be interpreted accordingly. */ /** * Retrieve the ICC's status. */ getICCStatus: function getICCStatus() { Buf.simpleRequest(REQUEST_GET_SIM_STATUS); }, /** * Helper function for unlocking ICC locks. */ iccUnlockCardLock: function iccUnlockCardLock(options) { switch (options.lockType) { case "pin": this.enterICCPIN(options); break; case "pin2": this.enterICCPIN2(options); break; case "puk": this.enterICCPUK(options); break; case "puk2": this.enterICCPUK2(options); break; case "nck": options.type = CARD_PERSOSUBSTATE_SIM_NETWORK; this.enterDepersonalization(options); break; default: options.errorMsg = "Unsupported Card Lock."; options.success = false; this.sendDOMMessage(options); } }, /** * Enter a PIN to unlock the ICC. * * @param pin * String containing the PIN. * @param [optional] aid * AID value. */ enterICCPIN: function enterICCPIN(options) { Buf.newParcel(REQUEST_ENTER_SIM_PIN, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 1 : 2); Buf.writeString(options.pin); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Enter a PIN2 to unlock the ICC. * * @param pin * String containing the PIN2. * @param [optional] aid * AID value. */ enterICCPIN2: function enterICCPIN2(options) { Buf.newParcel(REQUEST_ENTER_SIM_PIN2, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 1 : 2); Buf.writeString(options.pin); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Requests a network personalization be deactivated. * * @param type * Integer indicating the network personalization be deactivated. * @param pin * String containing the pin. */ enterDepersonalization: function enterDepersonalization(options) { Buf.newParcel(REQUEST_ENTER_NETWORK_DEPERSONALIZATION_CODE, options); Buf.writeUint32(options.type); Buf.writeString(options.pin); Buf.sendParcel(); }, /** * Helper function for changing ICC locks. */ iccSetCardLock: function iccSetCardLock(options) { if (options.newPin !== undefined) { switch (options.lockType) { case "pin": this.changeICCPIN(options); break; case "pin2": this.changeICCPIN2(options); break; default: options.errorMsg = "Unsupported Card Lock."; options.success = false; this.sendDOMMessage(options); } } else { // Enable/Disable pin lock. if (options.lockType != "pin") { options.errorMsg = "Unsupported Card Lock."; options.success = false; this.sendDOMMessage(options); return; } this.setICCPinLock(options); } }, /** * Change the current ICC PIN number. * * @param pin * String containing the old PIN value * @param newPin * String containing the new PIN value * @param [optional] aid * AID value. */ changeICCPIN: function changeICCPIN(options) { Buf.newParcel(REQUEST_CHANGE_SIM_PIN, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3); Buf.writeString(options.pin); Buf.writeString(options.newPin); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Change the current ICC PIN2 number. * * @param pin * String containing the old PIN2 value * @param newPin * String containing the new PIN2 value * @param [optional] aid * AID value. */ changeICCPIN2: function changeICCPIN2(options) { Buf.newParcel(REQUEST_CHANGE_SIM_PIN2, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3); Buf.writeString(options.pin); Buf.writeString(options.newPin); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Supplies ICC PUK and a new PIN to unlock the ICC. * * @param puk * String containing the PUK value. * @param newPin * String containing the new PIN value. * @param [optional] aid * AID value. */ enterICCPUK: function enterICCPUK(options) { Buf.newParcel(REQUEST_ENTER_SIM_PUK, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3); Buf.writeString(options.puk); Buf.writeString(options.newPin); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Supplies ICC PUK2 and a new PIN2 to unlock the ICC. * * @param puk * String containing the PUK2 value. * @param newPin * String containing the new PIN2 value. * @param [optional] aid * AID value. */ enterICCPUK2: function enterICCPUK2(options) { Buf.newParcel(REQUEST_ENTER_SIM_PUK2, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 2 : 3); Buf.writeString(options.puk); Buf.writeString(options.newPin); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Helper function for fetching the state of ICC locks. */ iccGetCardLock: function iccGetCardLock(options) { switch (options.lockType) { case "pin": this.getICCPinLock(options); break; default: options.errorMsg = "Unsupported Card Lock."; options.success = false; this.sendDOMMessage(options); } }, /** * Get ICC Pin lock. A wrapper call to queryICCFacilityLock. * * @param requestId * Request Id from RadioInterfaceLayer. */ getICCPinLock: function getICCPinLock(options) { options.facility = ICC_CB_FACILITY_SIM; options.password = ""; // For query no need to provide pin. options.serviceClass = ICC_SERVICE_CLASS_VOICE | ICC_SERVICE_CLASS_DATA | ICC_SERVICE_CLASS_FAX; this.queryICCFacilityLock(options); }, /** * Query ICC facility lock. * * @param facility * One of ICC_CB_FACILITY_*. * @param password * Password for the facility, or "" if not required. * @param serviceClass * One of ICC_SERVICE_CLASS_*. * @param [optional] aid * AID value. */ queryICCFacilityLock: function queryICCFacilityLock(options) { Buf.newParcel(REQUEST_QUERY_FACILITY_LOCK, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 3 : 4); Buf.writeString(options.facility); Buf.writeString(options.password); Buf.writeString(options.serviceClass.toString()); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Set ICC Pin lock. A wrapper call to setICCFacilityLock. * * @param enabled * true to enable, false to disable. * @param pin * Pin code. * @param requestId * Request Id from RadioInterfaceLayer. */ setICCPinLock: function setICCPinLock(options) { options.facility = ICC_CB_FACILITY_SIM; options.enabled = options.enabled; options.password = options.pin; options.serviceClass = ICC_SERVICE_CLASS_VOICE | ICC_SERVICE_CLASS_DATA | ICC_SERVICE_CLASS_FAX; this.setICCFacilityLock(options); }, /** * Set ICC facility lock. * * @param facility * One of ICC_CB_FACILITY_*. * @param enabled * true to enable, false to disable. * @param password * Password for the facility, or "" if not required. * @param serviceClass * One of ICC_SERVICE_CLASS_*. * @param [optional] aid * AID value. */ setICCFacilityLock: function setICCFacilityLock(options) { Buf.newParcel(REQUEST_SET_FACILITY_LOCK, options); Buf.writeUint32(RILQUIRKS_V5_LEGACY ? 3 : 4); Buf.writeString(options.facility); Buf.writeString(options.enabled ? "1" : "0"); Buf.writeString(options.password); Buf.writeString(options.serviceClass.toString()); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Request an ICC I/O operation. * * See TS 27.007 "restricted SIM" operation, "AT Command +CRSM". * The sequence is in the same order as how libril reads this parcel, * see the struct RIL_SIM_IO_v5 or RIL_SIM_IO_v6 defined in ril.h * * @param command * The I/O command, one of the ICC_COMMAND_* constants. * @param fileId * The file to operate on, one of the ICC_EF_* constants. * @param pathId * String type, check the 'pathid' parameter from TS 27.007 +CRSM. * @param p1, p2, p3 * Arbitrary integer parameters for the command. * @param data * String parameter for the command. * @param pin2 * String containing the PIN2. * @param [optional] aid * AID value. */ iccIO: function iccIO(options) { let token = Buf.newParcel(REQUEST_SIM_IO, options); Buf.writeUint32(options.command); Buf.writeUint32(options.fileId); Buf.writeString(options.pathId); Buf.writeUint32(options.p1); Buf.writeUint32(options.p2); Buf.writeUint32(options.p3); Buf.writeString(options.data); Buf.writeString(options.pin2 ? options.pin2 : null); if (!RILQUIRKS_V5_LEGACY) { Buf.writeString(options.aid ? options.aid : this.aid); } Buf.sendParcel(); }, /** * Fetch ICC records. */ fetchICCRecords: function fetchICCRecords() { this.getICCID(); this.getIMSI(); this.getMSISDN(); this.getAD(); this.getSPN(); this.getSST(); this.getMBDN(); }, /** * Update the ICC information to RadioInterfaceLayer. */ _handleICCInfoChange: function _handleICCInfoChange() { this.iccInfo.rilMessageType = "iccinfochange"; this.sendDOMMessage(this.iccInfo); }, /** * Get IMSI. * * @param [optional] aid * AID value. */ getIMSI: function getIMSI(aid) { if (RILQUIRKS_V5_LEGACY) { Buf.simpleRequest(REQUEST_GET_IMSI); return; } let token = Buf.newParcel(REQUEST_GET_IMSI); Buf.writeUint32(1); Buf.writeString(aid ? aid : this.aid); Buf.sendParcel(); }, /** * Read the ICCD from the ICC card. */ getICCID: function getICCID() { function callback() { let length = Buf.readUint32(); this.iccInfo.iccid = GsmPDUHelper.readSwappedNibbleBcdString(length / 2); Buf.readStringDelimiter(length); if (DEBUG) debug("ICCID: " + this.iccInfo.iccid); if (this.iccInfo.iccid) { this._handleICCInfoChange(); } } this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_ICCID, pathId: this._getPathIdForICCRecord(ICC_EF_ICCID), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_TRANSPARENT, callback: callback, }); }, /** * Read the MSISDN from the ICC. */ getMSISDN: function getMSISDN() { function callback(options) { let parseCallback = function parseCallback(msisdn) { if (this.iccInfo.msisdn === msisdn.number) { return; } this.iccInfo.msisdn = msisdn.number; if (DEBUG) debug("MSISDN: " + this.iccInfo.msisdn); this._handleICCInfoChange(); } this.parseDiallingNumber(options, parseCallback); } this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_MSISDN, pathId: this._getPathIdForICCRecord(ICC_EF_MSISDN), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_LINEAR_FIXED, callback: callback, }); }, /** * Read the AD (Administrative Data) from the ICC. */ getAD: function getAD() { function callback() { let length = Buf.readUint32(); // Each octet is encoded into two chars. let len = length / 2; this.iccInfo.ad = GsmPDUHelper.readHexOctetArray(len); Buf.readStringDelimiter(length); if (DEBUG) { let str = ""; for (let i = 0; i < this.iccInfo.ad.length; i++) { str += this.iccInfo.ad[i] + ", "; } debug("AD: " + str); } if (this.iccInfo.imsi) { // MCC is the first 3 digits of IMSI this.iccInfo.mcc = parseInt(this.iccInfo.imsi.substr(0,3)); // The 4th byte of the response is the length of MNC this.iccInfo.mnc = parseInt(this.iccInfo.imsi.substr(3, this.iccInfo.ad[3])); if (DEBUG) debug("MCC: " + this.iccInfo.mcc + " MNC: " + this.iccInfo.mnc); this._handleICCInfoChange(); } } this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_AD, pathId: this._getPathIdForICCRecord(ICC_EF_AD), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_TRANSPARENT, callback: callback, }); }, /** * Read the SPN (Service Provider Name) from the ICC. */ getSPN: function getSPN() { function callback() { let length = Buf.readUint32(); // Each octet is encoded into two chars. // Minus 1 because first is used to store display condition let len = (length / 2) - 1; let spnDisplayCondition = GsmPDUHelper.readHexOctet(); this.iccInfo.spn = GsmPDUHelper.readAlphaIdentifier(len); Buf.readStringDelimiter(length); if (DEBUG) { debug("SPN: spn=" + this.iccInfo.spn + ", spnDisplayCondition=" + spnDisplayCondition); } this._handleICCInfoChange(); } this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_SPN, pathId: this._getPathIdForICCRecord(ICC_EF_SPN), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_TRANSPARENT, callback: callback, }); }, /** * Get whether specificed (U)SIM service is available. * * @param geckoService * Service name like "ADN", "BDN", etc. * * @return true if the service is enabled, false otherwise. */ isICCServiceAvailable: function isICCServiceAvailable(geckoService) { let serviceTable = this.iccInfo.sst; let index, bitmask; if (this.appType == CARD_APPTYPE_SIM) { /** * Service id is valid in 1..N, and 2 bits are used to code each service. * * +----+-- --+----+----+ * | b8 | ... | b2 | b1 | * +----+-- --+----+----+ * * b1 = 0, service not allocated. * 1, service allocated. * b2 = 0, service not activatd. * 1, service allocated. * * @see 3GPP TS 51.011 10.3.7. */ let simService = GECKO_ICC_SERVICES.sim[geckoService]; if (!simService) { return false; } simService -= 1; index = Math.floor(simService / 4); bitmask = 2 << ((simService % 4) << 1); } else { /** * Service id is valid in 1..N, and 1 bit is used to code each service. * * +----+-- --+----+----+ * | b8 | ... | b2 | b1 | * +----+-- --+----+----+ * * b1 = 0, service not avaiable. * 1, service available. * b2 = 0, service not avaiable. * 1, service available. * * @see 3GPP TS 31.102 4.2.8. */ let usimService = GECKO_ICC_SERVICES.usim[geckoService]; if (!usimService) { return false; } usimService -= 1; index = Math.floor(usimService / 8); bitmask = 1 << ((usimService % 8) << 0); } return (serviceTable && (index < serviceTable.length) && (serviceTable[index] & bitmask)) != 0; }, /** * Read the (U)SIM Service Table from the ICC. */ getSST: function getSST() { function callback() { let length = Buf.readUint32(); // Each octet is encoded into two chars. let len = length / 2; this.iccInfo.sst = GsmPDUHelper.readHexOctetArray(len); Buf.readStringDelimiter(length); if (DEBUG) { let str = ""; for (let i = 0; i < this.iccInfo.sst.length; i++) { str += this.iccInfo.sst[i] + ", "; } debug("SST: " + str); } } // ICC_EF_UST has the same value with ICC_EF_SST. this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_SST, pathId: this._getPathIdForICCRecord(ICC_EF_SST), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_TRANSPARENT, callback: callback, }); }, /** * Helper to parse Dialling number from TS 131.102 * * @param options * The 'options' object passed from RIL.iccIO * @param addCallback * The function should be invoked when the ICC record is processed * succesfully. * @param finishCallback * The function should be invoked when the final ICC record is * processed. * */ parseDiallingNumber: function parseDiallingNumber(options, addCallback, finishCallback) { let ffLen; // The length of trailing 0xff to be read. let length = Buf.readUint32(); let alphaLen = options.recordSize - MSISDN_FOOTER_SIZE_BYTES; let alphaId = GsmPDUHelper.readAlphaIdentifier(alphaLen); let numLen = GsmPDUHelper.readHexOctet(); if (numLen != 0xff) { if (numLen > MSISDN_MAX_NUMBER_SIZE_BYTES) { debug("invalid length of BCD number/SSC contents - " + numLen); return; } if (addCallback) { addCallback.call(this, {alphaId: alphaId, number: GsmPDUHelper.readDiallingNumber(numLen)}); } ffLen = length / 2 - alphaLen - numLen - 1; // Minus 1 for the numLen field. } else { ffLen = MSISDN_FOOTER_SIZE_BYTES - 1; // Minus 1 for the numLen field. } // Consumes the remaining 0xff for (let i = 0; i < ffLen; i++) { GsmPDUHelper.readHexOctet(); } Buf.readStringDelimiter(length); if (options.loadAll && options.p1 < options.totalRecords) { options.p1++; this.iccIO(options); } else { if (finishCallback) { finishCallback.call(this); } } }, /** * Get ICC FDN. * * @paran requestId * Request id from RadioInterfaceLayer. */ getFDN: function getFDN(options) { function callback(options) { function add(contact) { this.iccInfo.fdn.push(contact); }; function finish() { if (DEBUG) { for (let i = 0; i < this.iccInfo.fdn.length; i++) { debug("FDN[" + i + "] alphaId = " + this.iccInfo.fdn[i].alphaId + " number = " + this.iccInfo.fdn[i].number); } } delete options.callback; delete options.onerror; options.rilMessageType = "icccontacts"; options.contacts = this.iccInfo.fdn; this.sendDOMMessage(options); }; this.parseDiallingNumber(options, add, finish); } this.iccInfo.fdn = []; this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_FDN, pathId: this._getPathIdForICCRecord(ICC_EF_FDN), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_LINEAR_FIXED, callback: callback, loadAll: true, requestId: options.requestId }); }, /** * Get ICC ADN. * * @param fileId * EF id of the ADN. * @paran requestId * Request id from RadioInterfaceLayer. */ getADN: function getADN(options) { function callback(options) { function add(contact) { this.iccInfo.adn.push(contact); }; function finish() { if (DEBUG) { for (let i = 0; i < this.iccInfo.adn.length; i++) { debug("ADN[" + i + "] alphaId = " + this.iccInfo.adn[i].alphaId + " number = " + this.iccInfo.adn[i].number); } } // To prevent DataCloneError when sending parcels, // We need to delete those properties which are not // 'Structured Clone Data', // in this case, those callback functions. delete options.callback; delete options.onerror; options.rilMessageType = "icccontacts"; options.contacts = this.iccInfo.adn; this.sendDOMMessage(options); }; this.parseDiallingNumber(options, add, finish); } function error(options) { delete options.callback; delete options.onerror; options.rilMessageType = "icccontacts"; options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); } this.iccInfo.adn = []; this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: options.fileId, pathId: this._getPathIdForICCRecord(options.fileId), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_LINEAR_FIXED, callback: callback, onerror: error, loadAll: true, requestId: options.requestId, }); }, /** * Get ICC MBDN. (Mailbox Dialling Number) * * @see TS 131.102, clause 4.2.60 */ getMBDN: function getMBDN() { function callback(options) { let parseCallback = function parseCallback(contact) { if (DEBUG) { debug("MBDN, alphaId="+contact.alphaId+" number="+contact.number); } if (this.iccInfo.mbdn != contact.number) { this.iccInfo.mbdn = contact.number; contact.rilMessageType = "iccmbdn"; this.sendDOMMessage(contact); } }; this.parseDiallingNumber(options, parseCallback); } this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_MBDN, pathId: this._getPathIdForICCRecord(ICC_EF_MBDN), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_LINEAR_FIXED, callback: callback, }); }, decodeSimTlvs: function decodeSimTlvs(tlvsLen) { let index = 0; let tlvs = []; while (index < tlvsLen) { let simTlv = { tag : GsmPDUHelper.readHexOctet(), length : GsmPDUHelper.readHexOctet(), }; simTlv.value = GsmPDUHelper.readHexOctetArray(simTlv.length) tlvs.push(simTlv); index += simTlv.length + 2 /* The length of 'tag' and 'length' field */; } return tlvs; }, _searchForIccUsimTag: function _searchForIccUsimTag(tlvs, tag) { for (let i = 0; i < tlvs.length; i++) { if (tlvs[i].tag == tag) { return tlvs[i]; } } return null; }, /** * Get UICC Phonebook. * * @params contactType * "ADN" or "FDN". */ getICCContacts: function getICCContacts(options) { if (!this.appType) { options.rilMessageType = "icccontacts"; options.errorMsg = GECKO_ERROR_REQUEST_NOT_SUPPORTED; this.sendDOMMessage(options); } let type = options.contactType; switch (type) { case "ADN": switch (this.appType) { case CARD_APPTYPE_SIM: options.fileId = ICC_EF_ADN; this.getADN(options); break; case CARD_APPTYPE_USIM: this.getPBR(options); break; } break; case "FDN": this.getFDN(options); break; } }, /** * Get USIM Phonebook. * * @params requestId * Request id from RadioInterfaceLayer. */ getPBR: function getPBR(options) { function callback(options) { let bufLen = Buf.readUint32(); let tag = GsmPDUHelper.readHexOctet(); let length = GsmPDUHelper.readHexOctet(); let value = this.decodeSimTlvs(length); let adn = this._searchForIccUsimTag(value, ICC_USIM_EFADN_TAG); let adnEfid = (adn.value[0] << 8) | adn.value[1]; this.getADN({fileId: adnEfid, requestId: options.requestId}); Buf.readStringDelimiter(bufLen); } function error(options) { delete options.callback; delete options.onerror; options.rilMessageType = "icccontacts"; options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); } this.iccIO({ command: ICC_COMMAND_GET_RESPONSE, fileId: ICC_EF_PBR, pathId: this._getPathIdForICCRecord(ICC_EF_PBR), p1: 0, // For GET_RESPONSE, p1 = 0 p2: 0, // For GET_RESPONSE, p2 = 0 p3: GET_RESPONSE_EF_SIZE_BYTES, data: null, pin2: null, type: EF_TYPE_LINEAR_FIXED, callback: callback, onerror: error, requestId: options.requestId, }); }, /** * Request the phone's radio power to be switched on or off. * * @param on * Boolean indicating the desired power state. */ setRadioPower: function setRadioPower(options) { Buf.newParcel(REQUEST_RADIO_POWER); Buf.writeUint32(1); Buf.writeUint32(options.on ? 1 : 0); Buf.sendParcel(); }, /** * Set call waiting status. * * @param on * Boolean indicating the desired waiting status. */ setCallWaiting: function setCallWaiting(options) { Buf.newParcel(REQUEST_SET_CALL_WAITING, options); Buf.writeUint32(2); Buf.writeUint32(options.enabled ? 1 : 0); Buf.writeUint32(ICC_SERVICE_CLASS_VOICE); Buf.sendParcel(); }, /** * Set screen state. * * @param on * Boolean indicating whether the screen should be on or off. */ setScreenState: function setScreenState(on) { Buf.newParcel(REQUEST_SCREEN_STATE); Buf.writeUint32(1); Buf.writeUint32(on ? 1 : 0); Buf.sendParcel(); }, getVoiceRegistrationState: function getVoiceRegistrationState() { Buf.simpleRequest(REQUEST_VOICE_REGISTRATION_STATE); }, getDataRegistrationState: function getDataRegistrationState() { Buf.simpleRequest(REQUEST_DATA_REGISTRATION_STATE); }, getOperator: function getOperator() { Buf.simpleRequest(REQUEST_OPERATOR); }, /** * Set the preferred network type. * * @param options An object contains a valid index of * RIL_PREFERRED_NETWORK_TYPE_TO_GECKO as its `networkType` * attribute, or undefined to set current preferred network * type. */ setPreferredNetworkType: function setPreferredNetworkType(options) { if (options) { this.preferredNetworkType = options.networkType; } if (this.preferredNetworkType == null) { return; } Buf.newParcel(REQUEST_SET_PREFERRED_NETWORK_TYPE, options); Buf.writeUint32(1); Buf.writeUint32(this.preferredNetworkType); Buf.sendParcel(); }, /** * Get the preferred network type. */ getPreferredNetworkType: function getPreferredNetworkType() { Buf.simpleRequest(REQUEST_GET_PREFERRED_NETWORK_TYPE); }, /** * Request various states about the network. */ requestNetworkInfo: function requestNetworkInfo() { if (this._processingNetworkInfo) { if (DEBUG) debug("Network info requested, but we're already requesting network info."); return; } if (DEBUG) debug("Requesting network info"); this._processingNetworkInfo = true; this.getVoiceRegistrationState(); this.getDataRegistrationState(); //TODO only GSM this.getOperator(); this.getNetworkSelectionMode(); }, /** * Get the available networks */ getAvailableNetworks: function getAvailableNetworks(options) { if (DEBUG) debug("Getting available networks"); Buf.newParcel(REQUEST_QUERY_AVAILABLE_NETWORKS, options); Buf.sendParcel(); }, /** * Request the radio's network selection mode */ getNetworkSelectionMode: function getNetworkSelectionMode(options) { if (DEBUG) debug("Getting network selection mode"); Buf.simpleRequest(REQUEST_QUERY_NETWORK_SELECTION_MODE, options); }, /** * Tell the radio to automatically choose a voice/data network */ selectNetworkAuto: function selectNetworkAuto(options) { if (DEBUG) debug("Setting automatic network selection"); Buf.simpleRequest(REQUEST_SET_NETWORK_SELECTION_AUTOMATIC, options); }, /** * Tell the radio to choose a specific voice/data network */ selectNetwork: function selectNetwork(options) { if (DEBUG) { debug("Setting manual network selection: " + options.mcc + options.mnc); } let numeric = String(options.mcc) + options.mnc; Buf.newParcel(REQUEST_SET_NETWORK_SELECTION_MANUAL, options); Buf.writeString(numeric); Buf.sendParcel(); }, /** * Get current calls. */ getCurrentCalls: function getCurrentCalls() { Buf.simpleRequest(REQUEST_GET_CURRENT_CALLS); }, /** * Get the signal strength. */ getSignalStrength: function getSignalStrength() { Buf.simpleRequest(REQUEST_SIGNAL_STRENGTH); }, getIMEI: function getIMEI(options) { Buf.simpleRequest(REQUEST_GET_IMEI, options); }, getIMEISV: function getIMEISV() { Buf.simpleRequest(REQUEST_GET_IMEISV); }, getDeviceIdentity: function getDeviceIdentity() { Buf.simpleRequest(REQUEST_GET_DEVICE_IDENTITY); }, getBasebandVersion: function getBasebandVersion() { Buf.simpleRequest(REQUEST_BASEBAND_VERSION); }, /** * Dial the phone. * * @param number * String containing the number to dial. * @param clirMode * Integer doing something XXX TODO * @param uusInfo * Integer doing something XXX TODO */ dial: function dial(options) { let dial_request_type = REQUEST_DIAL; if (this.voiceRegistrationState.emergencyCallsOnly || options.isDialEmergency) { if (!this._isEmergencyNumber(options.number)) { // Notify error in establishing the call with an invalid number. options.callIndex = -1; options.rilMessageType = "callError"; options.error = RIL_CALL_FAILCAUSE_TO_GECKO_CALL_ERROR[CALL_FAIL_UNOBTAINABLE_NUMBER]; this.sendDOMMessage(options); return; } if (RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL) { dial_request_type = REQUEST_DIAL_EMERGENCY_CALL; } } else { if (this._isEmergencyNumber(options.number) && RILQUIRKS_REQUEST_USE_DIAL_EMERGENCY_CALL) { dial_request_type = REQUEST_DIAL_EMERGENCY_CALL; } } let token = Buf.newParcel(dial_request_type); Buf.writeString(options.number); Buf.writeUint32(options.clirMode || 0); Buf.writeUint32(options.uusInfo || 0); // TODO Why do we need this extra 0? It was put it in to make this // match the format of the binary message. Buf.writeUint32(0); Buf.sendParcel(); }, /** * Hang up the phone. * * @param callIndex * Call index (1-based) as reported by REQUEST_GET_CURRENT_CALLS. */ hangUp: function hangUp(options) { let call = this.currentCalls[options.callIndex]; if (!call) { return; } switch (call.state) { case CALL_STATE_ACTIVE: case CALL_STATE_DIALING: case CALL_STATE_ALERTING: Buf.newParcel(REQUEST_HANGUP); Buf.writeUint32(1); Buf.writeUint32(options.callIndex); Buf.sendParcel(); break; case CALL_STATE_HOLDING: Buf.simpleRequest(REQUEST_HANGUP_WAITING_OR_BACKGROUND); break; } }, /** * Mute or unmute the radio. * * @param mute * Boolean to indicate whether to mute or unmute the radio. */ setMute: function setMute(mute) { Buf.newParcel(REQUEST_SET_MUTE); Buf.writeUint32(1); Buf.writeUint32(mute ? 1 : 0); Buf.sendParcel(); }, /** * Answer an incoming/waiting call. * * @param callIndex * Call index of the call to answer. */ answerCall: function answerCall(options) { // Check for races. Since we dispatched the incoming/waiting call // notification the incoming/waiting call may have changed. The main // thread thinks that it is answering the call with the given index, // so only answer if that is still incoming/waiting. let call = this.currentCalls[options.callIndex]; if (!call) { return; } switch (call.state) { case CALL_STATE_INCOMING: Buf.simpleRequest(REQUEST_ANSWER); break; case CALL_STATE_WAITING: // Answer the waiting (second) call, and hold the first call. Buf.simpleRequest(REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE); break; } }, /** * Reject an incoming/waiting call. * * @param callIndex * Call index of the call to reject. */ rejectCall: function rejectCall(options) { // Check for races. Since we dispatched the incoming/waiting call // notification the incoming/waiting call may have changed. The main // thread thinks that it is rejecting the call with the given index, // so only reject if that is still incoming/waiting. let call = this.currentCalls[options.callIndex]; if (!call) { return; } switch (call.state) { case CALL_STATE_INCOMING: Buf.simpleRequest(REQUEST_UDUB); break; case CALL_STATE_WAITING: // Reject the waiting (second) call, and remain the first call. Buf.simpleRequest(REQUEST_HANGUP_WAITING_OR_BACKGROUND); break; } }, holdCall: function holdCall(options) { let call = this.currentCalls[options.callIndex]; if (call && call.state == CALL_STATE_ACTIVE) { Buf.simpleRequest(REQUEST_SWITCH_HOLDING_AND_ACTIVE); } }, resumeCall: function resumeCall(options) { let call = this.currentCalls[options.callIndex]; if (call && call.state == CALL_STATE_HOLDING) { Buf.simpleRequest(REQUEST_SWITCH_HOLDING_AND_ACTIVE); } }, /** * Send an SMS. * * The `options` parameter object should contain the following attributes: * * @param number * String containing the recipient number. * @param body * String containing the message text. * @param requestId * String identifying the sms request used by the SmsRequestManager. * @param processId * String containing the processId for the SmsRequestManager. */ sendSMS: function sendSMS(options) { //TODO: verify values on 'options' if (!options.retryCount) { options.retryCount = 0; } if (options.segmentMaxSeq > 1) { if (!options.segmentSeq) { // Fist segment to send options.segmentSeq = 1; options.body = options.segments[0].body; options.encodedBodyLength = options.segments[0].encodedBodyLength; } } else { options.body = options.fullBody; options.encodedBodyLength = options.encodedFullBodyLength; } Buf.newParcel(REQUEST_SEND_SMS, options); Buf.writeUint32(2); Buf.writeString(options.SMSC); GsmPDUHelper.writeMessage(options); Buf.sendParcel(); }, /** * Acknowledge the receipt and handling of an SMS. * * @param success * Boolean indicating whether the message was successfuly handled. * @param cause * SMS_* constant indicating the reason for unsuccessful handling. */ acknowledgeSMS: function acknowledgeSMS(success, cause) { let token = Buf.newParcel(REQUEST_SMS_ACKNOWLEDGE); Buf.writeUint32(2); Buf.writeUint32(success ? 1 : 0); Buf.writeUint32(cause); Buf.sendParcel(); }, /** * Start a DTMF Tone. * * @param dtmfChar * DTMF signal to send, 0-9, *, + */ startTone: function startTone(options) { Buf.newParcel(REQUEST_DTMF_START); Buf.writeString(options.dtmfChar); Buf.sendParcel(); }, stopTone: function stopTone() { Buf.simpleRequest(REQUEST_DTMF_STOP); }, /** * Send a DTMF tone. * * @param dtmfChar * DTMF signal to send, 0-9, *, + */ sendTone: function sendTone(options) { Buf.newParcel(REQUEST_DTMF); Buf.writeString(options.dtmfChar); Buf.sendParcel(); }, /** * Get the Short Message Service Center address. */ getSMSCAddress: function getSMSCAddress() { Buf.simpleRequest(REQUEST_GET_SMSC_ADDRESS); }, /** * Set the Short Message Service Center address. * * @param SMSC * Short Message Service Center address in PDU format. */ setSMSCAddress: function setSMSCAddress(options) { Buf.newParcel(REQUEST_SET_SMSC_ADDRESS); Buf.writeString(options.SMSC); Buf.sendParcel(); }, /** * Setup a data call. * * @param radioTech * Integer to indicate radio technology. * DATACALL_RADIOTECHNOLOGY_CDMA => CDMA. * DATACALL_RADIOTECHNOLOGY_GSM => GSM. * @param apn * String containing the name of the APN to connect to. * @param user * String containing the username for the APN. * @param passwd * String containing the password for the APN. * @param chappap * Integer containing CHAP/PAP auth type. * DATACALL_AUTH_NONE => PAP and CHAP is never performed. * DATACALL_AUTH_PAP => PAP may be performed. * DATACALL_AUTH_CHAP => CHAP may be performed. * DATACALL_AUTH_PAP_OR_CHAP => PAP / CHAP may be performed. * @param pdptype * String containing PDP type to request. ("IP", "IPV6", ...) */ setupDataCall: function setupDataCall(options) { let token = Buf.newParcel(REQUEST_SETUP_DATA_CALL, options); Buf.writeUint32(7); Buf.writeString(options.radioTech.toString()); Buf.writeString(DATACALL_PROFILE_DEFAULT.toString()); Buf.writeString(options.apn); Buf.writeString(options.user); Buf.writeString(options.passwd); Buf.writeString(options.chappap.toString()); Buf.writeString(options.pdptype); Buf.sendParcel(); return token; }, /** * Deactivate a data call. * * @param cid * String containing CID. * @param reason * One of DATACALL_DEACTIVATE_* constants. */ deactivateDataCall: function deactivateDataCall(options) { let datacall = this.currentDataCalls[options.cid]; if (!datacall) { return; } let token = Buf.newParcel(REQUEST_DEACTIVATE_DATA_CALL, options); Buf.writeUint32(2); Buf.writeString(options.cid); Buf.writeString(options.reason || DATACALL_DEACTIVATE_NO_REASON); Buf.sendParcel(); datacall.state = GECKO_NETWORK_STATE_DISCONNECTING; this.sendDOMMessage(datacall); }, /** * Get a list of data calls. */ getDataCallList: function getDataCallList() { Buf.simpleRequest(REQUEST_DATA_CALL_LIST); }, /** * Get failure casue code for the most recently failed PDP context. */ getFailCauseCode: function getFailCauseCode(options) { Buf.simpleRequest(REQUEST_LAST_CALL_FAIL_CAUSE, options); }, /** * Helper to parse and process a MMI string. */ _parseMMI: function _parseMMI(mmiString) { if (!mmiString || !mmiString.length) { return null; } // Regexp to parse and process the MMI code. if (this._mmiRegExp == null) { // The first group of the regexp takes the whole MMI string. // The second group takes the MMI procedure that can be: // - Activation (*SC*SI#). // - Deactivation (#SC*SI#). // - Interrogation (*#SC*SI#). // - Registration (**SC*SI#). // - Erasure (##SC*SI#). // where SC = Service Code (2 or 3 digits) and SI = Supplementary Info // (variable length). let pattern = "((\\*[*#]?|##?)"; // Third group of the regexp looks for the MMI Service code, which is a // 2 or 3 digits that uniquely specifies the Supplementary Service // associated with the MMI code. pattern += "(\\d{2,3})"; // Groups from 4 to 9 looks for the MMI Supplementary Information SIA, // SIB and SIC. SIA may comprise e.g. a PIN code or Directory Number, // SIB may be used to specify the tele or bearer service and SIC to // specify the value of the "No Reply Condition Timer". Where a particular // service request does not require any SI, "*SI" is not entered. The use // of SIA, SIB and SIC is optional and shall be entered in any of the // following formats: // - *SIA*SIB*SIC# // - *SIA*SIB# // - *SIA**SIC# // - *SIA# // - **SIB*SIC# // - ***SISC# pattern += "(\\*([^*#]*)(\\*([^*#]*)(\\*([^*#]*)"; // The eleventh group takes the password for the case of a password // registration procedure. pattern += "(\\*([^*#]*))?)?)?)?#)"; // The last group takes the dial string after the #. pattern += "([^#]*)"; this._mmiRegExp = new RegExp(pattern); } let matches = this._mmiRegExp.exec(mmiString); // If the regex does not apply over the MMI string, it can still be an MMI // code. If the MMI String is a #-string (entry of any characters defined // in the TS.23.038 Default Alphabet followed by #SEND) it shall be treated // as a USSD code. if (matches == null) { if (mmiString.charAt(mmiString.length - 1) == MMI_END_OF_USSD) { return { fullMMI: mmiString }; } return null; } // After successfully executing the regular expresion over the MMI string, // the following match groups should contain: // 1 = full MMI string that might be used as a USSD request. // 2 = MMI procedure. // 3 = Service code. // 5 = SIA. // 7 = SIB. // 9 = SIC. // 11 = Password registration. // 12 = Dialing number. return { fullMMI: matches[MMI_MATCH_GROUP_FULL_MMI], procedure: matches[MMI_MATCH_GROUP_MMI_PROCEDURE], serviceCode: matches[MMI_MATCH_GROUP_SERVICE_CODE], sia: matches[MMI_MATCH_GROUP_SIA], sib: matches[MMI_MATCH_GROUP_SIB], sic: matches[MMI_MATCH_GROUP_SIC], pwd: matches[MMI_MATCH_GROUP_PWD_CONFIRM], dialNumber: matches[MMI_MATCH_GROUP_DIALING_NUMBER] }; }, sendMMI: function sendMMI(options) { if (DEBUG) { debug("SendMMI " + JSON.stringify(options)); } let mmiString = options.mmi; let mmi = this._parseMMI(mmiString); let _sendMMIError = (function _sendMMIError(errorMsg) { options.rilMessageType = "sendMMI"; options.errorMsg = errorMsg; this.sendDOMMessage(options); }).bind(this); function _isValidPINPUKRequest() { // The only allowed MMI procedure for ICC PIN, PIN2, PUK and PUK2 handling // is "Registration" (**). if (!mmi.procedure || mmi.procedure != MMI_PROCEDURE_REGISTRATION ) { _sendMMIError("WRONG_MMI_PROCEDURE"); return; } if (!mmi.sia || !mmi.sia.length || !mmi.sib || !mmi.sib.length || !mmi.sic || !mmi.sic.length) { _sendMMIError("MISSING_SUPPLEMENTARY_INFORMATION"); return; } if (mmi.sib != mmi.sic) { _sendMMIError("NEW_PIN_MISMATCH"); return; } return true; } if (mmi == null) { if (this._ussdSession) { options.ussd = mmiString; this.sendUSSD(options); return; } _sendMMIError("NO_VALID_MMI_STRING"); return; } if (DEBUG) { debug("MMI " + JSON.stringify(mmi)); } // We check if the MMI service code is supported and in that case we // trigger the appropriate RIL request if possible. let sc = mmi.serviceCode; switch (sc) { // Call forwarding case MMI_SC_CFU: case MMI_SC_CF_BUSY: case MMI_SC_CF_NO_REPLY: case MMI_SC_CF_NOT_REACHABLE: case MMI_SC_CF_ALL: case MMI_SC_CF_ALL_CONDITIONAL: // TODO: Bug 793192 - MMI Codes: support call forwarding. _sendMMIError("CALL_FORWARDING_NOT_SUPPORTED_VIA_MMI"); return; // Change the current ICC PIN number. case MMI_SC_PIN: // As defined in TS.122.030 6.6.2 to change the ICC PIN we should expect // an MMI code of the form **04*OLD_PIN*NEW_PIN*NEW_PIN#, where old PIN // should be entered as the SIA parameter and the new PIN as SIB and // SIC. if (!_isValidPINPUKRequest()) { return; } options.rilRequestType = "sendMMI"; options.pin = mmi.sia; options.newPin = mmi.sib; this.changeICCPIN(options); return; // Change the current ICC PIN2 number. case MMI_SC_PIN2: // As defined in TS.122.030 6.6.2 to change the ICC PIN2 we should // enter and MMI code of the form **042*OLD_PIN2*NEW_PIN2*NEW_PIN2#, // where the old PIN2 should be entered as the SIA parameter and the // new PIN2 as SIB and SIC. if (!_isValidPINPUKRequest()) { return; } options.rilRequestType = "sendMMI"; options.pin = mmi.sia; options.newPin = mmi.sib; this.changeICCPIN2(options); return; // Unblock ICC PIN. case MMI_SC_PUK: // As defined in TS.122.030 6.6.3 to unblock the ICC PIN we should // enter an MMI code of the form **05*PUK*NEW_PIN*NEW_PIN#, where PUK // should be entered as the SIA parameter and the new PIN as SIB and // SIC. if (!_isValidPINPUKRequest()) { return; } options.rilRequestType = "sendMMI"; options.puk = mmi.sia; options.newPin = mmi.sib; this.enterICCPUK(options); return; // Unblock ICC PIN2. case MMI_SC_PUK2: // As defined in TS.122.030 6.6.3 to unblock the ICC PIN2 we should // enter an MMI code of the form **052*PUK2*NEW_PIN2*NEW_PIN2#, where // PUK2 should be entered as the SIA parameter and the new PIN2 as SIB // and SIC. if (!_isValidPINPUKRequest()) { return; } options.rilRequestType = "sendMMI"; options.puk = mmi.sia; options.newPin = mmi.sib; this.enterICCPUK2(options); return; // IMEI case MMI_SC_IMEI: // A device's IMEI can't change, so we only need to request it once. if (this.IMEI == null) { this.getIMEI({mmi: true}); return; } // If we already had the device's IMEI, we just send it to the DOM. options.rilMessageType = "sendMMI"; options.success = true; options.result = this.IMEI; this.sendDOMMessage(options); return; // Call barring case MMI_SC_BAOC: case MMI_SC_BAOIC: case MMI_SC_BAOICxH: case MMI_SC_BAIC: case MMI_SC_BAICr: case MMI_SC_BA_ALL: case MMI_SC_BA_MO: case MMI_SC_BA_MT: _sendMMIError("CALL_BARRING_NOT_SUPPORTED_VIA_MMI"); return; // Call waiting case MMI_SC_CALL_WAITING: _sendMMIError("CALL_WAITING_NOT_SUPPORTED_VIA_MMI"); return; } // If the MMI code is not a known code and is a recognized USSD request or // a #-string, it shall still be sent as a USSD request. if (mmi.fullMMI && (mmiString.charAt(mmiString.length - 1) == MMI_END_OF_USSD)) { options.ussd = mmi.fullMMI; this.sendUSSD(options); return; } // At this point, the MMI string is considered as not valid MMI code and // not valid USSD code. _sendMMIError("NOT_VALID_MMI_STRING"); }, /** * Send USSD. * * @param ussd * String containing the USSD code. * */ sendUSSD: function sendUSSD(options) { Buf.newParcel(REQUEST_SEND_USSD, options); Buf.writeString(options.ussd); Buf.sendParcel(); }, /** * Cancel pending USSD. */ cancelUSSD: function cancelUSSD(options) { Buf.simpleRequest(REQUEST_CANCEL_USSD, options); }, /** * Handle STK CALL_SET_UP request. * * @param hasConfirmed * Does use have confirmed the call requested from ICC? */ stkHandleCallSetup: function stkHandleCallSetup(options) { Buf.newParcel(REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM, options); Buf.writeUint32(1); Buf.writeUint32(options.hasConfirmed ? 1 : 0); Buf.sendParcel(); }, /** * Send STK terminal response. * * @param command * @param resultCode * @param [optional] itemIdentifier * @param [optional] input * @param [optional] isYesNo * @param [optional] hasConfirmed */ sendStkTerminalResponse: function sendStkTerminalResponse(response) { if (response.hasConfirmed !== undefined) { this.stkHandleCallSetup(response); return; } let token = Buf.newParcel(REQUEST_STK_SEND_TERMINAL_RESPONSE); let textLen = 0; let command = response.command; if (response.resultCode != STK_RESULT_HELP_INFO_REQUIRED) { if (response.isYesNo) { textLen = 1; } else if (response.input) { if (command.options.isUCS2) { textLen = response.input.length * 2; } else if (command.options.isPacked) { let bits = response.input.length * 7; textLen = bits * 7 / 8 + (bits % 8 ? 1 : 0); } else { textLen = response.input.length; } } } // 1 octets = 2 chars. let size = (TLV_COMMAND_DETAILS_SIZE + TLV_DEVICE_ID_SIZE + TLV_RESULT_SIZE + (response.itemIdentifier ? TLV_ITEM_ID_SIZE : 0) + (textLen ? textLen + 3 : 0)) * 2; Buf.writeUint32(size); // Command Details GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_COMMAND_DETAILS | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(3); if (response.command) { GsmPDUHelper.writeHexOctet(command.commandNumber); GsmPDUHelper.writeHexOctet(command.typeOfCommand); GsmPDUHelper.writeHexOctet(command.commandQualifier); } else { GsmPDUHelper.writeHexOctet(0x00); GsmPDUHelper.writeHexOctet(0x00); GsmPDUHelper.writeHexOctet(0x00); } // Device Identifier // According to TS102.223/TS31.111 section 6.8 Structure of // TERMINAL RESPONSE, "For all SIMPLE-TLV objects with Min=N, // the ME should set the CR(comprehension required) flag to // comprehension not required.(CR=0)" // Since DEVICE_IDENTITIES and DURATION TLVs have Min=N, // the CR flag is not set. GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DEVICE_ID); GsmPDUHelper.writeHexOctet(2); GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_ME); GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_SIM); // Result GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_RESULT | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(1); GsmPDUHelper.writeHexOctet(response.resultCode); // Item Identifier if (response.itemIdentifier) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ITEM_ID | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(1); GsmPDUHelper.writeHexOctet(response.itemIdentifier); } // No need to process Text data if user requests help information. if (response.resultCode != STK_RESULT_HELP_INFO_REQUIRED) { let text; if (response.isYesNo !== undefined) { // GET_INKEY // When the ME issues a successful TERMINAL RESPONSE for a GET INKEY // ("Yes/No") command with command qualifier set to "Yes/No", it shall // supply the value '01' when the answer is "positive" and the value // '00' when the answer is "negative" in the Text string data object. text = response.isYesNo ? 0x01 : 0x00; } else { text = response.input; } if (text) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TEXT_STRING | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(textLen + 1); // +1 for coding let coding = command.options.isUCS2 ? STK_TEXT_CODING_UCS2 : (command.options.isPacked ? STK_TEXT_CODING_GSM_7BIT_PACKED : STK_TEXT_CODING_GSM_8BIT); GsmPDUHelper.writeHexOctet(coding); // Write Text String. switch (coding) { case STK_TEXT_CODING_UCS2: GsmPDUHelper.writeUCS2String(text); break; case STK_TEXT_CODING_GSM_7BIT_PACKED: GsmPDUHelper.writeStringAsSeptets(text, 0, 0, 0); break; case STK_TEXT_CODING_GSM_8BIT: for (let i = 0; i < textLen; i++) { GsmPDUHelper.writeHexOctet(text.charCodeAt(i)); } break; } } } Buf.writeUint32(0); Buf.sendParcel(); }, /** * Send STK Envelope(Menu Selection) command. * * @param itemIdentifier * @param helpRequested */ sendStkMenuSelection: function sendStkMenuSelection(command) { command.tag = BER_MENU_SELECTION_TAG; command.deviceId = { sourceId :STK_DEVICE_ID_KEYPAD, destinationId: STK_DEVICE_ID_SIM }; this.sendICCEnvelopeCommand(command); }, /** * Send STK Envelope(Event Download) command. * @param event */ sendStkEventDownload: function sendStkEventDownload(command) { command.tag = BER_EVENT_DOWNLOAD_TAG; command.eventList = command.event.eventType; switch (command.eventList) { case STK_EVENT_TYPE_LOCATION_STATUS: command.deviceId = { sourceId :STK_DEVICE_ID_ME, destinationId: STK_DEVICE_ID_SIM }; command.locationStatus = command.event.locationStatus; // Location info should only be provided when locationStatus is normal. if (command.locationStatus == STK_SERVICE_STATE_NORMAL) { command.locationInfo = command.event.locationInfo; } break; case STK_EVENT_TYPE_MT_CALL: command.deviceId = { sourceId: STK_DEVICE_ID_NETWORK, destinationId: STK_DEVICE_ID_SIM }; command.transactionId = 0; command.address = command.eventData.number; break; case STK_EVENT_TYPE_CALL_DISCONNECTED: command.cause = command.eventData.error; case STK_EVENT_TYPE_CALL_CONNECTED: // Fall through command.deviceId = { sourceId: (command.eventData.isIssuedByRemote ? STK_DEVICE_ID_NETWORK : STK_DEVICE_ID_ME), destinationId: STK_DEVICE_ID_SIM }; command.transactionId = 0; break; } this.sendICCEnvelopeCommand(command); }, /** * Send REQUEST_STK_SEND_ENVELOPE_COMMAND to ICC. * * @param tag * @patam deviceId * @param [optioanl] itemIdentifier * @param [optional] helpRequested * @param [optional] eventList * @param [optional] locationStatus * @param [optional] locationInfo * @param [optional] address * @param [optional] transactionId * @param [optional] cause */ sendICCEnvelopeCommand: function sendICCEnvelopeCommand(options) { if (DEBUG) { debug("Stk Envelope " + JSON.stringify(options)); } let token = Buf.newParcel(REQUEST_STK_SEND_ENVELOPE_COMMAND); let berLen = TLV_DEVICE_ID_SIZE + /* Size of Device Identifier TLV */ (options.itemIdentifier ? TLV_ITEM_ID_SIZE : 0) + (options.helpRequested ? TLV_HELP_REQUESTED_SIZE : 0) + (options.eventList ? TLV_EVENT_LIST_SIZE : 0) + (options.locationStatus ? TLV_LOCATION_STATUS_SIZE : 0) + (options.locationInfo ? (options.locationInfo.gsmCellId > 0xffff ? TLV_LOCATION_INFO_UMTS_SIZE : TLV_LOCATION_INFO_GSM_SIZE) : 0) + (options.transactionId ? 3 : 0) + (options.address ? 1 + // Length of tag. ComprehensionTlvHelper.getSizeOfLengthOctets( Math.ceil(options.address.length/2) + 1) + // Length of length field. Math.ceil(options.address.length/2) + 1 // address BCD + TON. : 0) + (options.cause ? 4 : 0); let size = (2 + berLen) * 2; Buf.writeUint32(size); // Write a BER-TLV GsmPDUHelper.writeHexOctet(options.tag); GsmPDUHelper.writeHexOctet(berLen); // Device Identifies GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DEVICE_ID | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(2); GsmPDUHelper.writeHexOctet(options.deviceId.sourceId); GsmPDUHelper.writeHexOctet(options.deviceId.destinationId); // Item Identifier if (options.itemIdentifier) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ITEM_ID | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(1); GsmPDUHelper.writeHexOctet(options.itemIdentifier); } // Help Request if (options.helpRequested) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_HELP_REQUEST | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(0); // Help Request doesn't have value } // Event List if (options.eventList) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_EVENT_LIST | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(1); GsmPDUHelper.writeHexOctet(options.eventList); } // Location Status if (options.locationStatus) { let len = options.locationStatus.length; GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_LOCATION_STATUS | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(1); GsmPDUHelper.writeHexOctet(options.locationStatus); } // Location Info if (options.locationInfo) { ComprehensionTlvHelper.writeLocationInfoTlv(options.locationInfo); } // Transaction Id if (options.transactionId) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_TRANSACTION_ID | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(1); GsmPDUHelper.writeHexOctet(options.transactionId); } // Address if (options.address) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ADDRESS | COMPREHENSIONTLV_FLAG_CR); ComprehensionTlvHelper.writeLength( Math.ceil(options.address.length/2) + 1 // address BCD + TON ); GsmPDUHelper.writeDiallingNumber(options.address); } // Cause of disconnection. if (options.cause) { ComprehensionTlvHelper.writeCauseTlv(options.cause); } Buf.writeUint32(0); Buf.sendParcel(); }, /** * Check a given number against the list of emergency numbers provided by the RIL. * * @param number * The number to look up. */ _isEmergencyNumber: function _isEmergencyNumber(number) { // Check read-write ecclist property first. let numbers = libcutils.property_get("ril.ecclist"); if (!numbers) { // Then read-only ecclist property since others RIL only uses this. numbers = libcutils.property_get("ro.ril.ecclist"); } if (numbers) { numbers = numbers.split(","); } else { // No ecclist system property, so use our own list. numbers = DEFAULT_EMERGENCY_NUMBERS; } return numbers.indexOf(number) != -1; }, /** * Process ICC status. */ _processICCStatus: function _processICCStatus(iccStatus) { this.iccStatus = iccStatus; if ((!iccStatus) || (iccStatus.cardState == CARD_STATE_ABSENT)) { if (DEBUG) debug("ICC absent"); if (this.cardState == GECKO_CARDSTATE_ABSENT) { this.operator = null; return; } this.cardState = GECKO_CARDSTATE_ABSENT; this.sendDOMMessage({rilMessageType: "cardstatechange", cardState: this.cardState}); return; } // TODO: Bug 726098, change to use cdmaSubscriptionAppIndex when in CDMA. let index = iccStatus.gsmUmtsSubscriptionAppIndex; let app = iccStatus.apps[index]; if (!app) { if (DEBUG) { debug("Subscription application is not present in iccStatus."); } if (this.cardState == GECKO_CARDSTATE_ABSENT) { return; } this.cardState = GECKO_CARDSTATE_ABSENT; this.operator = null; this.sendDOMMessage({rilMessageType: "cardstatechange", cardState: this.cardState}); return; } // fetchICCRecords will need to read aid, so read aid here. this.aid = app.aid; this.appType = app.app_type; let newCardState; switch (app.app_state) { case CARD_APPSTATE_PIN: newCardState = GECKO_CARDSTATE_PIN_REQUIRED; break; case CARD_APPSTATE_PUK: newCardState = GECKO_CARDSTATE_PUK_REQUIRED; break; case CARD_APPSTATE_SUBSCRIPTION_PERSO: newCardState = GECKO_CARDSTATE_NETWORK_LOCKED; break; case CARD_APPSTATE_READY: newCardState = GECKO_CARDSTATE_READY; break; case CARD_APPSTATE_UNKNOWN: case CARD_APPSTATE_DETECTED: default: newCardState = GECKO_CARDSTATE_NOT_READY; } if (this.cardState == newCardState) { return; } // This was moved down from CARD_APPSTATE_READY this.requestNetworkInfo(); this.getSignalStrength(); if (newCardState == GECKO_CARDSTATE_READY) { this.fetchICCRecords(); } this.cardState = newCardState; this.sendDOMMessage({rilMessageType: "cardstatechange", cardState: this.cardState}); }, /** * Helper function for getting the pathId for the specific ICC record * depeding on which type of ICC card we are using. * * @param fileId * File id. * @return The pathId or null in case of an error or invalid input. */ _getPathIdForICCRecord: function _getPathIdForICCRecord(fileId) { let index = this.iccStatus.gsmUmtsSubscriptionAppIndex; if (index == -1) { return null; } let app = this.iccStatus.apps[index]; if (!app) { return null; } // Here we handle only file ids that are common to RUIM, SIM, USIM // and other types of ICC cards. switch (fileId) { case ICC_EF_ICCID: return EF_PATH_MF_SIM; case ICC_EF_ADN: return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM; case ICC_EF_PBR: return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM + EF_PATH_DF_PHONEBOOK; } switch (app.app_type) { case CARD_APPTYPE_SIM: switch (fileId) { case ICC_EF_FDN: case ICC_EF_MSISDN: return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM; case ICC_EF_AD: case ICC_EF_MBDN: case ICC_EF_SPN: case ICC_EF_SST: return EF_PATH_MF_SIM + EF_PATH_DF_GSM; } case CARD_APPTYPE_USIM: switch (fileId) { case ICC_EF_AD: case ICC_EF_FDN: case ICC_EF_MBDN: case ICC_EF_UST: case ICC_EF_MSISDN: case ICC_EF_SPN: return EF_PATH_MF_SIM + EF_PATH_ADF_USIM; default: // The file ids in USIM phone book entries are decided by the // card manufacturer. So if we don't match any of the cases // above and if its a USIM return the phone book path. return EF_PATH_MF_SIM + EF_PATH_DF_TELECOM + EF_PATH_DF_PHONEBOOK; } } return null; }, /** * Helper for processing responses of functions such as enterICC* and changeICC*. */ _processEnterAndChangeICCResponses: function _processEnterAndChangeICCResponses(length, options) { options.success = options.rilRequestError == 0; if (!options.success) { options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; } options.retryCount = length ? Buf.readUint32List()[0] : -1; this.sendDOMMessage(options); }, /** * Process a ICC_COMMAND_GET_RESPONSE type command for REQUEST_SIM_IO. */ _processICCIOGetResponse: function _processICCIOGetResponse(options) { let length = Buf.readUint32(); // The format is from TS 51.011, clause 9.2.1 // Skip RFU, data[0] data[1] Buf.seekIncoming(2 * PDU_HEX_OCTET_SIZE); // File size, data[2], data[3] let fileSize = (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet(); // 2 bytes File id. data[4], data[5] let fileId = (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet(); if (fileId != options.fileId) { if (DEBUG) { debug("Expected file ID " + options.fileId + " but read " + fileId); } return; } // Type of file, data[6] let fileType = GsmPDUHelper.readHexOctet(); if (fileType != TYPE_EF) { if (DEBUG) { debug("Unexpected file type " + fileType); } return; } // Skip 1 byte RFU, data[7], // 3 bytes Access conditions, data[8] data[9] data[10], // 1 byte File status, data[11], // 1 byte Length of the following data, data[12]. Buf.seekIncoming(((RESPONSE_DATA_STRUCTURE - RESPONSE_DATA_FILE_TYPE - 1) * PDU_HEX_OCTET_SIZE)); // Read Structure of EF, data[13] let efType = GsmPDUHelper.readHexOctet(); if (efType != options.type) { if (DEBUG) { debug("Expected EF type " + options.type + " but read " + efType); } return; } // Length of a record, data[14] options.recordSize = GsmPDUHelper.readHexOctet(); options.totalRecords = fileSize / options.recordSize; Buf.readStringDelimiter(length); switch (options.type) { case EF_TYPE_LINEAR_FIXED: // Reuse the options object and update some properties. options.command = ICC_COMMAND_READ_RECORD; options.p1 = 1; // Record number, always use the 1st record options.p2 = READ_RECORD_ABSOLUTE_MODE; options.p3 = options.recordSize; this.iccIO(options); break; case EF_TYPE_TRANSPARENT: // Reuse the options object and update some properties. options.command = ICC_COMMAND_READ_BINARY; options.p3 = fileSize; this.iccIO(options); break; } }, /** * Process a ICC_COMMAND_READ_RECORD type command for REQUEST_SIM_IO. */ _processICCIOReadRecord: function _processICCIOReadRecord(options) { if (options.callback) { options.callback.call(this, options); } }, /** * Process a ICC_COMMAND_READ_BINARY type command for REQUEST_SIM_IO. */ _processICCIOReadBinary: function _processICCIOReadBinary(options) { if (options.callback) { options.callback.call(this); } }, /** * Process ICC I/O response. */ _processICCIO: function _processICCIO(options) { switch (options.command) { case ICC_COMMAND_GET_RESPONSE: this._processICCIOGetResponse(options); break; case ICC_COMMAND_READ_RECORD: this._processICCIOReadRecord(options); break; case ICC_COMMAND_READ_BINARY: this._processICCIOReadBinary(options); break; } }, // We combine all of the NETWORK_INFO_MESSAGE_TYPES into one "networkinfochange" // message to the RadioInterfaceLayer, so we can avoid sending multiple // VoiceInfoChanged events for both operator / voice_data_registration // // State management here is a little tricky. We need to know both: // 1. Whether or not a response was received for each of the // NETWORK_INFO_MESSAGE_TYPES // 2. The outbound message that corresponds with that response -- but this // only happens when internal state changes (i.e. it isn't guaranteed) // // To collect this state, each message response function first calls // _receivedNetworkInfo, to mark the response as received. When the // final response is received, a call to _sendPendingNetworkInfo is placed // on the next tick of the worker thread. // // Since the original call to _receivedNetworkInfo happens at the top // of the response handler, this gives the final handler a chance to // queue up it's "changed" message by calling _sendNetworkInfoMessage if/when // the internal state has actually changed. _sendNetworkInfoMessage: function _sendNetworkInfoMessage(type, message) { if (!this._processingNetworkInfo) { // We only combine these messages in the case of the combined request // in requestNetworkInfo() this.sendDOMMessage(message); return; } if (DEBUG) debug("Queuing " + type + " network info message: " + JSON.stringify(message)); this._pendingNetworkInfo[type] = message; }, _receivedNetworkInfo: function _receivedNetworkInfo(type) { if (DEBUG) debug("Received " + type + " network info."); if (!this._processingNetworkInfo) { return; } let pending = this._pendingNetworkInfo; // We still need to track states for events that aren't fired. if (!(type in pending)) { pending[type] = PENDING_NETWORK_TYPE; } // Pending network info is ready to be sent when no more messages // are waiting for responses, but the combined payload hasn't been sent. for (let i = 0; i < NETWORK_INFO_MESSAGE_TYPES.length; i++) { let type = NETWORK_INFO_MESSAGE_TYPES[i]; if (!(type in pending)) { if (DEBUG) debug("Still missing some more network info, not notifying main thread."); return; } } // Do a pass to clean up the processed messages that didn't create // a response message, so we don't have unused keys in the outbound // networkinfochanged message. for (let key in pending) { if (pending[key] == PENDING_NETWORK_TYPE) { delete pending[key]; } } if (DEBUG) debug("All pending network info has been received: " + JSON.stringify(pending)); // Send the message on the next tick of the worker's loop, so we give the // last message a chance to call _sendNetworkInfoMessage first. setTimeout(this._sendPendingNetworkInfo, 0); }, _sendPendingNetworkInfo: function _sendPendingNetworkInfo() { RIL.sendDOMMessage(RIL._pendingNetworkInfo); RIL._processingNetworkInfo = false; for (let i = 0; i < NETWORK_INFO_MESSAGE_TYPES.length; i++) { delete RIL._pendingNetworkInfo[NETWORK_INFO_MESSAGE_TYPES[i]]; } }, /** * Process the network registration flags. * * @return true if the state changed, false otherwise. */ _processCREG: function _processCREG(curState, newState) { let changed = false; let regState = RIL.parseInt(newState[0], NETWORK_CREG_STATE_UNKNOWN); if (curState.regState != regState) { changed = true; curState.regState = regState; curState.state = NETWORK_CREG_TO_GECKO_MOBILE_CONNECTION_STATE[regState]; curState.connected = regState == NETWORK_CREG_STATE_REGISTERED_HOME || regState == NETWORK_CREG_STATE_REGISTERED_ROAMING; curState.roaming = regState == NETWORK_CREG_STATE_REGISTERED_ROAMING; curState.emergencyCallsOnly = (regState >= NETWORK_CREG_STATE_NOT_SEARCHING_EMERGENCY_CALLS) && (regState <= NETWORK_CREG_STATE_UNKNOWN_EMERGENCY_CALLS); if (RILQUIRKS_MODEM_DEFAULTS_TO_EMERGENCY_MODE) { curState.emergencyCallsOnly = !curState.connected; } } if (!curState.cell) { curState.cell = {}; } // From TS 23.003, 0000 and 0xfffe are indicated that no valid LAI exists // in MS. So we still need to report the '0000' as well. let lac = RIL.parseInt(newState[1], -1, 16); if (curState.cell.gsmLocationAreaCode !== lac) { curState.cell.gsmLocationAreaCode = lac; changed = true; } let cid = RIL.parseInt(newState[2], -1, 16); if (curState.cell.gsmCellId !== cid) { curState.cell.gsmCellId = cid; changed = true; } let radioTech = RIL.parseInt(newState[3], NETWORK_CREG_TECH_UNKNOWN); if (curState.radioTech != radioTech) { changed = true; curState.radioTech = radioTech; curState.type = GECKO_RADIO_TECH[radioTech] || null; } return changed; }, _processVoiceRegistrationState: function _processVoiceRegistrationState(state) { let rs = this.voiceRegistrationState; let stateChanged = this._processCREG(rs, state); if (stateChanged && rs.connected) { RIL.getSMSCAddress(); } // TODO: This zombie code branch that will be raised from the dead once // we add explicit CDMA support everywhere (bug 726098). let cdma = false; if (cdma) { let baseStationId = RIL.parseInt(state[4]); let baseStationLatitude = RIL.parseInt(state[5]); let baseStationLongitude = RIL.parseInt(state[6]); if (!baseStationLatitude && !baseStationLongitude) { baseStationLatitude = baseStationLongitude = null; } let cssIndicator = RIL.parseInt(state[7]); let systemId = RIL.parseInt(state[8]); let networkId = RIL.parseInt(state[9]); let roamingIndicator = RIL.parseInt(state[10]); let systemIsInPRL = RIL.parseInt(state[11]); let defaultRoamingIndicator = RIL.parseInt(state[12]); let reasonForDenial = RIL.parseInt(state[13]); } if (stateChanged) { rs.rilMessageType = "voiceregistrationstatechange"; this._sendNetworkInfoMessage(NETWORK_INFO_VOICE_REGISTRATION_STATE, rs); } }, _processDataRegistrationState: function _processDataRegistrationState(state) { let rs = this.dataRegistrationState; let stateChanged = this._processCREG(rs, state); if (stateChanged) { rs.rilMessageType = "dataregistrationstatechange"; this._sendNetworkInfoMessage(NETWORK_INFO_DATA_REGISTRATION_STATE, rs); } }, _processOperator: function _processOperator(operatorData) { if (operatorData.length < 3) { if (DEBUG) { debug("Expected at least 3 strings for operator."); } } if (!this.operator) { this.operator = {rilMessageType: "operatorchange"}; } let [longName, shortName, networkTuple] = operatorData; let thisTuple = "" + this.operator.mcc + this.operator.mnc; if (this.operator.longName !== longName || this.operator.shortName !== shortName || thisTuple !== networkTuple) { this.operator.longName = longName; this.operator.shortName = shortName; this.operator.mcc = 0; this.operator.mnc = 0; // According to ril.h, the operator fields will be NULL when the operator // is not currently registered. We can avoid trying to parse the numeric // tuple in that case. if (DEBUG && !longName) { debug("Operator is currently unregistered"); } if (networkTuple) { try { this._processNetworkTuple(networkTuple, this.operator); } catch (e) { debug("Error processing operator tuple: " + e); } } this._sendNetworkInfoMessage(NETWORK_INFO_OPERATOR, this.operator); } }, /** * Helpers for processing call state and handle the active call. */ _processCalls: function _processCalls(newCalls) { // Go through the calls we currently have on file and see if any of them // changed state. Remove them from the newCalls map as we deal with them // so that only new calls remain in the map after we're done. for each (let currentCall in this.currentCalls) { let newCall; if (newCalls) { newCall = newCalls[currentCall.callIndex]; delete newCalls[currentCall.callIndex]; } if (newCall) { // Call is still valid. if (newCall.state != currentCall.state) { // State has changed. currentCall.state = newCall.state; currentCall.isActive = this._isActiveCall(currentCall.state); this._handleChangedCallState(currentCall); } } else { // Call is no longer reported by the radio. Remove from our map and // send disconnected state change. delete this.currentCalls[currentCall.callIndex]; this.getFailCauseCode(currentCall); } } // Go through any remaining calls that are new to us. for each (let newCall in newCalls) { if (newCall.isVoice) { // Format international numbers appropriately. if (newCall.number && newCall.toa == TOA_INTERNATIONAL && newCall.number[0] != "+") { newCall.number = "+" + newCall.number; } // Add to our map. this.currentCalls[newCall.callIndex] = newCall; newCall.isActive = this._isActiveCall(newCall.state); this._handleChangedCallState(newCall); } } // Update our mute status. If there is anything in our currentCalls map then // we know it's a voice call and we should leave audio on. this.muted = Object.getOwnPropertyNames(this.currentCalls).length == 0; }, _handleChangedCallState: function _handleChangedCallState(changedCall) { let message = {rilMessageType: "callStateChange", call: changedCall}; this.sendDOMMessage(message); }, _handleDisconnectedCall: function _handleDisconnectedCall(disconnectedCall) { let message = {rilMessageType: "callDisconnected", call: disconnectedCall}; this.sendDOMMessage(message); }, _isActiveCall: function _isActiveCall(callState) { switch (callState) { case CALL_STATE_ACTIVE: case CALL_STATE_DIALING: case CALL_STATE_ALERTING: return true; case CALL_STATE_HOLDING: case CALL_STATE_INCOMING: case CALL_STATE_WAITING: return false; } }, _sendDataCallError: function _sendDataCallError(message, errorCode) { message.rilMessageType = "datacallerror"; if (errorCode == ERROR_GENERIC_FAILURE) { message.error = RIL_ERROR_TO_GECKO_ERROR[errorCode]; } else { message.error = RIL_DATACALL_FAILCAUSE_TO_GECKO_DATACALL_ERROR[errorCode]; } this.sendDOMMessage(message); }, _processDataCallList: function _processDataCallList(datacalls, newDataCallOptions) { // Check for possible PDP errors: We check earlier because the datacall // can be removed if is the same as the current one. for each (let newDataCall in datacalls) { if (newDataCall.status != DATACALL_FAIL_NONE) { if (newDataCallOptions) { newDataCall.apn = newDataCallOptions.apn; } this._sendDataCallError(newDataCall, newDataCall.status); } } for each (let currentDataCall in this.currentDataCalls) { let updatedDataCall; if (datacalls) { updatedDataCall = datacalls[currentDataCall.cid]; delete datacalls[currentDataCall.cid]; } if (!updatedDataCall) { currentDataCall.state = GECKO_NETWORK_STATE_DISCONNECTED; currentDataCall.rilMessageType = "datacallstatechange"; this.sendDOMMessage(currentDataCall); continue; } if (updatedDataCall && !updatedDataCall.ifname) { delete this.currentDataCalls[currentDataCall.cid]; currentDataCall.state = GECKO_NETWORK_STATE_UNKNOWN; currentDataCall.rilMessageType = "datacallstatechange"; this.sendDOMMessage(currentDataCall); continue; } this._setDataCallGeckoState(updatedDataCall); if (updatedDataCall.state != currentDataCall.state) { currentDataCall.status = updatedDataCall.status; currentDataCall.active = updatedDataCall.active; currentDataCall.state = updatedDataCall.state; currentDataCall.rilMessageType = "datacallstatechange"; this.sendDOMMessage(currentDataCall); } } for each (let newDataCall in datacalls) { if (!newDataCall.ifname) { continue; } this.currentDataCalls[newDataCall.cid] = newDataCall; this._setDataCallGeckoState(newDataCall); if (newDataCallOptions) { newDataCall.radioTech = newDataCallOptions.radioTech; newDataCall.apn = newDataCallOptions.apn; newDataCall.user = newDataCallOptions.user; newDataCall.passwd = newDataCallOptions.passwd; newDataCall.chappap = newDataCallOptions.chappap; newDataCall.pdptype = newDataCallOptions.pdptype; newDataCallOptions = null; } else if (DEBUG) { debug("Unexpected new data call: " + JSON.stringify(newDataCall)); } newDataCall.rilMessageType = "datacallstatechange"; this.sendDOMMessage(newDataCall); } }, _setDataCallGeckoState: function _setDataCallGeckoState(datacall) { switch (datacall.active) { case DATACALL_INACTIVE: datacall.state = GECKO_NETWORK_STATE_DISCONNECTED; break; case DATACALL_ACTIVE_DOWN: case DATACALL_ACTIVE_UP: datacall.state = GECKO_NETWORK_STATE_CONNECTED; break; } }, _processNetworks: function _processNetworks() { let strings = Buf.readStringList(); let networks = []; for (let i = 0; i < strings.length; i += 4) { let network = { longName: strings[i], shortName: strings[i + 1], mcc: 0, mnc: 0, state: null }; let networkTuple = strings[i + 2]; try { this._processNetworkTuple(networkTuple, network); } catch (e) { debug("Error processing operator tuple: " + e); } let state = strings[i + 3]; if (state === NETWORK_STATE_UNKNOWN) { // TODO: looks like this might conflict in style with // GECKO_NETWORK_STYLE_UNKNOWN / nsINetworkManager state = GECKO_QAN_STATE_UNKNOWN; } network.state = state; networks.push(network); } return networks; }, /** * The "numeric" portion of the operator info is a tuple * containing MCC (country code) and MNC (network code). * AFAICT, MCC should always be 3 digits, making the remaining * portion the MNC. */ _processNetworkTuple: function _processNetworkTuple(networkTuple, network) { let tupleLen = networkTuple.length; let mcc = 0, mnc = 0; if (tupleLen == 5 || tupleLen == 6) { mcc = parseInt(networkTuple.substr(0, 3), 10); if (isNaN(mcc)) { throw new Error("MCC could not be parsed from network tuple: " + networkTuple ); } mnc = parseInt(networkTuple.substr(3), 10); if (isNaN(mnc)) { throw new Error("MNC could not be parsed from network tuple: " + networkTuple); } } else { throw new Error("Invalid network tuple (should be 5 or 6 digits): " + networkTuple); } network.mcc = mcc; network.mnc = mnc; }, /** * @param message A decoded SMS-DELIVER message. * * @see 3GPP TS 31.111 section 7.1.1 */ dataDownloadViaSMSPP: function dataDownloadViaSMSPP(message) { let options = { pid: message.pid, dcs: message.dcs, encoding: message.encoding, }; Buf.newParcel(REQUEST_STK_SEND_ENVELOPE_WITH_STATUS, options); Buf.seekIncoming(-1 * (Buf.currentParcelSize - Buf.readAvailable - 2 * UINT32_SIZE)); // Skip response_type & request_type. let messageStringLength = Buf.readUint32(); // In semi-octets let smscLength = GsmPDUHelper.readHexOctet(); // In octets, inclusive of TOA let tpduLength = (messageStringLength / 2) - (smscLength + 1); // In octets // Device identities: 4 bytes // Address: 0 or (2 + smscLength) // SMS TPDU: (2 or 3) + tpduLength let berLen = 4 + (smscLength ? (2 + smscLength) : 0) + (tpduLength <= 127 ? 2 : 3) + tpduLength; // In octets let parcelLength = (berLen <= 127 ? 2 : 3) + berLen; // In octets Buf.writeUint32(parcelLength * 2); // In semi-octets // Write a BER-TLV GsmPDUHelper.writeHexOctet(BER_SMS_PP_DOWNLOAD_TAG); if (berLen > 127) { GsmPDUHelper.writeHexOctet(0x81); } GsmPDUHelper.writeHexOctet(berLen); // Device Identifies-TLV GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_DEVICE_ID | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(0x02); GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_NETWORK); GsmPDUHelper.writeHexOctet(STK_DEVICE_ID_SIM); // Address-TLV if (smscLength) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_ADDRESS); GsmPDUHelper.writeHexOctet(smscLength); Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * smscLength); } // SMS TPDU-TLV GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_SMS_TPDU | COMPREHENSIONTLV_FLAG_CR); if (tpduLength > 127) { GsmPDUHelper.writeHexOctet(0x81); } GsmPDUHelper.writeHexOctet(tpduLength); Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * tpduLength); // Write 2 string delimitors for the total string length must be even. Buf.writeStringDelimiter(0); Buf.sendParcel(); }, /** * @param success A boolean value indicating the result of previous * SMS-DELIVER message handling. * @param responsePduLen ICC IO response PDU length in octets. * @param options An object that contains four attributes: `pid`, `dcs`, * `encoding` and `responsePduLen`. * * @see 3GPP TS 23.040 section 9.2.2.1a */ acknowledgeIncomingGsmSmsWithPDU: function acknowledgeIncomingGsmSmsWithPDU(success, responsePduLen, options) { Buf.newParcel(REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU); // Two strings. Buf.writeUint32(2); // String 1: Success Buf.writeString(success ? "1" : "0"); // String 2: RP-ACK/RP-ERROR PDU Buf.writeUint32(2 * (responsePduLen + (success ? 5 : 6))); // In semi-octet // 1. TP-MTI & TP-UDHI GsmPDUHelper.writeHexOctet(PDU_MTI_SMS_DELIVER); if (!success) { // 2. TP-FCS GsmPDUHelper.writeHexOctet(PDU_FCS_USIM_DATA_DOWNLOAD_ERROR); } // 3. TP-PI GsmPDUHelper.writeHexOctet(PDU_PI_USER_DATA_LENGTH | PDU_PI_DATA_CODING_SCHEME | PDU_PI_PROTOCOL_IDENTIFIER); // 4. TP-PID GsmPDUHelper.writeHexOctet(options.pid); // 5. TP-DCS GsmPDUHelper.writeHexOctet(options.dcs); // 6. TP-UDL if (options.encoding == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { GsmPDUHelper.writeHexOctet(Math.floor(responsePduLen * 8 / 7)); } else { GsmPDUHelper.writeHexOctet(responsePduLen); } // TP-UD Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * responsePduLen); // Write 2 string delimitors for the total string length must be even. Buf.writeStringDelimiter(0); Buf.sendParcel(); }, /** * @param message A decoded SMS-DELIVER message. */ writeSmsToSIM: function writeSmsToSIM(message) { Buf.newParcel(REQUEST_WRITE_SMS_TO_SIM); // Write EFsms Status Buf.writeUint32(EFSMS_STATUS_FREE); Buf.seekIncoming(-1 * (Buf.currentParcelSize - Buf.readAvailable - 2 * UINT32_SIZE)); // Skip response_type & request_type. let messageStringLength = Buf.readUint32(); // In semi-octets let smscLength = GsmPDUHelper.readHexOctet(); // In octets, inclusive of TOA let pduLength = (messageStringLength / 2) - (smscLength + 1); // In octets // 1. Write PDU first. if (smscLength > 0) { Buf.seekIncoming(smscLength * PDU_HEX_OCTET_SIZE); } // Write EFsms PDU string length Buf.writeUint32(2 * pduLength); // In semi-octets if (pduLength) { Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * pduLength); } // Write 2 string delimitors for the total string length must be even. Buf.writeStringDelimiter(0); // 2. Write SMSC // Write EFsms SMSC string length Buf.writeUint32(2 * (smscLength + 1)); // Plus smscLength itself, in semi-octets // Write smscLength GsmPDUHelper.writeHexOctet(smscLength); // Write TOA & SMSC Address if (smscLength) { Buf.seekIncoming(-1 * (Buf.currentParcelSize - Buf.readAvailable - 2 * UINT32_SIZE // Skip response_type, request_type. - 2 * PDU_HEX_OCTET_SIZE)); // Skip messageStringLength & smscLength. Buf.copyIncomingToOutgoing(PDU_HEX_OCTET_SIZE * smscLength); } // Write 2 string delimitors for the total string length must be even. Buf.writeStringDelimiter(0); Buf.sendParcel(); }, /** * Helper for processing received SMS parcel data. * * @param length * Length of SMS string in the incoming parcel. * * @return Message parsed or null for invalid message. */ _processReceivedSms: function _processReceivedSms(length) { if (!length) { if (DEBUG) debug("Received empty SMS!"); return null; } // An SMS is a string, but we won't read it as such, so let's read the // string length and then defer to PDU parsing helper. let messageStringLength = Buf.readUint32(); if (DEBUG) debug("Got new SMS, length " + messageStringLength); let message = GsmPDUHelper.readMessage(); if (DEBUG) debug("Got new SMS: " + JSON.stringify(message)); // Read string delimiters. See Buf.readString(). Buf.readStringDelimiter(length); return message; }, /** * Helper for processing SMS-DELIVER PDUs. * * @param length * Length of SMS string in the incoming parcel. * * @return A failure cause defined in 3GPP 23.040 clause 9.2.3.22. */ _processSmsDeliver: function _processSmsDeliver(length) { let message = this._processReceivedSms(length); if (!message) { return PDU_FCS_UNSPECIFIED; } if (message.epid == PDU_PID_SHORT_MESSAGE_TYPE_0) { // `A short message type 0 indicates that the ME must acknowledge receipt // of the short message but shall discard its contents.` ~ 3GPP TS 23.040 // 9.2.3.9 return PDU_FCS_OK; } if (message.messageClass == PDU_DCS_MSG_CLASS_SIM_SPECIFIC) { switch (message.epid) { case PDU_PID_ANSI_136_R_DATA: case PDU_PID_USIM_DATA_DOWNLOAD: if (this.isICCServiceAvailable("DATA_DOWNLOAD_SMS_PP")) { // `If the service "data download via SMS Point-to-Point" is // allocated and activated in the (U)SIM Service Table, ... then the // ME shall pass the message transparently to the UICC using the // ENVELOPE (SMS-PP DOWNLOAD).` ~ 3GPP TS 31.111 7.1.1.1 this.dataDownloadViaSMSPP(message); // `the ME shall not display the message, or alert the user of a // short message waiting.` ~ 3GPP TS 31.111 7.1.1.1 return PDU_FCS_RESERVED; } // If the service "data download via SMS-PP" is not available in the // (U)SIM Service Table, ..., then the ME shall store the message in // EFsms in accordance with TS 31.102` ~ 3GPP TS 31.111 7.1.1.1 default: this.writeSmsToSIM(message); break; } } // TODO: Bug 739143: B2G SMS: Support SMS Storage Full event if ((message.messageClass != PDU_DCS_MSG_CLASS_0) && !true) { // `When a mobile terminated message is class 0..., the MS shall display // the message immediately and send a ACK to the SC ..., irrespective of // whether there is memory available in the (U)SIM or ME.` ~ 3GPP 23.038 // clause 4. if (message.messageClass == PDU_DCS_MSG_CLASS_SIM_SPECIFIC) { // `If all the short message storage at the MS is already in use, the // MS shall return "memory capacity exceeded".` ~ 3GPP 23.038 clause 4. return PDU_FCS_MEMORY_CAPACITY_EXCEEDED; } return PDU_FCS_UNSPECIFIED; } if (message.header && (message.header.segmentMaxSeq > 1)) { message = this._processReceivedSmsSegment(message); } else { if (message.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) { message.fullData = message.data; delete message.data; } else { message.fullBody = message.body; delete message.body; } } if (message) { message.rilMessageType = "sms-received"; this.sendDOMMessage(message); } if (message.messageClass == PDU_DCS_MSG_CLASS_SIM_SPECIFIC) { // `MS shall ensure that the message has been to the SMS data field in // the (U)SIM before sending an ACK to the SC.` ~ 3GPP 23.038 clause 4 return PDU_FCS_RESERVED; } return PDU_FCS_OK; }, /** * Helper for processing SMS-STATUS-REPORT PDUs. * * @param length * Length of SMS string in the incoming parcel. * * @return A failure cause defined in 3GPP 23.040 clause 9.2.3.22. */ _processSmsStatusReport: function _processSmsStatusReport(length) { let message = this._processReceivedSms(length); if (!message) { if (DEBUG) debug("invalid SMS-STATUS-REPORT"); return PDU_FCS_UNSPECIFIED; } let options = this._pendingSentSmsMap[message.messageRef]; if (!options) { if (DEBUG) debug("no pending SMS-SUBMIT message"); return PDU_FCS_OK; } let status = message.status; // 3GPP TS 23.040 9.2.3.15 `The MS shall interpret any reserved values as // "Service Rejected"(01100011) but shall store them exactly as received.` if ((status >= 0x80) || ((status >= PDU_ST_0_RESERVED_BEGIN) && (status < PDU_ST_0_SC_SPECIFIC_BEGIN)) || ((status >= PDU_ST_1_RESERVED_BEGIN) && (status < PDU_ST_1_SC_SPECIFIC_BEGIN)) || ((status >= PDU_ST_2_RESERVED_BEGIN) && (status < PDU_ST_2_SC_SPECIFIC_BEGIN)) || ((status >= PDU_ST_3_RESERVED_BEGIN) && (status < PDU_ST_3_SC_SPECIFIC_BEGIN)) ) { status = PDU_ST_3_SERVICE_REJECTED; } // Pending. Waiting for next status report. if ((status >>> 5) == 0x01) { if (DEBUG) debug("SMS-STATUS-REPORT: delivery still pending"); return PDU_FCS_OK; } delete this._pendingSentSmsMap[message.messageRef]; if ((status >>> 5) != 0x00) { if (DEBUG) debug("SMS-STATUS-REPORT: delivery failed"); // It seems unlikely to get a result code for a failure to deliver. // Even if, we don't want to do anything with this. return PDU_FCS_OK; } if ((options.segmentMaxSeq == 1) && (options.segmentSeq == options.segmentMaxSeq)) { // Last segment delivered with success. Report it. this.sendDOMMessage({ rilMessageType: "sms-delivered", envelopeId: options.envelopeId, }); } return PDU_FCS_OK; }, /** * Helper for processing received multipart SMS. * * @return null for handled segments, and an object containing full message * body/data once all segments are received. */ _processReceivedSmsSegment: function _processReceivedSmsSegment(original) { let hash = original.sender + ":" + original.header.segmentRef; let seq = original.header.segmentSeq; let options = this._receivedSmsSegmentsMap[hash]; if (!options) { options = original; this._receivedSmsSegmentsMap[hash] = options; options.segmentMaxSeq = original.header.segmentMaxSeq; options.receivedSegments = 0; options.segments = []; } else if (options.segments[seq]) { // Duplicated segment? if (DEBUG) { debug("Got duplicated segment no." + seq + " of a multipart SMS: " + JSON.stringify(original)); } return null; } if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) { options.segments[seq] = original.data; delete original.data; } else { options.segments[seq] = original.body; delete original.body; } options.receivedSegments++; if (options.receivedSegments < options.segmentMaxSeq) { if (DEBUG) { debug("Got segment no." + seq + " of a multipart SMS: " + JSON.stringify(options)); } return null; } // Remove from map delete this._receivedSmsSegmentsMap[hash]; // Rebuild full body if (options.encoding == PDU_DCS_MSG_CODING_8BITS_ALPHABET) { // Uint8Array doesn't have `concat`, so we have to merge all segements // by hand. let fullDataLen = 0; for (let i = 1; i <= options.segmentMaxSeq; i++) { fullDataLen += options.segments[i].length; } options.fullData = new Uint8Array(fullDataLen); for (let d= 0, i = 1; i <= options.segmentMaxSeq; i++) { let data = options.segments[i]; for (let j = 0; j < data.length; j++) { options.fullData[d++] = data[j]; } } } else { options.fullBody = options.segments.join(""); } if (DEBUG) { debug("Got full multipart SMS: " + JSON.stringify(options)); } return options; }, /** * Helper for processing sent multipart SMS. */ _processSentSmsSegment: function _processSentSmsSegment(options) { // Setup attributes for sending next segment let next = options.segmentSeq; options.body = options.segments[next].body; options.encodedBodyLength = options.segments[next].encodedBodyLength; options.segmentSeq = next + 1; this.sendSMS(options); }, /** * Handle incoming messages from the main UI thread. * * @param message * Object containing the message. Messages are supposed */ handleDOMMessage: function handleMessage(message) { if (DEBUG) debug("Received DOM message " + JSON.stringify(message)); let method = this[message.rilMessageType]; if (typeof method != "function") { if (DEBUG) { debug("Don't know what to do with message " + JSON.stringify(message)); } return; } method.call(this, message); }, /** * Get a list of current voice calls. */ enumerateCalls: function enumerateCalls(options) { if (DEBUG) debug("Sending all current calls"); let calls = []; for each (let call in this.currentCalls) { calls.push(call); } options.calls = calls; this.sendDOMMessage(options); }, /** * Get a list of current data calls. */ enumerateDataCalls: function enumerateDataCalls() { let datacall_list = []; for each (let datacall in this.currentDataCalls) { datacall_list.push(datacall); } this.sendDOMMessage({rilMessageType: "datacalllist", datacalls: datacall_list}); }, /** * Process STK Proactive Command. */ processStkProactiveCommand: function processStkProactiveCommand() { let length = Buf.readUint32(); let berTlv = BerTlvHelper.decode(length / 2); Buf.readStringDelimiter(length); let ctlvs = berTlv.value; let ctlv = StkProactiveCmdHelper.searchForTag( COMPREHENSIONTLV_TAG_COMMAND_DETAILS, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Can't find COMMAND_DETAILS ComprehensionTlv"); } let cmdDetails = ctlv.value; if (DEBUG) { debug("commandNumber = " + cmdDetails.commandNumber + " typeOfCommand = " + cmdDetails.typeOfCommand.toString(16) + " commandQualifier = " + cmdDetails.commandQualifier); } let param = StkCommandParamsFactory.createParam(cmdDetails, ctlvs); if (param) { cmdDetails.rilMessageType = "stkcommand"; cmdDetails.options = param; RIL.sendDOMMessage(cmdDetails); } }, /** * Send messages to the main thread. */ sendDOMMessage: function sendDOMMessage(message) { postMessage(message); }, /** * Handle incoming requests from the RIL. We find the method that * corresponds to the request type. Incidentally, the request type * _is_ the method name, so that's easy. */ handleParcel: function handleParcel(request_type, length, options) { let method = this[request_type]; if (typeof method == "function") { if (DEBUG) debug("Handling parcel as " + method.name); method.call(this, length, options); } } }; RIL.initRILState(); RIL[REQUEST_GET_SIM_STATUS] = function REQUEST_GET_SIM_STATUS(length, options) { if (options.rilRequestError) { return; } let iccStatus = {}; iccStatus.cardState = Buf.readUint32(); // CARD_STATE_* iccStatus.universalPINState = Buf.readUint32(); // CARD_PINSTATE_* iccStatus.gsmUmtsSubscriptionAppIndex = Buf.readUint32(); iccStatus.cdmaSubscriptionAppIndex = Buf.readUint32(); if (!RILQUIRKS_V5_LEGACY) { iccStatus.imsSubscriptionAppIndex = Buf.readUint32(); } let apps_length = Buf.readUint32(); if (apps_length > CARD_MAX_APPS) { apps_length = CARD_MAX_APPS; } iccStatus.apps = []; for (let i = 0 ; i < apps_length ; i++) { iccStatus.apps.push({ app_type: Buf.readUint32(), // CARD_APPTYPE_* app_state: Buf.readUint32(), // CARD_APPSTATE_* perso_substate: Buf.readUint32(), // CARD_PERSOSUBSTATE_* aid: Buf.readString(), app_label: Buf.readString(), pin1_replaced: Buf.readUint32(), pin1: Buf.readUint32(), pin2: Buf.readUint32() }); if (RILQUIRKS_SIM_APP_STATE_EXTRA_FIELDS) { Buf.readUint32(); Buf.readUint32(); Buf.readUint32(); Buf.readUint32(); } } if (DEBUG) debug("iccStatus: " + JSON.stringify(iccStatus)); this._processICCStatus(iccStatus); }; RIL[REQUEST_ENTER_SIM_PIN] = function REQUEST_ENTER_SIM_PIN(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_ENTER_SIM_PUK] = function REQUEST_ENTER_SIM_PUK(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_ENTER_SIM_PIN2] = function REQUEST_ENTER_SIM_PIN2(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_ENTER_SIM_PUK2] = function REQUEST_ENTER_SIM_PUK(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_CHANGE_SIM_PIN] = function REQUEST_CHANGE_SIM_PIN(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_CHANGE_SIM_PIN2] = function REQUEST_CHANGE_SIM_PIN2(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_ENTER_NETWORK_DEPERSONALIZATION_CODE] = function REQUEST_ENTER_NETWORK_DEPERSONALIZATION_CODE(length, options) { this._processEnterAndChangeICCResponses(length, options); }; RIL[REQUEST_GET_CURRENT_CALLS] = function REQUEST_GET_CURRENT_CALLS(length, options) { if (options.rilRequestError) { return; } let calls_length = 0; // The RIL won't even send us the length integer if there are no active calls. // So only read this integer if the parcel actually has it. if (length) { calls_length = Buf.readUint32(); } if (!calls_length) { this._processCalls(null); return; } let calls = {}; for (let i = 0; i < calls_length; i++) { let call = {}; call.state = Buf.readUint32(); // CALL_STATE_* call.callIndex = Buf.readUint32(); // GSM index (1-based) call.toa = Buf.readUint32(); call.isMpty = Boolean(Buf.readUint32()); call.isMT = Boolean(Buf.readUint32()); call.als = Buf.readUint32(); call.isVoice = Boolean(Buf.readUint32()); call.isVoicePrivacy = Boolean(Buf.readUint32()); if (RILQUIRKS_CALLSTATE_EXTRA_UINT32) { Buf.readUint32(); } call.number = Buf.readString(); //TODO munge with TOA call.numberPresentation = Buf.readUint32(); // CALL_PRESENTATION_* call.name = Buf.readString(); call.namePresentation = Buf.readUint32(); call.uusInfo = null; let uusInfoPresent = Buf.readUint32(); if (uusInfoPresent == 1) { call.uusInfo = { type: Buf.readUint32(), dcs: Buf.readUint32(), userData: null //XXX TODO byte array?!? }; } call.isActive = false; calls[call.callIndex] = call; } this._processCalls(calls); }; RIL[REQUEST_DIAL] = function REQUEST_DIAL(length, options) { if (options.rilRequestError) { // The connection is not established yet. options.callIndex = -1; this.getFailCauseCode(options); return; } }; RIL[REQUEST_GET_IMSI] = function REQUEST_GET_IMSI(length, options) { if (options.rilRequestError) { return; } this.iccInfo.imsi = Buf.readString(); }; RIL[REQUEST_HANGUP] = function REQUEST_HANGUP(length, options) { if (options.rilRequestError) { return; } this.getCurrentCalls(); }; RIL[REQUEST_HANGUP_WAITING_OR_BACKGROUND] = function REQUEST_HANGUP_WAITING_OR_BACKGROUND(length, options) { if (options.rilRequestError) { return; } this.getCurrentCalls(); }; RIL[REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND] = function REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND(length, options) { if (options.rilRequestError) { return; } this.getCurrentCalls(); }; RIL[REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE] = function REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE(length, options) { if (options.rilRequestError) { return; } this.getCurrentCalls(); }; RIL[REQUEST_SWITCH_HOLDING_AND_ACTIVE] = function REQUEST_SWITCH_HOLDING_AND_ACTIVE(length, options) { if (options.rilRequestError) { return; } // XXX Normally we should get a UNSOLICITED_RESPONSE_CALL_STATE_CHANGED parcel // notifying us of call state changes, but sometimes we don't (have no idea why). // this.getCurrentCalls() helps update the call state actively. this.getCurrentCalls(); }; RIL[REQUEST_CONFERENCE] = null; RIL[REQUEST_UDUB] = null; RIL[REQUEST_LAST_CALL_FAIL_CAUSE] = function REQUEST_LAST_CALL_FAIL_CAUSE(length, options) { let num = 0; if (length) { num = Buf.readUint32(); } if (!num) { // No response of REQUEST_LAST_CALL_FAIL_CAUSE. Change the call state into // 'disconnected' directly. this._handleDisconnectedCall(options); return; } let failCause = Buf.readUint32(); switch (failCause) { case CALL_FAIL_NORMAL: this._handleDisconnectedCall(options); break; case CALL_FAIL_BUSY: options.state = CALL_STATE_BUSY; this._handleChangedCallState(options); this._handleDisconnectedCall(options); break; default: options.rilMessageType = "callError"; options.error = RIL_CALL_FAILCAUSE_TO_GECKO_CALL_ERROR[failCause]; this.sendDOMMessage(options); break; } }; RIL[REQUEST_SIGNAL_STRENGTH] = function REQUEST_SIGNAL_STRENGTH(length, options) { if (options.rilRequestError) { return; } let obj = {}; // GSM // Valid values are (0-31, 99) as defined in TS 27.007 8.5. let gsmSignalStrength = Buf.readUint32(); obj.gsmSignalStrength = gsmSignalStrength & 0xff; // GSM bit error rate (0-7, 99) as defined in TS 27.007 8.5. obj.gsmBitErrorRate = Buf.readUint32(); obj.gsmDBM = null; obj.gsmRelative = null; if (obj.gsmSignalStrength >= 0 && obj.gsmSignalStrength <= 31) { obj.gsmDBM = -113 + obj.gsmSignalStrength * 2; obj.gsmRelative = Math.floor(obj.gsmSignalStrength * 100 / 31); } // The SGS2 seems to compute the number of bars (0-4) for us and // expose those instead of the actual signal strength. Since the RIL // needs to be "warmed up" first for the quirk detection to work, // we're detecting this ad-hoc and not upfront. if (obj.gsmSignalStrength == 99) { obj.gsmRelative = (gsmSignalStrength >> 8) * 25; } // CDMA obj.cdmaDBM = Buf.readUint32(); // The CDMA EC/IO. obj.cdmaECIO = Buf.readUint32(); // The EVDO RSSI value. // EVDO obj.evdoDBM = Buf.readUint32(); // The EVDO EC/IO. obj.evdoECIO = Buf.readUint32(); // Signal-to-noise ratio. Valid values are 0 to 8. obj.evdoSNR = Buf.readUint32(); // LTE if (!RILQUIRKS_V5_LEGACY) { // Valid values are (0-31, 99) as defined in TS 27.007 8.5. obj.lteSignalStrength = Buf.readUint32(); // Reference signal receive power in dBm, multiplied by -1. // Valid values are 44 to 140. obj.lteRSRP = Buf.readUint32(); // Reference signal receive quality in dB, multiplied by -1. // Valid values are 3 to 20. obj.lteRSRQ = Buf.readUint32(); // Signal-to-noise ratio for the reference signal. // Valid values are -200 (20.0 dB) to +300 (30 dB). obj.lteRSSNR = Buf.readUint32(); // Channel Quality Indicator, valid values are 0 to 15. obj.lteCQI = Buf.readUint32(); } if (DEBUG) debug("Signal strength " + JSON.stringify(obj)); obj.rilMessageType = "signalstrengthchange"; this.sendDOMMessage(obj); }; RIL[REQUEST_VOICE_REGISTRATION_STATE] = function REQUEST_VOICE_REGISTRATION_STATE(length, options) { this._receivedNetworkInfo(NETWORK_INFO_VOICE_REGISTRATION_STATE); if (options.rilRequestError) { return; } let state = Buf.readStringList(); if (DEBUG) debug("voice registration state: " + state); this._processVoiceRegistrationState(state); }; RIL[REQUEST_DATA_REGISTRATION_STATE] = function REQUEST_DATA_REGISTRATION_STATE(length, options) { this._receivedNetworkInfo(NETWORK_INFO_DATA_REGISTRATION_STATE); if (options.rilRequestError) { return; } let state = Buf.readStringList(); this._processDataRegistrationState(state); }; RIL[REQUEST_OPERATOR] = function REQUEST_OPERATOR(length, options) { this._receivedNetworkInfo(NETWORK_INFO_OPERATOR); if (options.rilRequestError) { return; } let operatorData = Buf.readStringList(); if (DEBUG) debug("Operator: " + operatorData); this._processOperator(operatorData); }; RIL[REQUEST_RADIO_POWER] = null; RIL[REQUEST_DTMF] = null; RIL[REQUEST_SEND_SMS] = function REQUEST_SEND_SMS(length, options) { if (options.rilRequestError) { if (DEBUG) debug("REQUEST_SEND_SMS: rilRequestError = " + options.rilRequestError); switch (options.rilRequestError) { case ERROR_SMS_SEND_FAIL_RETRY: if (options.retryCount < SMS_RETRY_MAX) { options.retryCount++; // TODO: bug 736702 TP-MR, retry interval, retry timeout this.sendSMS(options); break; } // Fallback to default error handling if it meets max retry count. default: this.sendDOMMessage({ rilMessageType: "sms-send-failed", envelopeId: options.envelopeId, error: options.rilRequestError, }); break; } return; } options.messageRef = Buf.readUint32(); options.ackPDU = Buf.readString(); options.errorCode = Buf.readUint32(); if (options.requestStatusReport) { if (DEBUG) debug("waiting SMS-STATUS-REPORT for messageRef " + options.messageRef); this._pendingSentSmsMap[options.messageRef] = options; } if ((options.segmentMaxSeq > 1) && (options.segmentSeq < options.segmentMaxSeq)) { // Not last segment this._processSentSmsSegment(options); } else { // Last segment sent with success. Report it. this.sendDOMMessage({ rilMessageType: "sms-sent", envelopeId: options.envelopeId, }); } }; RIL[REQUEST_SEND_SMS_EXPECT_MORE] = null; RIL.readSetupDataCall_v5 = function readSetupDataCall_v5(options) { if (!options) { options = {}; } let [cid, ifname, ipaddr, dns, gw] = Buf.readStringList(); options.cid = cid; options.ifname = ifname; options.ipaddr = ipaddr; options.dns = dns; options.gw = gw; options.active = DATACALL_ACTIVE_UNKNOWN; options.state = GECKO_NETWORK_STATE_CONNECTING; return options; }; RIL[REQUEST_SETUP_DATA_CALL] = function REQUEST_SETUP_DATA_CALL(length, options) { if (options.rilRequestError) { // On Data Call generic errors, we shall notify caller this._sendDataCallError(options, options.rilRequestError); return; } if (RILQUIRKS_V5_LEGACY) { // Populate the `options` object with the data call information. That way // we retain the APN and other info about how the data call was set up. this.readSetupDataCall_v5(options); this.currentDataCalls[options.cid] = options; options.rilMessageType = "datacallstatechange"; this.sendDOMMessage(options); // Let's get the list of data calls to ensure we know whether it's active // or not. this.getDataCallList(); return; } // Pass `options` along. That way we retain the APN and other info about // how the data call was set up. this[REQUEST_DATA_CALL_LIST](length, options); }; RIL[REQUEST_SIM_IO] = function REQUEST_SIM_IO(length, options) { if (!length) { if (options.onerror) { options.onerror.call(this, options); } return; } // Don't need to read rilRequestError since we can know error status from // sw1 and sw2. let sw1 = Buf.readUint32(); let sw2 = Buf.readUint32(); if (sw1 != ICC_STATUS_NORMAL_ENDING) { // See GSM11.11, TS 51.011 clause 9.4, and ISO 7816-4 for the error // description. if (DEBUG) { debug("ICC I/O Error EF id = " + options.fileId.toString(16) + " command = " + options.command.toString(16) + "(" + sw1.toString(16) + "/" + sw2.toString(16) + ")"); } if (options.onerror) { options.onerror.call(this, options); } return; } this._processICCIO(options); }; RIL[REQUEST_SEND_USSD] = function REQUEST_SEND_USSD(length, options) { if (DEBUG) { debug("REQUEST_SEND_USSD " + JSON.stringify(options)); } options.success = this._ussdSession = options.rilRequestError == 0; options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); }; RIL[REQUEST_CANCEL_USSD] = function REQUEST_CANCEL_USSD(length, options) { if (DEBUG) { debug("REQUEST_CANCEL_USSD" + JSON.stringify(options)); } options.success = options.rilRequestError == 0; this._ussdSession = !options.success; options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); }; RIL[REQUEST_GET_CLIR] = null; RIL[REQUEST_SET_CLIR] = null; RIL[REQUEST_QUERY_CALL_FORWARD_STATUS] = null; RIL[REQUEST_SET_CALL_FORWARD] = null; RIL[REQUEST_QUERY_CALL_WAITING] = null; RIL[REQUEST_SET_CALL_WAITING] = function REQUEST_SET_CALL_WAITING(length, options) { options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); }; RIL[REQUEST_SMS_ACKNOWLEDGE] = null; RIL[REQUEST_GET_IMEI] = function REQUEST_GET_IMEI(length, options) { this.IMEI = Buf.readString(); // So far we only send the IMEI back to the DOM if it was requested via MMI. if (!options.mmi) { return; } options.rilMessageType = "sendMMI"; options.success = options.rilRequestError == 0; options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; if ((!options.success || this.IMEI == null) && !options.errorMsg) { options.errorMsg = GECKO_ERROR_GENERIC_FAILURE; } options.result = this.IMEI; this.sendDOMMessage(options); }; RIL[REQUEST_GET_IMEISV] = function REQUEST_GET_IMEISV(length, options) { if (options.rilRequestError) { return; } this.IMEISV = Buf.readString(); }; RIL[REQUEST_ANSWER] = null; RIL[REQUEST_DEACTIVATE_DATA_CALL] = function REQUEST_DEACTIVATE_DATA_CALL(length, options) { if (options.rilRequestError) { return; } let datacall = this.currentDataCalls[options.cid]; delete this.currentDataCalls[options.cid]; datacall.state = GECKO_NETWORK_STATE_UNKNOWN; datacall.rilMessageType = "datacallstatechange"; this.sendDOMMessage(datacall); }; RIL[REQUEST_QUERY_FACILITY_LOCK] = function REQUEST_QUERY_FACILITY_LOCK(length, options) { options.success = options.rilRequestError == 0; if (!options.success) { options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; } if (length) { options.enabled = Buf.readUint32List()[0] == 0 ? false : true; } this.sendDOMMessage(options); }; RIL[REQUEST_SET_FACILITY_LOCK] = function REQUEST_SET_FACILITY_LOCK(length, options) { options.success = options.rilRequestError == 0; if (!options.success) { options.errorMsg = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; } options.retryCount = length ? Buf.readUint32List()[0] : -1; this.sendDOMMessage(options); }; RIL[REQUEST_CHANGE_BARRING_PASSWORD] = null; RIL[REQUEST_QUERY_NETWORK_SELECTION_MODE] = function REQUEST_QUERY_NETWORK_SELECTION_MODE(length, options) { this._receivedNetworkInfo(NETWORK_INFO_NETWORK_SELECTION_MODE); if (options.rilRequestError) { options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); return; } let mode = Buf.readUint32List(); let selectionMode; switch (mode[0]) { case NETWORK_SELECTION_MODE_AUTOMATIC: selectionMode = GECKO_NETWORK_SELECTION_AUTOMATIC; break; case NETWORK_SELECTION_MODE_MANUAL: selectionMode = GECKO_NETWORK_SELECTION_MANUAL; break; default: selectionMode = GECKO_NETWORK_SELECTION_UNKNOWN; break; } if (this.networkSelectionMode != selectionMode) { this.networkSelectionMode = options.mode = selectionMode; options.rilMessageType = "networkselectionmodechange"; this._sendNetworkInfoMessage(NETWORK_INFO_NETWORK_SELECTION_MODE, options); } }; RIL[REQUEST_SET_NETWORK_SELECTION_AUTOMATIC] = function REQUEST_SET_NETWORK_SELECTION_AUTOMATIC(length, options) { if (options.rilRequestError) { options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); return; } this.sendDOMMessage(options); }; RIL[REQUEST_SET_NETWORK_SELECTION_MANUAL] = function REQUEST_SET_NETWORK_SELECTION_MANUAL(length, options) { if (options.rilRequestError) { options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); return; } this.sendDOMMessage(options); }; RIL[REQUEST_QUERY_AVAILABLE_NETWORKS] = function REQUEST_QUERY_AVAILABLE_NETWORKS(length, options) { if (options.rilRequestError) { options.error = RIL_ERROR_TO_GECKO_ERROR[options.rilRequestError]; this.sendDOMMessage(options); return; } options.networks = this._processNetworks(); this.sendDOMMessage(options); }; RIL[REQUEST_DTMF_START] = null; RIL[REQUEST_DTMF_STOP] = null; RIL[REQUEST_BASEBAND_VERSION] = function REQUEST_BASEBAND_VERSION(length, options) { if (options.rilRequestError) { return; } this.basebandVersion = Buf.readString(); if (DEBUG) debug("Baseband version: " + this.basebandVersion); }; RIL[REQUEST_SEPARATE_CONNECTION] = null; RIL[REQUEST_SET_MUTE] = null; RIL[REQUEST_GET_MUTE] = null; RIL[REQUEST_QUERY_CLIP] = null; RIL[REQUEST_LAST_DATA_CALL_FAIL_CAUSE] = null; RIL.readDataCall_v5 = function readDataCall_v5(options) { if (!options) { options = {}; } options.cid = Buf.readUint32().toString(); options.active = Buf.readUint32(); // DATACALL_ACTIVE_* options.type = Buf.readString(); options.apn = Buf.readString(); options.address = Buf.readString(); return options; }; RIL.readDataCall_v6 = function readDataCall_v6(options) { if (!options) { options = {}; } options.status = Buf.readUint32(); // DATACALL_FAIL_* options.suggestedRetryTime = Buf.readUint32(); options.cid = Buf.readUint32().toString(); options.active = Buf.readUint32(); // DATACALL_ACTIVE_* options.type = Buf.readString(); options.ifname = Buf.readString(); options.ipaddr = Buf.readString(); options.dns = Buf.readString(); options.gw = Buf.readString(); if (options.dns) { options.dns = options.dns.split(" "); } //TODO for now we only support one address and gateway if (options.ipaddr) { options.ipaddr = options.ipaddr.split(" ")[0]; } if (options.gw) { options.gw = options.gw.split(" ")[0]; } options.ip = null; options.netmask = null; options.broadcast = null; if (options.ipaddr) { options.ip = options.ipaddr.split("/")[0]; let ip_value = netHelpers.stringToIP(options.ip); let prefix_len = options.ipaddr.split("/")[1]; let mask_value = netHelpers.makeMask(prefix_len); options.netmask = netHelpers.ipToString(mask_value); options.broadcast = netHelpers.ipToString((ip_value & mask_value) + ~mask_value); } return options; }; RIL[REQUEST_DATA_CALL_LIST] = function REQUEST_DATA_CALL_LIST(length, options) { if (options.rilRequestError) { return; } if (!length) { this._processDataCallList(null); return; } let version = 0; if (!RILQUIRKS_V5_LEGACY) { version = Buf.readUint32(); } let num = num = Buf.readUint32(); let datacalls = {}; for (let i = 0; i < num; i++) { let datacall; if (version < 6) { datacall = this.readDataCall_v5(); } else { datacall = this.readDataCall_v6(); } datacalls[datacall.cid] = datacall; } let newDataCallOptions = null; if (options.rilRequestType == REQUEST_SETUP_DATA_CALL) { newDataCallOptions = options; } this._processDataCallList(datacalls, newDataCallOptions); }; RIL[REQUEST_RESET_RADIO] = null; RIL[REQUEST_OEM_HOOK_RAW] = null; RIL[REQUEST_OEM_HOOK_STRINGS] = null; RIL[REQUEST_SCREEN_STATE] = null; RIL[REQUEST_SET_SUPP_SVC_NOTIFICATION] = null; RIL[REQUEST_WRITE_SMS_TO_SIM] = function REQUEST_WRITE_SMS_TO_SIM(length, options) { if (options.rilRequestError) { // `The MS shall return a "protocol error, unspecified" error message if // the short message cannot be stored in the (U)SIM, and there is other // message storage available at the MS` ~ 3GPP TS 23.038 section 4. Here // we assume we always have indexed db as another storage. this.acknowledgeSMS(false, PDU_FCS_PROTOCOL_ERROR); } else { this.acknowledgeSMS(true, PDU_FCS_OK); } }; RIL[REQUEST_DELETE_SMS_ON_SIM] = null; RIL[REQUEST_SET_BAND_MODE] = null; RIL[REQUEST_QUERY_AVAILABLE_BAND_MODE] = null; RIL[REQUEST_STK_GET_PROFILE] = null; RIL[REQUEST_STK_SET_PROFILE] = null; RIL[REQUEST_STK_SEND_ENVELOPE_COMMAND] = null; RIL[REQUEST_STK_SEND_TERMINAL_RESPONSE] = null; RIL[REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM] = function REQUEST_STK_HANDLE_CALL_SETUP_REQUESTED_FROM_SIM(length, options) { if (!options.rilRequestError && options.hasConfirmed) { options.rilMessageType = "stkcallsetup"; this.sendDOMMessage(options); } }; RIL[REQUEST_EXPLICIT_CALL_TRANSFER] = null; RIL[REQUEST_SET_PREFERRED_NETWORK_TYPE] = function REQUEST_SET_PREFERRED_NETWORK_TYPE(length, options) { if (options.networkType == null) { // The request was made by ril_worker itself automatically. Don't report. return; } this.sendDOMMessage({ rilMessageType: "setPreferredNetworkType", networkType: options.networkType, success: options.rilRequestError == ERROR_SUCCESS }); }; RIL[REQUEST_GET_PREFERRED_NETWORK_TYPE] = function REQUEST_GET_PREFERRED_NETWORK_TYPE(length, options) { let networkType; if (!options.rilRequestError) { networkType = RIL_PREFERRED_NETWORK_TYPE_TO_GECKO.indexOf(GECKO_PREFERRED_NETWORK_TYPE_DEFAULT); let responseLen = Buf.readUint32(); // Number of INT32 responsed. if (responseLen) { this.preferredNetworkType = networkType = Buf.readUint32(); } } this.sendDOMMessage({ rilMessageType: "getPreferredNetworkType", networkType: networkType, success: options.rilRequestError == ERROR_SUCCESS }); }; RIL[REQUEST_GET_NEIGHBORING_CELL_IDS] = null; RIL[REQUEST_SET_LOCATION_UPDATES] = null; RIL[REQUEST_CDMA_SET_SUBSCRIPTION_SOURCE] = null; RIL[REQUEST_CDMA_SET_ROAMING_PREFERENCE] = null; RIL[REQUEST_CDMA_QUERY_ROAMING_PREFERENCE] = null; RIL[REQUEST_SET_TTY_MODE] = null; RIL[REQUEST_QUERY_TTY_MODE] = null; RIL[REQUEST_CDMA_SET_PREFERRED_VOICE_PRIVACY_MODE] = null; RIL[REQUEST_CDMA_QUERY_PREFERRED_VOICE_PRIVACY_MODE] = null; RIL[REQUEST_CDMA_FLASH] = null; RIL[REQUEST_CDMA_BURST_DTMF] = null; RIL[REQUEST_CDMA_VALIDATE_AND_WRITE_AKEY] = null; RIL[REQUEST_CDMA_SEND_SMS] = null; RIL[REQUEST_CDMA_SMS_ACKNOWLEDGE] = null; RIL[REQUEST_GSM_GET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_GSM_SET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_GSM_SMS_BROADCAST_ACTIVATION] = null; RIL[REQUEST_CDMA_GET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_CDMA_SET_BROADCAST_SMS_CONFIG] = null; RIL[REQUEST_CDMA_SMS_BROADCAST_ACTIVATION] = null; RIL[REQUEST_CDMA_SUBSCRIPTION] = null; RIL[REQUEST_CDMA_WRITE_SMS_TO_RUIM] = null; RIL[REQUEST_CDMA_DELETE_SMS_ON_RUIM] = null; RIL[REQUEST_DEVICE_IDENTITY] = null; RIL[REQUEST_EXIT_EMERGENCY_CALLBACK_MODE] = null; RIL[REQUEST_GET_SMSC_ADDRESS] = function REQUEST_GET_SMSC_ADDRESS(length, options) { if (options.rilRequestError) { return; } this.SMSC = Buf.readString(); }; RIL[REQUEST_SET_SMSC_ADDRESS] = null; RIL[REQUEST_REPORT_SMS_MEMORY_STATUS] = null; RIL[REQUEST_REPORT_STK_SERVICE_IS_RUNNING] = null; RIL[REQUEST_ACKNOWLEDGE_INCOMING_GSM_SMS_WITH_PDU] = null; RIL[REQUEST_STK_SEND_ENVELOPE_WITH_STATUS] = function REQUEST_STK_SEND_ENVELOPE_WITH_STATUS(length, options) { if (options.rilRequestError) { this.acknowledgeSMS(false, PDU_FCS_UNSPECIFIED); return; } let sw1 = Buf.readUint32(); let sw2 = Buf.readUint32(); if ((sw1 == ICC_STATUS_SAT_BUSY) && (sw2 == 0x00)) { this.acknowledgeSMS(false, PDU_FCS_USAT_BUSY); return; } let success = ((sw1 == ICC_STATUS_NORMAL_ENDING) && (sw2 == 0x00)) || (sw1 == ICC_STATUS_NORMAL_ENDING_WITH_EXTRA); let messageStringLength = Buf.readUint32(); // In semi-octets let responsePduLen = messageStringLength / 2; // In octets if (!responsePduLen) { this.acknowledgeSMS(success, success ? PDU_FCS_OK : PDU_FCS_USIM_DATA_DOWNLOAD_ERROR); return; } this.acknowledgeIncomingGsmSmsWithPDU(success, responsePduLen, options); }; RIL[UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED] = function UNSOLICITED_RESPONSE_RADIO_STATE_CHANGED() { let radioState = Buf.readUint32(); // Ensure radio state at boot time. if (this._isInitialRadioState) { this._isInitialRadioState = false; if (radioState != RADIO_STATE_OFF) { this.setRadioPower({on: false}); return; } } let newState; if (radioState == RADIO_STATE_UNAVAILABLE) { newState = GECKO_RADIOSTATE_UNAVAILABLE; } else if (radioState == RADIO_STATE_OFF) { newState = GECKO_RADIOSTATE_OFF; } else { newState = GECKO_RADIOSTATE_READY; } if (DEBUG) { debug("Radio state changed from '" + this.radioState + "' to '" + newState + "'"); } if (this.radioState == newState) { return; } // TODO hardcoded for now (see bug 726098) let cdma = false; if ((this.radioState == GECKO_RADIOSTATE_UNAVAILABLE || this.radioState == GECKO_RADIOSTATE_OFF) && newState == GECKO_RADIOSTATE_READY) { // The radio became available, let's get its info. if (cdma) { this.getDeviceIdentity(); } else { this.getIMEI(); this.getIMEISV(); } this.getBasebandVersion(); } this.radioState = newState; this.sendDOMMessage({ rilMessageType: "radiostatechange", radioState: newState }); // If the radio is up and on, so let's query the card state. // On older RILs only if the card is actually ready, though. if (radioState == RADIO_STATE_UNAVAILABLE || radioState == RADIO_STATE_OFF) { return; } this.getICCStatus(); }; RIL[UNSOLICITED_RESPONSE_CALL_STATE_CHANGED] = function UNSOLICITED_RESPONSE_CALL_STATE_CHANGED() { this.getCurrentCalls(); }; RIL[UNSOLICITED_RESPONSE_VOICE_NETWORK_STATE_CHANGED] = function UNSOLICITED_RESPONSE_VOICE_NETWORK_STATE_CHANGED() { if (DEBUG) debug("Network state changed, re-requesting phone state and ICC status"); this.getICCStatus(); this.requestNetworkInfo(); }; RIL[UNSOLICITED_RESPONSE_NEW_SMS] = function UNSOLICITED_RESPONSE_NEW_SMS(length) { let result = this._processSmsDeliver(length); if (result != PDU_FCS_RESERVED) { // Not reserved FCS values, send ACK now. this.acknowledgeSMS(result == PDU_FCS_OK, result); } }; RIL[UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT] = function UNSOLICITED_RESPONSE_NEW_SMS_STATUS_REPORT(length) { let result = this._processSmsStatusReport(length); this.acknowledgeSMS(result == PDU_FCS_OK, result); }; RIL[UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM] = function UNSOLICITED_RESPONSE_NEW_SMS_ON_SIM(length) { let info = Buf.readUint32List(); //TODO }; RIL[UNSOLICITED_ON_USSD] = function UNSOLICITED_ON_USSD() { let [typeCode, message] = Buf.readStringList(); if (DEBUG) { debug("On USSD. Type Code: " + typeCode + " Message: " + message); } this._ussdSession = (typeCode != "0" && typeCode != "2"); this.sendDOMMessage({rilMessageType: "USSDReceived", message: message, sessionEnded: !this._ussdSession}); }; RIL[UNSOLICITED_NITZ_TIME_RECEIVED] = function UNSOLICITED_NITZ_TIME_RECEIVED() { let dateString = Buf.readString(); // The data contained in the NITZ message is // in the form "yy/mm/dd,hh:mm:ss(+/-)tz,dt" // for example: 12/02/16,03:36:08-20,00,310410 // Always print the NITZ info so we can collection what different providers // send down the pipe (see bug XXX). // TODO once data is collected, add in |if (DEBUG)| debug("DateTimeZone string " + dateString); let now = Date.now(); let year = parseInt(dateString.substr(0, 2), 10); let month = parseInt(dateString.substr(3, 2), 10); let day = parseInt(dateString.substr(6, 2), 10); let hours = parseInt(dateString.substr(9, 2), 10); let minutes = parseInt(dateString.substr(12, 2), 10); let seconds = parseInt(dateString.substr(15, 2), 10); // Note that |tz| is in 15-min units. let tz = parseInt(dateString.substr(17, 3), 10); // Note that |dst| is in 1-hour units and is already applied in |tz|. let dst = parseInt(dateString.substr(21, 2), 10); let timeInMS = Date.UTC(year + PDU_TIMESTAMP_YEAR_OFFSET, month - 1, day, hours, minutes, seconds); if (isNaN(timeInMS)) { if (DEBUG) debug("NITZ failed to convert date"); return; } this.sendDOMMessage({rilMessageType: "nitzTime", networkTimeInMS: timeInMS, networkTimeZoneInMinutes: -(tz * 15), networkDSTInMinutes: -(dst * 60), receiveTimeInMS: now}); }; RIL[UNSOLICITED_SIGNAL_STRENGTH] = function UNSOLICITED_SIGNAL_STRENGTH(length) { this[REQUEST_SIGNAL_STRENGTH](length, {rilRequestError: ERROR_SUCCESS}); }; RIL[UNSOLICITED_DATA_CALL_LIST_CHANGED] = function UNSOLICITED_DATA_CALL_LIST_CHANGED(length) { if (RILQUIRKS_V5_LEGACY) { this.getDataCallList(); return; } this[REQUEST_DATA_CALL_LIST](length, {rilRequestError: ERROR_SUCCESS}); }; RIL[UNSOLICITED_SUPP_SVC_NOTIFICATION] = null; RIL[UNSOLICITED_STK_SESSION_END] = function UNSOLICITED_STK_SESSION_END() { this.sendDOMMessage({rilMessageType: "stksessionend"}); }; RIL[UNSOLICITED_STK_PROACTIVE_COMMAND] = function UNSOLICITED_STK_PROACTIVE_COMMAND() { this.processStkProactiveCommand(); }; RIL[UNSOLICITED_STK_EVENT_NOTIFY] = function UNSOLICITED_STK_EVENT_NOTIFY() { this.processStkProactiveCommand(); }; RIL[UNSOLICITED_STK_CALL_SETUP] = null; RIL[UNSOLICITED_SIM_SMS_STORAGE_FULL] = null; RIL[UNSOLICITED_SIM_REFRESH] = null; RIL[UNSOLICITED_CALL_RING] = function UNSOLICITED_CALL_RING() { let info; let isCDMA = false; //XXX TODO hard-code this for now if (isCDMA) { info = { isPresent: Buf.readUint32(), signalType: Buf.readUint32(), alertPitch: Buf.readUint32(), signal: Buf.readUint32() }; } // For now we don't need to do anything here because we'll also get a // call state changed notification. }; RIL[UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED] = function UNSOLICITED_RESPONSE_SIM_STATUS_CHANGED() { this.getICCStatus(); }; RIL[UNSOLICITED_RESPONSE_CDMA_NEW_SMS] = null; RIL[UNSOLICITED_RESPONSE_NEW_BROADCAST_SMS] = null; RIL[UNSOLICITED_CDMA_RUIM_SMS_STORAGE_FULL] = null; RIL[UNSOLICITED_RESTRICTED_STATE_CHANGED] = null; RIL[UNSOLICITED_ENTER_EMERGENCY_CALLBACK_MODE] = null; RIL[UNSOLICITED_CDMA_CALL_WAITING] = null; RIL[UNSOLICITED_CDMA_OTA_PROVISION_STATUS] = null; RIL[UNSOLICITED_CDMA_INFO_REC] = null; RIL[UNSOLICITED_OEM_HOOK_RAW] = null; RIL[UNSOLICITED_RINGBACK_TONE] = null; RIL[UNSOLICITED_RESEND_INCALL_MUTE] = null; RIL[UNSOLICITED_RIL_CONNECTED] = function UNSOLICITED_RIL_CONNECTED(length) { // Prevent response id collision between UNSOLICITED_RIL_CONNECTED and // UNSOLICITED_VOICE_RADIO_TECH_CHANGED for Akami on gingerbread branch. if (!length) { return; } let version = Buf.readUint32List()[0]; RILQUIRKS_V5_LEGACY = (version < 5); if (DEBUG) { debug("Detected RIL version " + version); debug("RILQUIRKS_V5_LEGACY is " + RILQUIRKS_V5_LEGACY); } this.initRILState(); this.setPreferredNetworkType(); }; /** * This object exposes the functionality to parse and serialize PDU strings * * A PDU is a string containing a series of hexadecimally encoded octets * or nibble-swapped binary-coded decimals (BCDs). It contains not only the * message text but information about the sender, the SMS service center, * timestamp, etc. */ let GsmPDUHelper = { /** * Read one character (2 bytes) from a RIL string and decode as hex. * * @return the nibble as a number. */ readHexNibble: function readHexNibble() { let nibble = Buf.readUint16(); if (nibble >= 48 && nibble <= 57) { nibble -= 48; // ASCII '0'..'9' } else if (nibble >= 65 && nibble <= 70) { nibble -= 55; // ASCII 'A'..'F' } else if (nibble >= 97 && nibble <= 102) { nibble -= 87; // ASCII 'a'..'f' } else { throw "Found invalid nibble during PDU parsing: " + String.fromCharCode(nibble); } return nibble; }, /** * Encode a nibble as one hex character in a RIL string (2 bytes). * * @param nibble * The nibble to encode (represented as a number) */ writeHexNibble: function writeHexNibble(nibble) { nibble &= 0x0f; if (nibble < 10) { nibble += 48; // ASCII '0' } else { nibble += 55; // ASCII 'A' } Buf.writeUint16(nibble); }, /** * Read a hex-encoded octet (two nibbles). * * @return the octet as a number. */ readHexOctet: function readHexOctet() { return (this.readHexNibble() << 4) | this.readHexNibble(); }, /** * Write an octet as two hex-encoded nibbles. * * @param octet * The octet (represented as a number) to encode. */ writeHexOctet: function writeHexOctet(octet) { this.writeHexNibble(octet >> 4); this.writeHexNibble(octet); }, /** * Read an array of hex-encoded octets. */ readHexOctetArray: function readHexOctetArray(length) { let array = new Uint8Array(length); for (let i = 0; i < length; i++) { array[i] = this.readHexOctet(); } return array; }, /** * Convert an octet (number) to a BCD number. * * Any nibbles that are not in the BCD range count as 0. * * @param octet * The octet (a number, as returned by getOctet()) * * @return the corresponding BCD number. */ octetToBCD: function octetToBCD(octet) { return ((octet & 0xf0) <= 0x90) * ((octet >> 4) & 0x0f) + ((octet & 0x0f) <= 0x09) * (octet & 0x0f) * 10; }, /** * Convert a semi-octet (number) to a GSM BCD char. */ bcdChars: "0123456789*#,;", semiOctetToBcdChar: function semiOctetToBcdChar(semiOctet) { if (semiOctet >= 14) { throw new RangeError(); } return this.bcdChars.charAt(semiOctet); }, /** * Read a *swapped nibble* binary coded decimal (BCD) * * @param pairs * Number of nibble *pairs* to read. * * @return the decimal as a number. */ readSwappedNibbleBcdNum: function readSwappedNibbleBcdNum(pairs) { let number = 0; for (let i = 0; i < pairs; i++) { let octet = this.readHexOctet(); // Ignore 'ff' octets as they're often used as filler. if (octet == 0xff) { continue; } // If the first nibble is an "F" , only the second nibble is to be taken // into account. if ((octet & 0xf0) == 0xf0) { number *= 10; number += octet & 0x0f; continue; } number *= 100; number += this.octetToBCD(octet); } return number; }, /** * Read a *swapped nibble* binary coded string (BCD) * * @param pairs * Number of nibble *pairs* to read. * * @return The BCD string. */ readSwappedNibbleBcdString: function readSwappedNibbleBcdString(pairs) { let str = ""; for (let i = 0; i < pairs; i++) { let nibbleH = this.readHexNibble(); let nibbleL = this.readHexNibble(); if (nibbleL == 0x0F) { break; } str += this.semiOctetToBcdChar(nibbleL); if (nibbleH != 0x0F) { str += this.semiOctetToBcdChar(nibbleH); } } return str; }, /** * Write numerical data as swapped nibble BCD. * * @param data * Data to write (as a string or a number) */ writeSwappedNibbleBCD: function writeSwappedNibbleBCD(data) { data = data.toString(); if (data.length % 2) { data += "F"; } for (let i = 0; i < data.length; i += 2) { Buf.writeUint16(data.charCodeAt(i + 1)); Buf.writeUint16(data.charCodeAt(i)); } }, /** * Read user data, convert to septets, look up relevant characters in a * 7-bit alphabet, and construct string. * * @param length * Number of septets to read (*not* octets) * @param paddingBits * Number of padding bits in the first byte of user data. * @param langIndex * Table index used for normal 7-bit encoded character lookup. * @param langShiftIndex * Table index used for escaped 7-bit encoded character lookup. * * @return a string. */ readSeptetsToString: function readSeptetsToString(length, paddingBits, langIndex, langShiftIndex) { let ret = ""; let byteLength = Math.ceil((length * 7 + paddingBits) / 8); /** * |<- last byte in header ->| * |<- incompleteBits ->|<- last header septet->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * |<- 1st byte in user data ->| * |<- data septet 1 ->|<-paddingBits->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * |<- 2nd byte in user data ->| * |<- data spetet 2 ->|<-ds1->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| */ let data = 0; let dataBits = 0; if (paddingBits) { data = this.readHexOctet() >> paddingBits; dataBits = 8 - paddingBits; --byteLength; } let escapeFound = false; const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex]; const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex]; do { // Read as much as fits in 32bit word let bytesToRead = Math.min(byteLength, dataBits ? 3 : 4); for (let i = 0; i < bytesToRead; i++) { data |= this.readHexOctet() << dataBits; dataBits += 8; --byteLength; } // Consume available full septets for (; dataBits >= 7; dataBits -= 7) { let septet = data & 0x7F; data >>>= 7; if (escapeFound) { escapeFound = false; if (septet == PDU_NL_EXTENDED_ESCAPE) { // According to 3GPP TS 23.038, section 6.2.1.1, NOTE 1, "On // receipt of this code, a receiving entity shall display a space // until another extensiion table is defined." ret += " "; } else if (septet == PDU_NL_RESERVED_CONTROL) { // According to 3GPP TS 23.038 B.2, "This code represents a control // character and therefore must not be used for language specific // characters." ret += " "; } else { ret += langShiftTable[septet]; } } else if (septet == PDU_NL_EXTENDED_ESCAPE) { escapeFound = true; // is not an effective character --length; } else { ret += langTable[septet]; } } } while (byteLength); if (ret.length != length) { /** * If num of effective characters does not equal to the length of read * string, cut the tail off. This happens when the last octet of user * data has following layout: * * |<- penultimate octet in user data ->| * |<- data septet N ->|<- dsN-1 ->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * |<- last octet in user data ->| * |<- fill bits ->|<-dsN->| * +===7===|===6===|===5===|===4===|===3===|===2===|===1===|===0===| * * The fill bits in the last octet may happen to form a full septet and * be appended at the end of result string. */ ret = ret.slice(0, length); } return ret; }, writeStringAsSeptets: function writeStringAsSeptets(message, paddingBits, langIndex, langShiftIndex, strict7BitEncoding) { const langTable = PDU_NL_LOCKING_SHIFT_TABLES[langIndex]; const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[langShiftIndex]; let dataBits = paddingBits; let data = 0; for (let i = 0; i < message.length; i++) { let c = message.charAt(i); if (strict7BitEncoding) { c = GSM_SMS_STRICT_7BIT_CHARMAP[c] || c; } let septet = langTable.indexOf(c); if (septet == PDU_NL_EXTENDED_ESCAPE) { continue; } if (septet >= 0) { data |= septet << dataBits; dataBits += 7; } else { septet = langShiftTable.indexOf(c); if (septet == -1) { throw new Error("'" + c + "' is not in 7 bit alphabet " + langIndex + ":" + langShiftIndex + "!"); } if (septet == PDU_NL_RESERVED_CONTROL) { continue; } data |= PDU_NL_EXTENDED_ESCAPE << dataBits; dataBits += 7; data |= septet << dataBits; dataBits += 7; } for (; dataBits >= 8; dataBits -= 8) { this.writeHexOctet(data & 0xFF); data >>>= 8; } } if (dataBits != 0) { this.writeHexOctet(data & 0xFF); } }, /** * Read GSM 8-bit unpacked octets, * which are SMS default 7-bit alphabets with bit 8 set to 0. * * @param numOctets * Number of octets to be read. */ read8BitUnpackedToString: function read8BitUnpackedToString(numOctets) { let ret = ""; let escapeFound = false; let i; const langTable = PDU_NL_LOCKING_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT]; const langShiftTable = PDU_NL_SINGLE_SHIFT_TABLES[PDU_NL_IDENTIFIER_DEFAULT]; for(i = 0; i < numOctets; i++) { let octet = this.readHexOctet(); if (octet == 0xff) { i++; break; } if (escapeFound) { escapeFound = false; if (octet == PDU_NL_EXTENDED_ESCAPE) { // According to 3GPP TS 23.038, section 6.2.1.1, NOTE 1, "On // receipt of this code, a receiving entity shall display a space // until another extensiion table is defined." ret += " "; } else if (octet == PDU_NL_RESERVED_CONTROL) { // According to 3GPP TS 23.038 B.2, "This code represents a control // character and therefore must not be used for language specific // characters." ret += " "; } else { ret += langShiftTable[octet]; } } else if (octet == PDU_NL_EXTENDED_ESCAPE) { escapeFound = true; } else { ret += langTable[octet]; } } Buf.seekIncoming((numOctets - i) * PDU_HEX_OCTET_SIZE); return ret; }, /** * Read user data and decode as a UCS2 string. * * @param numOctets * Number of octets to be read as UCS2 string. * * @return a string. */ readUCS2String: function readUCS2String(numOctets) { let str = ""; let length = numOctets / 2; for (let i = 0; i < length; ++i) { let code = (this.readHexOctet() << 8) | this.readHexOctet(); str += String.fromCharCode(code); } if (DEBUG) debug("Read UCS2 string: " + str); return str; }, /** * Write user data as a UCS2 string. * * @param message * Message string to encode as UCS2 in hex-encoded octets. */ writeUCS2String: function writeUCS2String(message) { for (let i = 0; i < message.length; ++i) { let code = message.charCodeAt(i); this.writeHexOctet((code >> 8) & 0xFF); this.writeHexOctet(code & 0xFF); } }, /** * Read UCS2 String on UICC. * * @see TS 101.221, Annex A. * @param scheme * Coding scheme for UCS2 on UICC. One of 0x80, 0x81 or 0x82. * @param numOctets * Number of octets to be read as UCS2 string. */ readICCUCS2String: function readICCUCS2String(scheme, numOctets) { let str = ""; switch (scheme) { /** * +------+---------+---------+---------+---------+------+------+ * | 0x80 | Ch1_msb | Ch1_lsb | Ch2_msb | Ch2_lsb | 0xff | 0xff | * +------+---------+---------+---------+---------+------+------+ */ case 0x80: let isOdd = numOctets % 2; let i; for (i = 0; i < numOctets - isOdd; i += 2) { let code = (this.readHexOctet() << 8) | this.readHexOctet(); if (code == 0xffff) { i += 2; break; } str += String.fromCharCode(code); } // Skip trailing 0xff Buf.seekIncoming((numOctets - i) * PDU_HEX_OCTET_SIZE); break; case 0x81: // Fall through case 0x82: /** * +------+-----+--------+-----+-----+-----+--------+------+ * | 0x81 | len | offset | Ch1 | Ch2 | ... | Ch_len | 0xff | * +------+-----+--------+-----+-----+-----+--------+------+ * * len : The length of characters. * offset : 0hhh hhhh h000 0000 * Ch_n: bit 8 = 0 * GSM default alphabets * bit 8 = 1 * UCS2 character whose char code is (Ch_n & 0x7f) + offset * * +------+-----+------------+------------+-----+-----+-----+--------+ * | 0x82 | len | offset_msb | offset_lsb | Ch1 | Ch2 | ... | Ch_len | * +------+-----+------------+------------+-----+-----+-----+--------+ * * len : The length of characters. * offset_msb, offset_lsn: offset * Ch_n: bit 8 = 0 * GSM default alphabets * bit 8 = 1 * UCS2 character whose char code is (Ch_n & 0x7f) + offset */ let len = this.readHexOctet(); let offset, headerLen; if (scheme == 0x81) { offset = this.readHexOctet() << 7; headerLen = 2; } else { offset = (this.readHexOctet() << 8) | this.readHexOctet(); headerLen = 3; } for (let i = 0; i < len; i++) { let ch = this.readHexOctet(); if (ch & 0x80) { // UCS2 str += String.fromCharCode((ch & 0x7f) + offset); } else { // GSM 8bit let count = 0, gotUCS2 = 0; while ((i + count + 1 < len)) { count++; if (this.readHexOctet() & 0x80) { gotUCS2 = 1; break; }; } // Unread. // +1 for the GSM alphabet indexed at i, Buf.seekIncoming(-1 * (count + 1) * PDU_HEX_OCTET_SIZE); str += this.read8BitUnpackedToString(count + 1 - gotUCS2); i += count - gotUCS2; } } // Skipping trailing 0xff Buf.seekIncoming((numOctets - len - headerLen) * PDU_HEX_OCTET_SIZE); break; } return str; }, /** * Read 1 + UDHL octets and construct user data header. * * @param msg * message object for output. * * @see 3GPP TS 23.040 9.2.3.24 */ readUserDataHeader: function readUserDataHeader(msg) { /** * A header object with properties contained in received message. * The properties set include: * * length: totoal length of the header, default 0. * langIndex: used locking shift table index, default * PDU_NL_IDENTIFIER_DEFAULT. * langShiftIndex: used locking shift table index, default * PDU_NL_IDENTIFIER_DEFAULT. * */ let header = { length: 0, langIndex: PDU_NL_IDENTIFIER_DEFAULT, langShiftIndex: PDU_NL_IDENTIFIER_DEFAULT }; header.length = this.readHexOctet(); if (DEBUG) debug("Read UDH length: " + header.length); let dataAvailable = header.length; while (dataAvailable >= 2) { let id = this.readHexOctet(); let length = this.readHexOctet(); if (DEBUG) debug("Read UDH id: " + id + ", length: " + length); dataAvailable -= 2; switch (id) { case PDU_IEI_CONCATENATED_SHORT_MESSAGES_8BIT: { let ref = this.readHexOctet(); let max = this.readHexOctet(); let seq = this.readHexOctet(); dataAvailable -= 3; if (max && seq && (seq <= max)) { header.segmentRef = ref; header.segmentMaxSeq = max; header.segmentSeq = seq; } break; } case PDU_IEI_APPLICATION_PORT_ADDRESSING_SCHEME_8BIT: { let dstp = this.readHexOctet(); let orip = this.readHexOctet(); dataAvailable -= 2; if ((dstp < PDU_APA_RESERVED_8BIT_PORTS) || (orip < PDU_APA_RESERVED_8BIT_PORTS)) { // 3GPP TS 23.040 clause 9.2.3.24.3: "A receiving entity shall // ignore any information element where the value of the // Information-Element-Data is Reserved or not supported" break; } header.destinationPort = dstp; header.originatorPort = orip; break; } case PDU_IEI_APPLICATION_PORT_ADDRESSING_SCHEME_16BIT: { let dstp = (this.readHexOctet() << 8) | this.readHexOctet(); let orip = (this.readHexOctet() << 8) | this.readHexOctet(); dataAvailable -= 4; // 3GPP TS 23.040 clause 9.2.3.24.4: "A receiving entity shall // ignore any information element where the value of the // Information-Element-Data is Reserved or not supported" if ((dstp < PDU_APA_VALID_16BIT_PORTS) && (orip < PDU_APA_VALID_16BIT_PORTS)) { header.destinationPort = dstp; header.originatorPort = orip; } break; } case PDU_IEI_CONCATENATED_SHORT_MESSAGES_16BIT: { let ref = (this.readHexOctet() << 8) | this.readHexOctet(); let max = this.readHexOctet(); let seq = this.readHexOctet(); dataAvailable -= 4; if (max && seq && (seq <= max)) { header.segmentRef = ref; header.segmentMaxSeq = max; header.segmentSeq = seq; } break; } case PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT: let langShiftIndex = this.readHexOctet(); --dataAvailable; if (langShiftIndex < PDU_NL_SINGLE_SHIFT_TABLES.length) { header.langShiftIndex = langShiftIndex; } break; case PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT: let langIndex = this.readHexOctet(); --dataAvailable; if (langIndex < PDU_NL_LOCKING_SHIFT_TABLES.length) { header.langIndex = langIndex; } break; case PDU_IEI_SPECIAL_SMS_MESSAGE_INDICATION: let msgInd = this.readHexOctet() & 0xFF; let msgCount = this.readHexOctet(); dataAvailable -= 2; /* * TS 23.040 V6.8.1 Sec 9.2.3.24.2 * bits 1 0 : basic message indication type * bits 4 3 2 : extended message indication type * bits 6 5 : Profile id * bit 7 : storage type */ let storeType = msgInd & PDU_MWI_STORE_TYPE_BIT; let mwi = msg.mwi; if (!mwi) { mwi = msg.mwi = {}; } if (storeType == PDU_MWI_STORE_TYPE_STORE) { // Store message because TP_UDH indicates so, note this may override // the setting in DCS, but that is expected mwi.discard = false; } else if (mwi.discard === undefined) { // storeType == PDU_MWI_STORE_TYPE_DISCARD // only override mwi.discard here if it hasn't already been set mwi.discard = true; } mwi.msgCount = msgCount & 0xFF; mwi.active = mwi.msgCount > 0; if (DEBUG) debug("MWI in TP_UDH received: " + JSON.stringify(mwi)); break; default: if (DEBUG) { debug("readUserDataHeader: unsupported IEI(" + id + "), " + length + " bytes."); } // Read out unsupported data if (length) { let octets; if (DEBUG) octets = new Uint8Array(length); for (let i = 0; i < length; i++) { let octet = this.readHexOctet(); if (DEBUG) octets[i] = octet; } dataAvailable -= length; if (DEBUG) debug("readUserDataHeader: " + Array.slice(octets)); } break; } } if (dataAvailable != 0) { throw new Error("Illegal user data header found!"); } msg.header = header; }, /** * Write out user data header. * * @param options * Options containing information for user data header write-out. The * `userDataHeaderLength` property must be correctly pre-calculated. */ writeUserDataHeader: function writeUserDataHeader(options) { this.writeHexOctet(options.userDataHeaderLength); if (options.segmentMaxSeq > 1) { if (options.segmentRef16Bit) { this.writeHexOctet(PDU_IEI_CONCATENATED_SHORT_MESSAGES_16BIT); this.writeHexOctet(4); this.writeHexOctet((options.segmentRef >> 8) & 0xFF); } else { this.writeHexOctet(PDU_IEI_CONCATENATED_SHORT_MESSAGES_8BIT); this.writeHexOctet(3); } this.writeHexOctet(options.segmentRef & 0xFF); this.writeHexOctet(options.segmentMaxSeq & 0xFF); this.writeHexOctet(options.segmentSeq & 0xFF); } if (options.langIndex != PDU_NL_IDENTIFIER_DEFAULT) { this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_LOCKING_SHIFT); this.writeHexOctet(1); this.writeHexOctet(options.langIndex); } if (options.langShiftIndex != PDU_NL_IDENTIFIER_DEFAULT) { this.writeHexOctet(PDU_IEI_NATIONAL_LANGUAGE_SINGLE_SHIFT); this.writeHexOctet(1); this.writeHexOctet(options.langShiftIndex); } }, /** * Read SM-TL Address. * * @param len * Length of useful semi-octets within the Address-Value field. For * example, the lenth of "12345" should be 5, and 4 for "1234". * * @see 3GPP TS 23.040 9.1.2.5 */ readAddress: function readAddress(len) { // Address Length if (!len || (len < 0)) { if (DEBUG) debug("PDU error: invalid sender address length: " + len); return null; } if (len % 2 == 1) { len += 1; } if (DEBUG) debug("PDU: Going to read address: " + len); // Type-of-Address let toa = this.readHexOctet(); // Address-Value let addr = this.readSwappedNibbleBcdString(len / 2); if (addr.length <= 0) { if (DEBUG) debug("PDU error: no number provided"); return null; } if ((toa >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) { addr = '+' + addr; } return addr; }, /** * Read Alpha Identifier. * * @see TS 131.102 * * @param numOctets * Number of octets to be read. * * It uses either * 1. SMS default 7-bit alphabet with bit 8 set to 0. * 2. UCS2 string. * * Unused bytes should be set to 0xff. */ readAlphaIdentifier: function readAlphaIdentifier(numOctets) { let temp; // Read the 1st octet to determine the encoding. if ((temp = GsmPDUHelper.readHexOctet()) == 0x80 || temp == 0x81 || temp == 0x82) { numOctets--; return this.readICCUCS2String(temp, numOctets); } else { Buf.seekIncoming(-1 * PDU_HEX_OCTET_SIZE); return this.read8BitUnpackedToString(numOctets); } }, /** * Read Dialling number. * * @see TS 131.102 * * @param len * The Length of BCD number. * * From TS 131.102, in EF_ADN, EF_FDN, the field 'Length of BCD number' * means the total bytes should be allocated to store the TON/NPI and * the dialing number. * For example, if the dialing number is 1234567890, * and the TON/NPI is 0x81, * The field 'Length of BCD number' should be 06, which is * 1 byte to store the TON/NPI, 0x81 * 5 bytes to store the BCD number 2143658709. * * Here the definition of the length is different from SMS spec, * TS 23.040 9.1.2.5, which the length means * "number of useful semi-octets within the Address-Value field". */ readDiallingNumber: function readDiallingNumber(len) { if (DEBUG) debug("PDU: Going to read Dialling number: " + len); // TOA = TON + NPI let toa = this.readHexOctet(); let number = this.readSwappedNibbleBcdString(len - 1).toString(); if (number.length <= 0) { if (DEBUG) debug("PDU error: no number provided"); return null; } if ((toa >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) { number = '+' + number; } return number; }, /** * Write Dialling Number. * * @param number The Dialling number */ writeDiallingNumber: function writeDiallingNumber(number) { let toa = PDU_TOA_ISDN; // 81 if (number[0] == '+') { toa = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91 number = number.substring(1); } this.writeHexOctet(toa); this.writeSwappedNibbleBCD(number); }, /** * Read TP-Protocol-Indicator(TP-PID). * * @param msg * message object for output. * * @see 3GPP TS 23.040 9.2.3.9 */ readProtocolIndicator: function readProtocolIndicator(msg) { // `The MS shall interpret reserved, obsolete, or unsupported values as the // value 00000000 but shall store them exactly as received.` msg.pid = this.readHexOctet(); msg.epid = msg.pid; switch (msg.epid & 0xC0) { case 0x40: // Bit 7..0 = 01xxxxxx switch (msg.epid) { case PDU_PID_SHORT_MESSAGE_TYPE_0: case PDU_PID_ANSI_136_R_DATA: case PDU_PID_USIM_DATA_DOWNLOAD: return; case PDU_PID_RETURN_CALL_MESSAGE: // Level 1 of message waiting indication: // Only a return call message is provided let mwi = msg.mwi = {}; // TODO: When should we de-activate the level 1 indicator? mwi.active = true; mwi.discard = false; mwi.msgCount = GECKO_VOICEMAIL_MESSAGE_COUNT_UNKNOWN; if (DEBUG) debug("TP-PID got return call message: " + msg.sender); return; } break; } msg.epid = PDU_PID_DEFAULT; }, /** * Read TP-Data-Coding-Scheme(TP-DCS) * * @param msg * message object for output. * * @see 3GPP TS 23.040 9.2.3.10, 3GPP TS 23.038 4. */ readDataCodingScheme: function readDataCodingScheme(msg) { let dcs = this.readHexOctet(); if (DEBUG) debug("PDU: read dcs: " + dcs); // No message class by default. let messageClass = PDU_DCS_MSG_CLASS_UNKNOWN; // 7 bit is the default fallback encoding. let encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET; switch (dcs & PDU_DCS_CODING_GROUP_BITS) { case 0x40: // bits 7..4 = 01xx case 0x50: case 0x60: case 0x70: // Bit 5..0 are coded exactly the same as Group 00xx case 0x00: // bits 7..4 = 00xx case 0x10: case 0x20: case 0x30: if (dcs & 0x10) { messageClass = dcs & PDU_DCS_MSG_CLASS_BITS; } switch (dcs & 0x0C) { case 0x4: encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET; break; case 0x8: encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET; break; } break; case 0xE0: // bits 7..4 = 1110 encoding = PDU_DCS_MSG_CODING_16BITS_ALPHABET; // Bit 3..0 are coded exactly the same as Message Waiting Indication // Group 1101. case 0xC0: // bits 7..4 = 1100 case 0xD0: // bits 7..4 = 1101 // Indiciates voicemail indicator set or clear let active = (dcs & PDU_DCS_MWI_ACTIVE_BITS) == PDU_DCS_MWI_ACTIVE_VALUE; // If TP-UDH is present, these values will be overwritten switch (dcs & PDU_DCS_MWI_TYPE_BITS) { case PDU_DCS_MWI_TYPE_VOICEMAIL: let mwi = msg.mwi; if (!mwi) { mwi = msg.mwi = {}; } mwi.active = active; mwi.discard = (dcs & PDU_DCS_CODING_GROUP_BITS) == 0xC0; mwi.msgCount = active ? GECKO_VOICEMAIL_MESSAGE_COUNT_UNKNOWN : 0; if (DEBUG) { debug("MWI in DCS received for voicemail: " + JSON.stringify(mwi)); } break; case PDU_DCS_MWI_TYPE_FAX: if (DEBUG) debug("MWI in DCS received for fax"); break; case PDU_DCS_MWI_TYPE_EMAIL: if (DEBUG) debug("MWI in DCS received for email"); break; default: if (DEBUG) debug("MWI in DCS received for \"other\""); break; } break; case 0xF0: // bits 7..4 = 1111 if (dcs & 0x04) { encoding = PDU_DCS_MSG_CODING_8BITS_ALPHABET; } messageClass = dcs & PDU_DCS_MSG_CLASS_BITS; break; default: // Falling back to default encoding. break; } msg.dcs = dcs; msg.encoding = encoding; msg.messageClass = messageClass; if (DEBUG) debug("PDU: message encoding is " + encoding + " bit."); }, /** * Read GSM TP-Service-Centre-Time-Stamp(TP-SCTS). * * @see 3GPP TS 23.040 9.2.3.11 */ readTimestamp: function readTimestamp() { let year = this.readSwappedNibbleBcdNum(1) + PDU_TIMESTAMP_YEAR_OFFSET; let month = this.readSwappedNibbleBcdNum(1) - 1; let day = this.readSwappedNibbleBcdNum(1); let hour = this.readSwappedNibbleBcdNum(1); let minute = this.readSwappedNibbleBcdNum(1); let second = this.readSwappedNibbleBcdNum(1); let timestamp = Date.UTC(year, month, day, hour, minute, second); // If the most significant bit of the least significant nibble is 1, // the timezone offset is negative (fourth bit from the right => 0x08): // localtime = UTC + tzOffset // therefore // UTC = localtime - tzOffset let tzOctet = this.readHexOctet(); let tzOffset = this.octetToBCD(tzOctet & ~0x08) * 15 * 60 * 1000; tzOffset = (tzOctet & 0x08) ? -tzOffset : tzOffset; timestamp -= tzOffset; return timestamp; }, /** * User data can be 7 bit (default alphabet) data, 8 bit data, or 16 bit * (UCS2) data. * * @param msg * message object for output. * @param length * length of user data to read in octets. */ readUserData: function readUserData(msg, length) { if (DEBUG) { debug("Reading " + length + " bytes of user data."); } let paddingBits = 0; if (msg.udhi) { this.readUserDataHeader(msg); if (msg.encoding == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { let headerBits = (msg.header.length + 1) * 8; let headerSeptets = Math.ceil(headerBits / 7); length -= headerSeptets; paddingBits = headerSeptets * 7 - headerBits; } else { length -= (msg.header.length + 1); } } if (DEBUG) debug("After header, " + length + " septets left of user data"); msg.body = null; msg.data = null; switch (msg.encoding) { case PDU_DCS_MSG_CODING_7BITS_ALPHABET: // 7 bit encoding allows 140 octets, which means 160 characters // ((140x8) / 7 = 160 chars) if (length > PDU_MAX_USER_DATA_7BIT) { if (DEBUG) debug("PDU error: user data is too long: " + length); break; } let langIndex = msg.udhi ? msg.header.langIndex : PDU_NL_IDENTIFIER_DEFAULT; let langShiftIndex = msg.udhi ? msg.header.langShiftIndex : PDU_NL_IDENTIFIER_DEFAULT; msg.body = this.readSeptetsToString(length, paddingBits, langIndex, langShiftIndex); break; case PDU_DCS_MSG_CODING_8BITS_ALPHABET: msg.data = this.readHexOctetArray(length); break; case PDU_DCS_MSG_CODING_16BITS_ALPHABET: msg.body = this.readUCS2String(length); break; } }, /** * Read extra parameters if TP-PI is set. * * @param msg * message object for output. */ readExtraParams: function readExtraParams(msg) { // Because each PDU octet is converted to two UCS2 char2, we should always // get even messageStringLength in this#_processReceivedSms(). So, we'll // always need two delimitors at the end. if (Buf.readAvailable <= 4) { return; } // TP-Parameter-Indicator let pi; do { // `The most significant bit in octet 1 and any other TP-PI octets which // may be added later is reserved as an extension bit which when set to a // 1 shall indicate that another TP-PI octet follows immediately // afterwards.` ~ 3GPP TS 23.040 9.2.3.27 pi = this.readHexOctet(); } while (pi & PDU_PI_EXTENSION); // `If the TP-UDL bit is set to "1" but the TP-DCS bit is set to "0" then // the receiving entity shall for TP-DCS assume a value of 0x00, i.e. the // 7bit default alphabet.` ~ 3GPP 23.040 9.2.3.27 msg.dcs = 0; msg.encoding = PDU_DCS_MSG_CODING_7BITS_ALPHABET; // TP-Protocol-Identifier if (pi & PDU_PI_PROTOCOL_IDENTIFIER) { this.readProtocolIndicator(msg); } // TP-Data-Coding-Scheme if (pi & PDU_PI_DATA_CODING_SCHEME) { this.readDataCodingScheme(msg); } // TP-User-Data-Length if (pi & PDU_PI_USER_DATA_LENGTH) { let userDataLength = this.readHexOctet(); this.readUserData(msg, userDataLength); } }, /** * Read and decode a PDU-encoded message from the stream. * * TODO: add some basic sanity checks like: * - do we have the minimum number of chars available */ readMessage: function readMessage() { // An empty message object. This gets filled below and then returned. let msg = { // D:DELIVER, DR:DELIVER-REPORT, S:SUBMIT, SR:SUBMIT-REPORT, // ST:STATUS-REPORT, C:COMMAND // M:Mandatory, O:Optional, X:Unavailable // D DR S SR ST C SMSC: null, // M M M M M M mti: null, // M M M M M M udhi: null, // M M O M M M sender: null, // M X X X X X recipient: null, // X X M X M M pid: null, // M O M O O M epid: null, // M O M O O M dcs: null, // M O M O O X mwi: null, // O O O O O O replace: false, // O O O O O O header: null, // M M O M M M body: null, // M O M O O O data: null, // M O M O O O timestamp: null, // M X X X X X status: null, // X X X X M X scts: null, // X X X M M X dt: null, // X X X X M X }; // SMSC info let smscLength = this.readHexOctet(); if (smscLength > 0) { let smscTypeOfAddress = this.readHexOctet(); // Subtract the type-of-address octet we just read from the length. msg.SMSC = this.readSwappedNibbleBcdString(smscLength - 1); if ((smscTypeOfAddress >> 4) == (PDU_TOA_INTERNATIONAL >> 4)) { msg.SMSC = '+' + msg.SMSC; } } // First octet of this SMS-DELIVER or SMS-SUBMIT message let firstOctet = this.readHexOctet(); // Message Type Indicator msg.mti = firstOctet & 0x03; // User data header indicator msg.udhi = firstOctet & PDU_UDHI; switch (msg.mti) { case PDU_MTI_SMS_RESERVED: // `If an MS receives a TPDU with a "Reserved" value in the TP-MTI it // shall process the message as if it were an "SMS-DELIVER" but store // the message exactly as received.` ~ 3GPP TS 23.040 9.2.3.1 case PDU_MTI_SMS_DELIVER: return this.readDeliverMessage(msg); case PDU_MTI_SMS_STATUS_REPORT: return this.readStatusReportMessage(msg); default: return null; } }, /** * Read and decode a SMS-DELIVER PDU. * * @param msg * message object for output. */ readDeliverMessage: function readDeliverMessage(msg) { // - Sender Address info - let senderAddressLength = this.readHexOctet(); msg.sender = this.readAddress(senderAddressLength); // - TP-Protocolo-Identifier - this.readProtocolIndicator(msg); // - TP-Data-Coding-Scheme - this.readDataCodingScheme(msg); // - TP-Service-Center-Time-Stamp - msg.timestamp = this.readTimestamp(); // - TP-User-Data-Length - let userDataLength = this.readHexOctet(); // - TP-User-Data - if (userDataLength > 0) { this.readUserData(msg, userDataLength); } return msg; }, /** * Read and decode a SMS-STATUS-REPORT PDU. * * @param msg * message object for output. */ readStatusReportMessage: function readStatusReportMessage(msg) { // TP-Message-Reference msg.messageRef = this.readHexOctet(); // TP-Recipient-Address let recipientAddressLength = this.readHexOctet(); msg.recipient = this.readAddress(recipientAddressLength); // TP-Service-Centre-Time-Stamp msg.scts = this.readTimestamp(); // TP-Discharge-Time msg.dt = this.readTimestamp(); // TP-Status msg.status = this.readHexOctet(); this.readExtraParams(msg); return msg; }, /** * Serialize a SMS-SUBMIT PDU message and write it to the output stream. * * This method expects that a data coding scheme has been chosen already * and that the length of the user data payload in that encoding is known, * too. Both go hand in hand together anyway. * * @param address * String containing the address (number) of the SMS receiver * @param userData * String containing the message to be sent as user data * @param dcs * Data coding scheme. One of the PDU_DCS_MSG_CODING_*BITS_ALPHABET * constants. * @param userDataHeaderLength * Length of embedded user data header, in bytes. The whole header * size will be userDataHeaderLength + 1; 0 for no header. * @param encodedBodyLength * Length of the user data when encoded with the given DCS. For UCS2, * in bytes; for 7-bit, in septets. * @param langIndex * Table index used for normal 7-bit encoded character lookup. * @param langShiftIndex * Table index used for escaped 7-bit encoded character lookup. * @param requestStatusReport * Request status report. */ writeMessage: function writeMessage(options) { if (DEBUG) { debug("writeMessage: " + JSON.stringify(options)); } let address = options.number; let body = options.body; let dcs = options.dcs; let userDataHeaderLength = options.userDataHeaderLength; let encodedBodyLength = options.encodedBodyLength; let langIndex = options.langIndex; let langShiftIndex = options.langShiftIndex; let strict7BitEncoding = options.strict7BitEncoding; // SMS-SUBMIT Format: // // PDU Type - 1 octet // Message Reference - 1 octet // DA - Destination Address - 2 to 12 octets // PID - Protocol Identifier - 1 octet // DCS - Data Coding Scheme - 1 octet // VP - Validity Period - 0, 1 or 7 octets // UDL - User Data Length - 1 octet // UD - User Data - 140 octets let addressFormat = PDU_TOA_ISDN; // 81 if (address[0] == '+') { addressFormat = PDU_TOA_INTERNATIONAL | PDU_TOA_ISDN; // 91 address = address.substring(1); } //TODO validity is unsupported for now let validity = 0; let headerOctets = (userDataHeaderLength ? userDataHeaderLength + 1 : 0); let paddingBits; let userDataLengthInSeptets; let userDataLengthInOctets; if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { let headerSeptets = Math.ceil(headerOctets * 8 / 7); userDataLengthInSeptets = headerSeptets + encodedBodyLength; userDataLengthInOctets = Math.ceil(userDataLengthInSeptets * 7 / 8); paddingBits = headerSeptets * 7 - headerOctets * 8; } else { userDataLengthInOctets = headerOctets + encodedBodyLength; paddingBits = 0; } let pduOctetLength = 4 + // PDU Type, Message Ref, address length + format Math.ceil(address.length / 2) + 3 + // PID, DCS, UDL userDataLengthInOctets; if (validity) { //TODO: add more to pduOctetLength } // Start the string. Since octets are represented in hex, we will need // twice as many characters as octets. Buf.writeUint32(pduOctetLength * 2); // - PDU-TYPE- // +--------+----------+---------+---------+--------+---------+ // | RP (1) | UDHI (1) | SRR (1) | VPF (2) | RD (1) | MTI (2) | // +--------+----------+---------+---------+--------+---------+ // RP: 0 Reply path parameter is not set // 1 Reply path parameter is set // UDHI: 0 The UD Field contains only the short message // 1 The beginning of the UD field contains a header in addition // of the short message // SRR: 0 A status report is not requested // 1 A status report is requested // VPF: bit4 bit3 // 0 0 VP field is not present // 0 1 Reserved // 1 0 VP field present an integer represented (relative) // 1 1 VP field present a semi-octet represented (absolute) // RD: Instruct the SMSC to accept(0) or reject(1) an SMS-SUBMIT // for a short message still held in the SMSC which has the same // MR and DA as a previously submitted short message from the // same OA // MTI: bit1 bit0 Message Type // 0 0 SMS-DELIVER (SMSC ==> MS) // 0 1 SMS-SUBMIT (MS ==> SMSC) // PDU type. MTI is set to SMS-SUBMIT let firstOctet = PDU_MTI_SMS_SUBMIT; // Status-Report-Request if (options.requestStatusReport) { firstOctet |= PDU_SRI_SRR; } // Validity period if (validity) { //TODO: not supported yet, OR with one of PDU_VPF_* } // User data header indicator if (headerOctets) { firstOctet |= PDU_UDHI; } this.writeHexOctet(firstOctet); // Message reference 00 this.writeHexOctet(0x00); // - Destination Address - this.writeHexOctet(address.length); this.writeHexOctet(addressFormat); this.writeSwappedNibbleBCD(address); // - Protocol Identifier - this.writeHexOctet(0x00); // - Data coding scheme - // For now it assumes bits 7..4 = 1111 except for the 16 bits use case this.writeHexOctet(dcs); // - Validity Period - if (validity) { this.writeHexOctet(validity); } // - User Data - if (dcs == PDU_DCS_MSG_CODING_7BITS_ALPHABET) { this.writeHexOctet(userDataLengthInSeptets); } else { this.writeHexOctet(userDataLengthInOctets); } if (headerOctets) { this.writeUserDataHeader(options); } switch (dcs) { case PDU_DCS_MSG_CODING_7BITS_ALPHABET: this.writeStringAsSeptets(body, paddingBits, langIndex, langShiftIndex, strict7BitEncoding); break; case PDU_DCS_MSG_CODING_8BITS_ALPHABET: // Unsupported. break; case PDU_DCS_MSG_CODING_16BITS_ALPHABET: this.writeUCS2String(body); break; } // End of the string. The string length is always even by definition, so // we write two \0 delimiters. Buf.writeUint16(0); Buf.writeUint16(0); }, }; let StkCommandParamsFactory = { createParam: function createParam(cmdDetails, ctlvs) { let param; switch (cmdDetails.typeOfCommand) { case STK_CMD_REFRESH: param = this.processRefresh(cmdDetails, ctlvs); break; case STK_CMD_POLL_INTERVAL: param = this.processPollInterval(cmdDetails, ctlvs); break; case STK_CMD_POLL_OFF: param = this.processPollOff(cmdDetails, ctlvs); break; case STK_CMD_SET_UP_EVENT_LIST: param = this.processSetUpEventList(cmdDetails, ctlvs); break; case STK_CMD_SET_UP_MENU: case STK_CMD_SELECT_ITEM: param = this.processSelectItem(cmdDetails, ctlvs); break; case STK_CMD_DISPLAY_TEXT: param = this.processDisplayText(cmdDetails, ctlvs); break; case STK_CMD_SET_UP_IDLE_MODE_TEXT: param = this.processSetUpIdleModeText(cmdDetails, ctlvs); break; case STK_CMD_GET_INKEY: param = this.processGetInkey(cmdDetails, ctlvs); break; case STK_CMD_GET_INPUT: param = this.processGetInput(cmdDetails, ctlvs); break; case STK_CMD_SEND_SS: case STK_CMD_SEND_USSD: case STK_CMD_SEND_SMS: case STK_CMD_SEND_DTMF: param = this.processEventNotify(cmdDetails, ctlvs); break; case STK_CMD_SET_UP_CALL: param = this.processSetupCall(cmdDetails, ctlvs); break; case STK_CMD_LAUNCH_BROWSER: param = this.processLaunchBrowser(cmdDetails, ctlvs); break; case STK_CMD_PLAY_TONE: param = this.processPlayTone(cmdDetails, ctlvs); break; default: debug("unknown proactive command"); break; } return param; }, /** * Construct a param for Refresh. * * @param cmdDetails * The value object of CommandDetails TLV. * @param ctlvs * The all TLVs in this proactive command. */ processRefresh: function processRefresh(cmdDetails, ctlvs) { let refreshType = cmdDetails.commandQualifier; switch (refreshType) { case STK_REFRESH_FILE_CHANGE: case STK_REFRESH_NAA_INIT_AND_FILE_CHANGE: let ctlv = StkProactiveCmdHelper.searchForTag( COMPREHENSIONTLV_FILE_LIST, ctlvs); if (ctlv) { let list = ctlv.value.fileList; if (DEBUG) { debug("Refresh, list = " + list); } RIL.fetchICCRecords(); } break; } return {}; }, /** * Construct a param for Poll Interval. * * @param cmdDetails * The value object of CommandDetails TLV. * @param ctlvs * The all TLVs in this proactive command. */ processPollInterval: function processPollInterval(cmdDetails, ctlvs) { let ctlv = StkProactiveCmdHelper.searchForTag( COMPREHENSIONTLV_TAG_DURATION, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Poll Interval: Required value missing : Duration"); } return ctlv.value; }, /** * Construct a param for Poll Off. * * @param cmdDetails * The value object of CommandDetails TLV. * @param ctlvs * The all TLVs in this proactive command. */ processPollOff: function processPollOff(cmdDetails, ctlvs) { return {}; }, /** * Construct a param for Set Up Event list. * * @param cmdDetails * The value object of CommandDetails TLV. * @param ctlvs * The all TLVs in this proactive command. */ processSetUpEventList: function processSetUpEventList(cmdDetails, ctlvs) { let ctlv = StkProactiveCmdHelper.searchForTag( COMPREHENSIONTLV_TAG_EVENT_LIST, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Event List: Required value missing : Event List"); } return ctlv.value || {eventList: null}; }, /** * Construct a param for Select Item. * * @param cmdDetails * The value object of CommandDetails TLV. * @param ctlvs * The all TLVs in this proactive command. */ processSelectItem: function processSelectItem(cmdDetails, ctlvs) { let menu = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs); if (ctlv) { menu.title = ctlv.value.identifier; } menu.items = []; for (let i = 0; i < ctlvs.length; i++) { let ctlv = ctlvs[i]; if (ctlv.tag == COMPREHENSIONTLV_TAG_ITEM) { menu.items.push(ctlv.value); } } if (menu.items.length == 0) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Menu: Required value missing : items"); } ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ITEM_ID, ctlvs); if (ctlv) { menu.defaultItem = ctlv.value.identifier - 1; } // The 1st bit and 2nd bit determines the presentation type. menu.presentationType = cmdDetails.commandQualifier & 0x03; // Help information available. if (cmdDetails.commandQualifier & 0x80) { menu.isHelpAvailable = true; } return menu; }, processDisplayText: function processDisplayText(cmdDetails, ctlvs) { let textMsg = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Display Text: Required value missing : Text String"); } textMsg.text = ctlv.value.textString; ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_IMMEDIATE_RESPONSE, ctlvs); if (ctlv) { textMsg.responseNeeded = true; } // High priority. if (cmdDetails.commandQualifier & 0x01) { textMsg.isHighPriority = true; } // User clear. if (cmdDetails.commandQualifier & 0x80) { textMsg.userClear = true; } return textMsg; }, processSetUpIdleModeText: function processSetUpIdleModeText(cmdDetails, ctlvs) { let textMsg = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Set Up Idle Text: Required value missing : Text String"); } textMsg.text = ctlv.value.textString; return textMsg; }, processGetInkey: function processGetInkey(cmdDetails, ctlvs) { let input = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Get InKey: Required value missing : Text String"); } input.text = ctlv.value.textString; input.minLength = 1; input.maxLength = 1; // isAlphabet if (cmdDetails.commandQualifier & 0x01) { input.isAlphabet = true; } // UCS2 if (cmdDetails.commandQualifier & 0x02) { input.isUCS2 = true; } // Character sets defined in bit 1 and bit 2 are disable and // the YES/NO reponse is required. if (cmdDetails.commandQualifier & 0x04) { input.isYesNoRequested = true; } // Help information available. if (cmdDetails.commandQualifier & 0x80) { input.isHelpAvailable = true; } return input; }, processGetInput: function processGetInput(cmdDetails, ctlvs) { let input = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TEXT_STRING, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Get Input: Required value missing : Text String"); } input.text = ctlv.value.textString; ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_RESPONSE_LENGTH, ctlvs); if (ctlv) { input.minLength = ctlv.value.minLength; input.maxLength = ctlv.value.maxLength; } ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_DEFAULT_TEXT, ctlvs); if (ctlv) { input.defaultText = ctlv.value.textString; } // Alphabet only if (cmdDetails.commandQualifier & 0x01) { input.isAlphabet = true; } // UCS2 if (cmdDetails.commandQualifier & 0x02) { input.isUCS2 = true; } // User input shall not be revealed if (cmdDetails.commandQualifier & 0x04) { input.hideInput = true; } // User input in SMS packed format if (cmdDetails.commandQualifier & 0x08) { input.isPacked = true; } // Help information available. if (cmdDetails.commandQualifier & 0x80) { input.isHelpAvailable = true; } return input; }, processEventNotify: function processEventNotify(cmdDetails, ctlvs) { let textMsg = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Event Notfiy: Required value missing : Alpha ID"); } textMsg.text = ctlv.value.identifier; return textMsg; }, processSetupCall: function processSetupCall(cmdDetails, ctlvs) { let call = {}; for (let i = 0; i < ctlvs.length; i++) { let ctlv = ctlvs[i]; if (ctlv.tag == COMPREHENSIONTLV_TAG_ALPHA_ID) { if (!call.confirmMessage) { call.confirmMessage = ctlv.value.identifier; } else { call.callMessge = ctlv.value.identifier; break; } } } let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ADDRESS, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Set Up Call: Required value missing : Adress"); } call.address = ctlv.value.number; return call; }, processLaunchBrowser: function processLaunchBrowser(cmdDetails, ctlvs) { let browser = {}; let ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_URL, ctlvs); if (!ctlv) { RIL.sendStkTerminalResponse({ command: cmdDetails, resultCode: STK_RESULT_REQUIRED_VALUES_MISSING}); throw new Error("Stk Launch Browser: Required value missing : URL"); } browser.url = ctlv.value.url; ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs) if (ctlv) { browser.confirmMessage = ctlv.value.identifier; } browser.mode = cmdDetails.commandQualifier & 0x03; return browser; }, processPlayTone: function processPlayTone(cmdDetails, ctlvs) { let playTone = {}; let ctlv = StkProactiveCmdHelper.searchForTag( COMPREHENSIONTLV_TAG_ALPHA_ID, ctlvs); if (ctlv) { playTone.text = ctlv.value.identifier; } ctlv = StkProactiveCmdHelper.searchForTag(COMPREHENSIONTLV_TAG_TONE, ctlvs); if (ctlv) { playTone.tone = ctlv.value.tone; } ctlv = StkProactiveCmdHelper.searchForTag( COMPREHENSIONTLV_TAG_DURATION, ctlvs); if (ctlv) { playTone.duration = ctlv.value; } // vibrate is only defined in TS 102.223 playTone.isVibrate = (cmdDetails.commandQualifier & 0x01) != 0x00; return playTone; } }; let StkProactiveCmdHelper = { retrieve: function retrieve(tag, length) { switch (tag) { case COMPREHENSIONTLV_TAG_COMMAND_DETAILS: return this.retrieveCommandDetails(length); case COMPREHENSIONTLV_TAG_DEVICE_ID: return this.retrieveDeviceId(length); case COMPREHENSIONTLV_TAG_ALPHA_ID: return this.retrieveAlphaId(length); case COMPREHENSIONTLV_TAG_DURATION: return this.retrieveDuration(length); case COMPREHENSIONTLV_TAG_ADDRESS: return this.retrieveAddress(length); case COMPREHENSIONTLV_TAG_TEXT_STRING: return this.retrieveTextString(length); case COMPREHENSIONTLV_TAG_TONE: return this.retrieveTone(length); case COMPREHENSIONTLV_TAG_ITEM: return this.retrieveItem(length); case COMPREHENSIONTLV_TAG_ITEM_ID: return this.retrieveItemId(length); case COMPREHENSIONTLV_TAG_RESPONSE_LENGTH: return this.retrieveResponseLength(length); case COMPREHENSIONTLV_TAG_FILE_LIST: return this.retrieveFileList(length); case COMPREHENSIONTLV_TAG_DEFAULT_TEXT: return this.retrieveDefaultText(length); case COMPREHENSIONTLV_TAG_EVENT_LIST: return this.retrieveEventList(length); case COMPREHENSIONTLV_TAG_IMMEDIATE_RESPONSE: return this.retrieveImmediaResponse(length); case COMPREHENSIONTLV_TAG_URL: return this.retrieveUrl(length); default: debug("StkProactiveCmdHelper: unknown tag " + tag.toString(16)); Buf.seekIncoming(length * PDU_HEX_OCTET_SIZE); return null; } }, /** * Command Details. * * | Byte | Description | Length | * | 1 | Command details Tag | 1 | * | 2 | Length = 03 | 1 | * | 3 | Command number | 1 | * | 4 | Type of Command | 1 | * | 5 | Command Qualifier | 1 | */ retrieveCommandDetails: function retrieveCommandDetails(length) { let cmdDetails = { commandNumber: GsmPDUHelper.readHexOctet(), typeOfCommand: GsmPDUHelper.readHexOctet(), commandQualifier: GsmPDUHelper.readHexOctet() }; return cmdDetails; }, /** * Device Identities. * * | Byte | Description | Length | * | 1 | Device Identity Tag | 1 | * | 2 | Length = 02 | 1 | * | 3 | Source device Identity | 1 | * | 4 | Destination device Id | 1 | */ retrieveDeviceId: function retrieveDeviceId(length) { let deviceId = { sourceId: GsmPDUHelper.readHexOctet(), destinationId: GsmPDUHelper.readHexOctet() }; return deviceId; }, /** * Alpha Identifier. * * | Byte | Description | Length | * | 1 | Alpha Identifier Tag | 1 | * | 2 ~ (Y-1)+2 | Length (X) | Y | * | (Y-1)+3 ~ | Alpha identfier | X | * | (Y-1)+X+2 | | | */ retrieveAlphaId: function retrieveAlphaId(length) { let alphaId = { identifier: GsmPDUHelper.readAlphaIdentifier(length) }; return alphaId; }, /** * Duration. * * | Byte | Description | Length | * | 1 | Response Length Tag | 1 | * | 2 | Lenth = 02 | 1 | * | 3 | Time unit | 1 | * | 4 | Time interval | 1 | */ retrieveDuration: function retrieveDuration(length) { let duration = { timeUnit: GsmPDUHelper.readHexOctet(), timeInterval: GsmPDUHelper.readHexOctet(), }; return duration; }, /** * Address. * * | Byte | Description | Length | * | 1 | Alpha Identifier Tag | 1 | * | 2 ~ (Y-1)+2 | Length (X) | Y | * | (Y-1)+3 | TON and NPI | 1 | * | (Y-1)+4 ~ | Dialling number | X | * | (Y-1)+X+2 | | | */ retrieveAddress: function retrieveAddress(length) { let address = { number : GsmPDUHelper.readDiallingNumber(length) }; return address; }, /** * Text String. * * | Byte | Description | Length | * | 1 | Text String Tag | 1 | * | 2 ~ (Y-1)+2 | Length (X) | Y | * | (Y-1)+3 | Data coding scheme | 1 | * | (Y-1)+4~ | Text String | X | * | (Y-1)+X+2 | | | */ retrieveTextString: function retrieveTextString(length) { if (!length) { // null string. return null; } let text = { codingScheme: GsmPDUHelper.readHexOctet() }; length--; // -1 for the codingScheme. switch (text.codingScheme & 0x0f) { case STK_TEXT_CODING_GSM_7BIT_PACKED: text.textString = GsmPDUHelper.readSeptetsToString(length / 7, 0, 0, 0); break; case STK_TEXT_CODING_GSM_8BIT: text.textString = GsmPDUHelper.read8BitUnpackedToString(length); break; case STK_TEXT_CODING_UCS2: text.textString = GsmPDUHelper.readUCS2String(length); break; } return text; }, /** * Tone. * * | Byte | Description | Length | * | 1 | Tone Tag | 1 | * | 2 | Lenth = 01 | 1 | * | 3 | Tone | 1 | */ retrieveTone: function retrieveTone(length) { let tone = { tone: GsmPDUHelper.readHexOctet(), }; return tone; }, /** * Item. * * | Byte | Description | Length | * | 1 | Item Tag | 1 | * | 2 ~ (Y-1)+2 | Length (X) | Y | * | (Y-1)+3 | Identifier of item | 1 | * | (Y-1)+4 ~ | Text string of item | X | * | (Y-1)+X+2 | | | */ retrieveItem: function retrieveItem(length) { let item = { identifier: GsmPDUHelper.readHexOctet(), text: GsmPDUHelper.readAlphaIdentifier(length - 1) }; return item; }, /** * Item Identifier. * * | Byte | Description | Length | * | 1 | Item Identifier Tag | 1 | * | 2 | Lenth = 01 | 1 | * | 3 | Identifier of Item chosen | 1 | */ retrieveItemId: function retrieveItemId(length) { let itemId = { identifier: GsmPDUHelper.readHexOctet() }; return itemId; }, /** * Response Length. * * | Byte | Description | Length | * | 1 | Response Length Tag | 1 | * | 2 | Lenth = 02 | 1 | * | 3 | Minimum length of response | 1 | * | 4 | Maximum length of response | 1 | */ retrieveResponseLength: function retrieveResponseLength(length) { let rspLength = { minLength : GsmPDUHelper.readHexOctet(), maxLength : GsmPDUHelper.readHexOctet() }; return rspLength; }, /** * File List. * * | Byte | Description | Length | * | 1 | File List Tag | 1 | * | 2 ~ (Y-1)+2 | Length (X) | Y | * | (Y-1)+3 | Number of files | 1 | * | (Y-1)+4 ~ | Files | X | * | (Y-1)+X+2 | | | */ retrieveFileList: function retrieveFileList(length) { let num = GsmPDUHelper.readHexOctet(); let fileList = ""; length--; // -1 for the num octet. for (let i = 0; i < 2 * length; i++) { // Didn't use readHexOctet here, // otherwise 0x00 will be "0", not "00" fileList += String.fromCharCode(Buf.readUint16()); } return { fileList: fileList }; }, /** * Default Text. * * Same as Text String. */ retrieveDefaultText: function retrieveDefaultText(length) { return this.retrieveTextString(length); }, /** * Event List. */ retrieveEventList: function retrieveEventList(length) { if (!length) { // null means an indication to ME to remove the existing list of events // in ME. return null; } let eventList = []; for (let i = 0; i < length; i++) { eventList.push(GsmPDUHelper.readHexOctet()); } return { eventList: eventList }; }, /** * Immediate Response. * * | Byte | Description | Length | * | 1 | Immediate Response Tag | 1 | * | 2 | Length = 00 | 1 | */ retrieveImmediaResponse: function retrieveImmediaResponse(length) { return {}; }, /** * URL * * | Byte | Description | Length | * | 1 | URL Tag | 1 | * | 2 ~ (Y+1) | Length(X) | Y | * | (Y+2) ~ | URL | X | * | (Y+1+X) | | | */ retrieveUrl: function retrieveUrl(length) { let s = ""; for (let i = 0; i < length; i++) { s += String.fromCharCode(GsmPDUHelper.readHexOctet()); } return {url: s}; }, searchForTag: function searchForTag(tag, ctlvs) { for (let i = 0; i < ctlvs.length; i++) { let ctlv = ctlvs[i]; if ((ctlv.tag & ~COMPREHENSIONTLV_FLAG_CR) == tag) { return ctlv; } } return null; }, }; let ComprehensionTlvHelper = { /** * Decode raw data to a Comprehension-TLV. */ decode: function decode() { let hlen = 0; // For header(tag field + length field) length. let temp = GsmPDUHelper.readHexOctet(); hlen++; // TS 101.220, clause 7.1.1 let tag, tagValue, cr; switch (temp) { // TS 101.220, clause 7.1.1 case 0x0: // Not used. case 0xff: // Not used. case 0x80: // Reserved for future use. RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid octet when parsing Comprehension TLV :" + temp); break; case 0x7f: // Tag is three byte format. // TS 101.220 clause 7.1.1.2. // | Byte 1 | Byte 2 | Byte 3 | // | | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | | // | 0x7f |CR | Tag Value | tag = (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet(); hlen += 2; cr = (tag & 0x8000) != 0; tag &= ~0x8000; break; default: // Tag is single byte format. tag = temp; // TS 101.220 clause 7.1.1.1. // | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | // |CR | Tag Value | cr = (tag & 0x80) != 0; tag &= ~0x80; } // TS 101.220 clause 7.1.2, Length Encoding. // Length | Byte 1 | Byte 2 | Byte 3 | Byte 4 | // 0 - 127 | 00 - 7f | N/A | N/A | N/A | // 128-255 | 81 | 80 - ff| N/A | N/A | // 256-65535| 82 | 0100 - ffff | N/A | // 65536- | 83 | 010000 - ffffff | // 16777215 // // Length errors: TS 11.14, clause 6.10.6 let length; // Data length. temp = GsmPDUHelper.readHexOctet(); hlen++; if (temp < 0x80) { length = temp; } else if (temp == 0x81) { length = GsmPDUHelper.readHexOctet(); hlen++; if (length < 0x80) { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid length in Comprehension TLV :" + length); } } else if (temp == 0x82) { length = (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet(); hlen += 2; if (lenth < 0x0100) { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid length in 3-byte Comprehension TLV :" + length); } } else if (temp == 0x83) { length = (GsmPDUHelper.readHexOctet() << 16) | (GsmPDUHelper.readHexOctet() << 8) | GsmPDUHelper.readHexOctet(); hlen += 3; if (length < 0x010000) { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid length in 4-byte Comprehension TLV :" + length); } } else { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid octet in Comprehension TLV :" + length); } let ctlv = { tag: tag, length: length, value: StkProactiveCmdHelper.retrieve(tag, length), cr: cr, hlen: hlen }; return ctlv; }, decodeChunks: function decodeChunks(length) { let chunks = []; let index = 0; while (index < length) { let tlv = this.decode(); chunks.push(tlv); index += tlv.length; index += tlv.hlen; } return chunks; }, /** * Write Location Info Comprehension TLV. * * @param loc location Information. */ writeLocationInfoTlv: function writeLocationInfoTlv(loc) { GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_LOCATION_INFO | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(loc.gsmCellId > 0xffff ? 9 : 7); // From TS 11.14, clause 12.19 // "The mobile country code (MCC), the mobile network code (MNC), // the location area code (LAC) and the cell ID are // coded as in TS 04.08." // And from TS 04.08 and TS 24.008, // the format is as follows: // // MCC = MCC_digit_1 + MCC_digit_2 + MCC_digit_3 // // 8 7 6 5 4 3 2 1 // +-------------+-------------+ // | MCC digit 2 | MCC digit 1 | octet 2 // | MNC digit 3 | MCC digit 3 | octet 3 // | MNC digit 2 | MNC digit 1 | octet 4 // +-------------+-------------+ // // Also in TS 24.008 // "However a network operator may decide to // use only two digits in the MNC in the LAI over the // radio interface. In this case, bits 5 to 8 of octet 3 // shall be coded as '1111'". // MCC & MNC, 3 octets let mcc = loc.mcc.toString(); let mnc = loc.mnc.toString(); if (mnc.length == 1) { mnc = "F0" + mnc; } else if (mnc.length == 2) { mnc = "F" + mnc; } else { mnc = mnc[2] + mnc[0] + mnc[1]; } GsmPDUHelper.writeSwappedNibbleBCD(mcc + mnc); // LAC, 2 octets GsmPDUHelper.writeHexOctet((loc.gsmLocationAreaCode >> 8) & 0xff); GsmPDUHelper.writeHexOctet(loc.gsmLocationAreaCode & 0xff); // Cell Id if (loc.gsmCellId > 0xffff) { // UMTS/WCDMA, gsmCellId is 28 bits. GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 24) & 0xff); GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 16) & 0xff); GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 8) & 0xff); GsmPDUHelper.writeHexOctet(loc.gsmCellId & 0xff); } else { // GSM, gsmCellId is 16 bits. GsmPDUHelper.writeHexOctet((loc.gsmCellId >> 8) & 0xff); GsmPDUHelper.writeHexOctet(loc.gsmCellId & 0xff); } }, /** * Given a geckoError string, this function translates it into cause value * and write the value into buffer. * * @param geckoError Error string that is passed to gecko. */ writeCauseTlv: function writeCauseTlv(geckoError) { let cause = -1; for (let errorNo in RIL_ERROR_TO_GECKO_ERROR) { if (geckoError == RIL_ERROR_TO_GECKO_ERROR[errorNo]) { cause = errorNo; break; } } cause = (cause == -1) ? ERROR_SUCCESS : cause; GsmPDUHelper.writeHexOctet(COMPREHENSIONTLV_TAG_CAUSE | COMPREHENSIONTLV_FLAG_CR); GsmPDUHelper.writeHexOctet(2); // For single cause value. // TS 04.08, clause 10.5.4.11: National standard code + user location. GsmPDUHelper.writeHexOctet(0x60); // TS 04.08, clause 10.5.4.11: ext bit = 1 + 7 bits for cause. // +-----------------+----------------------------------+ // | Ext = 1 (1 bit) | Cause (7 bits) | // +-----------------+----------------------------------+ GsmPDUHelper.writeHexOctet(0x80 | cause); }, getSizeOfLengthOctets: function getSizeOfLengthOctets(length) { if (length >= 0x10000) { return 4; // 0x83, len_1, len_2, len_3 } else if (length >= 0x100) { return 3; // 0x82, len_1, len_2 } else if (length >= 0x80) { return 2; // 0x81, len } else { return 1; // len } }, writeLength: function writeLength(length) { // TS 101.220 clause 7.1.2, Length Encoding. // Length | Byte 1 | Byte 2 | Byte 3 | Byte 4 | // 0 - 127 | 00 - 7f | N/A | N/A | N/A | // 128-255 | 81 | 80 - ff| N/A | N/A | // 256-65535| 82 | 0100 - ffff | N/A | // 65536- | 83 | 010000 - ffffff | // 16777215 if (length < 0x80) { GsmPDUHelper.writeHexOctet(length); } else if (0x80 <= length && length < 0x100) { GsmPDUHelper.writeHexOctet(0x81); GsmPDUHelper.writeHexOctet(length); } else if (0x100 <= length && length < 0x10000) { GsmPDUHelper.writeHexOctet(0x82); GsmPDUHelper.writeHexOctet((length >> 8) & 0xff); GsmPDUHelper.writeHexOctet(length & 0xff); } else if (0x10000 <= length && length < 0x1000000) { GsmPDUHelper.writeHexOctet(0x83); GsmPDUHelper.writeHexOctet((length >> 16) & 0xff); GsmPDUHelper.writeHexOctet((length >> 8) & 0xff); GsmPDUHelper.writeHexOctet(length & 0xff); } else { throw new Error("Invalid length value :" + length); } }, }; let BerTlvHelper = { /** * Decode Ber TLV. * * @param dataLen * The length of data in bytes. */ decode: function decode(dataLen) { // See TS 11.14, Annex D for BerTlv. let hlen = 0; let tag = GsmPDUHelper.readHexOctet(); hlen++; // Length | Byte 1 | Byte 2 // 0 - 127 | length ('00' to '7f') | N/A // 128 - 255 | '81' | length ('80' to 'ff') let length; if (tag == BER_PROACTIVE_COMMAND_TAG) { let temp = GsmPDUHelper.readHexOctet(); hlen++; if (temp < 0x80) { length = temp; } else if(temp == 0x81) { length = GsmPDUHelper.readHexOctet(); if (length < 0x80) { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid length " + length); } } else { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Invalid length octet " + temp); } } else { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("Unknown BER tag"); } // If the value length of the BerTlv is larger than remaining value on Parcel. if (dataLen - hlen < length) { RIL.sendStkTerminalResponse({ resultCode: STK_RESULT_CMD_DATA_NOT_UNDERSTOOD}); throw new Error("BerTlvHelper value length too long!!"); return; } let ctlvs = ComprehensionTlvHelper.decodeChunks(length); let berTlv = { tag: tag, length: length, value: ctlvs }; return berTlv; } }; /** * Global stuff. */ if (!this.debug) { // Debugging stub that goes nowhere. this.debug = function debug(message) { dump("RIL Worker: " + message + "\n"); }; } // Initialize buffers. This is a separate function so that unit tests can // re-initialize the buffers at will. Buf.init(); function onRILMessage(data) { Buf.processIncoming(data); }; onmessage = function onmessage(event) { RIL.handleDOMMessage(event.data); }; onerror = function onerror(event) { debug("RIL Worker error" + event.message + "\n"); };