/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "nsASCIIMask.h" #include "mozilla/CheckedInt.h" #include "mozilla/double-conversion.h" #include "mozilla/MemoryReporting.h" #include "mozilla/Printf.h" #include "mozilla/MathAlgorithms.h" using double_conversion::DoubleToStringConverter; template const typename nsTSubstring::size_type nsTSubstring::kMaxCapacity = (nsTSubstring::size_type(-1) / 2 - sizeof(nsStringBuffer)) / sizeof(nsTSubstring::char_type) - 2; #ifdef XPCOM_STRING_CONSTRUCTOR_OUT_OF_LINE template nsTSubstring::nsTSubstring(char_type* aData, size_type aLength, DataFlags aDataFlags, ClassFlags aClassFlags) : ::mozilla::detail::nsTStringRepr(aData, aLength, aDataFlags, aClassFlags) { AssertValid(); MOZ_RELEASE_ASSERT(CheckCapacity(aLength), "String is too large."); if (aDataFlags & DataFlags::OWNED) { STRING_STAT_INCREMENT(Adopt); MOZ_LOG_CTOR(this->mData, "StringAdopt", 1); } } #endif /* XPCOM_STRING_CONSTRUCTOR_OUT_OF_LINE */ /** * helper function for down-casting a nsTSubstring to an nsTAutoString. */ template inline const nsTAutoString* AsAutoString(const nsTSubstring* aStr) { return static_cast*>(aStr); } /** * this function is called to prepare mData for writing. the given capacity * indicates the required minimum storage size for mData, in sizeof(char_type) * increments. this function returns true if the operation succeeds. it also * returns the old data and old flags members if mData is newly allocated. * the old data must be released by the caller. */ template bool nsTSubstring::MutatePrep(size_type aCapacity, char_type** aOldData, DataFlags* aOldDataFlags) { // initialize to no old data *aOldData = nullptr; *aOldDataFlags = DataFlags(0); size_type curCapacity = Capacity(); // If |aCapacity > kMaxCapacity|, then our doubling algorithm may not be // able to allocate it. Just bail out in cases like that. We don't want // to be allocating 2GB+ strings anyway. static_assert((sizeof(nsStringBuffer) & 0x1) == 0, "bad size for nsStringBuffer"); if (!CheckCapacity(aCapacity)) { return false; } // |curCapacity == 0| means that the buffer is immutable or 0-sized, so we // need to allocate a new buffer. We cannot use the existing buffer even // though it might be large enough. if (curCapacity != 0) { if (aCapacity <= curCapacity) { this->mDataFlags &= ~DataFlags::VOIDED; // mutation clears voided flag return true; } } if (curCapacity < aCapacity) { // We increase our capacity so that the allocated buffer grows // exponentially, which gives us amortized O(1) appending. Below the // threshold, we use powers-of-two. Above the threshold, we grow by at // least 1.125, rounding up to the nearest MiB. const size_type slowGrowthThreshold = 8 * 1024 * 1024; // nsStringBuffer allocates sizeof(nsStringBuffer) + passed size, and // storageSize below wants extra 1 * sizeof(char_type). const size_type neededExtraSpace = sizeof(nsStringBuffer) / sizeof(char_type) + 1; size_type temp; if (aCapacity >= slowGrowthThreshold) { size_type minNewCapacity = curCapacity + (curCapacity >> 3); // multiply by 1.125 temp = XPCOM_MAX(aCapacity, minNewCapacity) + neededExtraSpace; // Round up to the next multiple of MiB, but ensure the expected // capacity doesn't include the extra space required by nsStringBuffer // and null-termination. const size_t MiB = 1 << 20; temp = (MiB * ((temp + MiB - 1) / MiB)) - neededExtraSpace; } else { // Round up to the next power of two. temp = mozilla::RoundUpPow2(aCapacity + neededExtraSpace) - neededExtraSpace; } MOZ_ASSERT(XPCOM_MIN(temp, kMaxCapacity) >= aCapacity, "should have hit the early return at the top"); aCapacity = XPCOM_MIN(temp, kMaxCapacity); } // // several cases: // // (1) we have a shared buffer (this->mDataFlags & DataFlags::SHARED) // (2) we have an owned buffer (this->mDataFlags & DataFlags::OWNED) // (3) we have an inline buffer (this->mDataFlags & DataFlags::INLINE) // (4) we have a readonly buffer // // requiring that we in some cases preserve the data before creating // a new buffer complicates things just a bit ;-) // size_type storageSize = (aCapacity + 1) * sizeof(char_type); // case #1 if (this->mDataFlags & DataFlags::SHARED) { nsStringBuffer* hdr = nsStringBuffer::FromData(this->mData); if (!hdr->IsReadonly()) { nsStringBuffer* newHdr = nsStringBuffer::Realloc(hdr, storageSize); if (!newHdr) { return false; // out-of-memory (original header left intact) } hdr = newHdr; this->mData = (char_type*)hdr->Data(); this->mDataFlags &= ~DataFlags::VOIDED; // mutation clears voided flag return true; } } char_type* newData; DataFlags newDataFlags; // If this is an nsTAutoStringN whose inline buffer is sufficiently large, // then use it. This helps avoid heap allocations. if ((this->mClassFlags & ClassFlags::INLINE) && (aCapacity < AsAutoString(this)->mInlineCapacity)) { newData = (char_type*)AsAutoString(this)->mStorage; newDataFlags = DataFlags::TERMINATED | DataFlags::INLINE; } else { // if we reach here then, we must allocate a new buffer. we cannot // make use of our DataFlags::OWNED or DataFlags::INLINE buffers because // they are not large enough. nsStringBuffer* newHdr = nsStringBuffer::Alloc(storageSize).take(); if (!newHdr) { return false; // we are still in a consistent state } newData = (char_type*)newHdr->Data(); newDataFlags = DataFlags::TERMINATED | DataFlags::SHARED; } // save old data and flags *aOldData = this->mData; *aOldDataFlags = this->mDataFlags; // this->mLength does not change SetData(newData, this->mLength, newDataFlags); // though we are not necessarily terminated at the moment, now is probably // still the best time to set DataFlags::TERMINATED. return true; } template void nsTSubstring::Finalize() { ::ReleaseData(this->mData, this->mDataFlags); // this->mData, this->mLength, and this->mDataFlags are purposefully left dangling } template bool nsTSubstring::ReplacePrep(index_type aCutStart, size_type aCutLength, size_type aNewLength) { aCutLength = XPCOM_MIN(aCutLength, this->mLength - aCutStart); mozilla::CheckedInt newTotalLen = this->mLength; newTotalLen += aNewLength; newTotalLen -= aCutLength; if (!newTotalLen.isValid()) { return false; } if (aCutStart == this->mLength && Capacity() > newTotalLen.value()) { this->mDataFlags &= ~DataFlags::VOIDED; this->mData[newTotalLen.value()] = char_type(0); this->mLength = newTotalLen.value(); return true; } return ReplacePrepInternal(aCutStart, aCutLength, aNewLength, newTotalLen.value()); } template bool nsTSubstring::ReplacePrepInternal(index_type aCutStart, size_type aCutLen, size_type aFragLen, size_type aNewLen) { char_type* oldData; DataFlags oldFlags; if (!MutatePrep(aNewLen, &oldData, &oldFlags)) { return false; // out-of-memory } if (oldData) { // determine whether or not we need to copy part of the old string // over to the new string. if (aCutStart > 0) { // copy prefix from old string char_traits::copy(this->mData, oldData, aCutStart); } if (aCutStart + aCutLen < this->mLength) { // copy suffix from old string to new offset size_type from = aCutStart + aCutLen; size_type fromLen = this->mLength - from; uint32_t to = aCutStart + aFragLen; char_traits::copy(this->mData + to, oldData + from, fromLen); } ::ReleaseData(oldData, oldFlags); } else { // original data remains intact // determine whether or not we need to move part of the existing string // to make room for the requested hole. if (aFragLen != aCutLen && aCutStart + aCutLen < this->mLength) { uint32_t from = aCutStart + aCutLen; uint32_t fromLen = this->mLength - from; uint32_t to = aCutStart + aFragLen; char_traits::move(this->mData + to, this->mData + from, fromLen); } } // add null terminator (mutable this->mData always has room for the null- // terminator). this->mData[aNewLen] = char_type(0); this->mLength = aNewLen; return true; } template typename nsTSubstring::size_type nsTSubstring::Capacity() const { // return 0 to indicate an immutable or 0-sized buffer size_type capacity; if (this->mDataFlags & DataFlags::SHARED) { // if the string is readonly, then we pretend that it has no capacity. nsStringBuffer* hdr = nsStringBuffer::FromData(this->mData); if (hdr->IsReadonly()) { capacity = 0; } else { capacity = (hdr->StorageSize() / sizeof(char_type)) - 1; } } else if (this->mDataFlags & DataFlags::INLINE) { capacity = AsAutoString(this)->mInlineCapacity; } else if (this->mDataFlags & DataFlags::OWNED) { // we don't store the capacity of an adopted buffer because that would // require an additional member field. the best we can do is base the // capacity on our length. remains to be seen if this is the right // trade-off. capacity = this->mLength; } else { capacity = 0; } return capacity; } template bool nsTSubstring::EnsureMutable(size_type aNewLen) { if (aNewLen == size_type(-1) || aNewLen == this->mLength) { if (this->mDataFlags & (DataFlags::INLINE | DataFlags::OWNED)) { return true; } if ((this->mDataFlags & DataFlags::SHARED) && !nsStringBuffer::FromData(this->mData)->IsReadonly()) { return true; } aNewLen = this->mLength; } return SetLength(aNewLen, mozilla::fallible); } // --------------------------------------------------------------------------- // This version of Assign is optimized for single-character assignment. template void nsTSubstring::Assign(char_type aChar) { if (!ReplacePrep(0, this->mLength, 1)) { AllocFailed(this->mLength); } *this->mData = aChar; } template bool nsTSubstring::Assign(char_type aChar, const fallible_t&) { if (!ReplacePrep(0, this->mLength, 1)) { return false; } *this->mData = aChar; return true; } template void nsTSubstring::Assign(const char_type* aData) { if (!Assign(aData, mozilla::fallible)) { AllocFailed(char_traits::length(aData)); } } template bool nsTSubstring::Assign(const char_type* aData, const fallible_t&) { return Assign(aData, size_type(-1), mozilla::fallible); } template void nsTSubstring::Assign(const char_type* aData, size_type aLength) { if (!Assign(aData, aLength, mozilla::fallible)) { AllocFailed(aLength == size_type(-1) ? char_traits::length(aData) : aLength); } } template bool nsTSubstring::Assign(const char_type* aData, size_type aLength, const fallible_t& aFallible) { if (!aData || aLength == 0) { Truncate(); return true; } if (aLength == size_type(-1)) { aLength = char_traits::length(aData); } if (this->IsDependentOn(aData, aData + aLength)) { return Assign(string_type(aData, aLength), aFallible); } if (!ReplacePrep(0, this->mLength, aLength)) { return false; } char_traits::copy(this->mData, aData, aLength); return true; } template void nsTSubstring::AssignASCII(const char* aData, size_type aLength) { if (!AssignASCII(aData, aLength, mozilla::fallible)) { AllocFailed(aLength); } } template bool nsTSubstring::AssignASCII(const char* aData, size_type aLength, const fallible_t& aFallible) { // A Unicode string can't depend on an ASCII string buffer, // so this dependence check only applies to CStrings. #ifdef CharT_is_char if (this->IsDependentOn(aData, aData + aLength)) { return Assign(string_type(aData, aLength), aFallible); } #endif if (!ReplacePrep(0, this->mLength, aLength)) { return false; } char_traits::copyASCII(this->mData, aData, aLength); return true; } template void nsTSubstring::AssignLiteral(const char_type* aData, size_type aLength) { ::ReleaseData(this->mData, this->mDataFlags); SetData(const_cast(aData), aLength, DataFlags::TERMINATED | DataFlags::LITERAL); } template void nsTSubstring::Assign(const self_type& aStr) { if (!Assign(aStr, mozilla::fallible)) { AllocFailed(aStr.Length()); } } template bool nsTSubstring::Assign(const self_type& aStr, const fallible_t& aFallible) { // |aStr| could be sharable. We need to check its flags to know how to // deal with it. if (&aStr == this) { return true; } if (!aStr.mLength) { Truncate(); this->mDataFlags |= aStr.mDataFlags & DataFlags::VOIDED; return true; } if (aStr.mDataFlags & DataFlags::SHARED) { // nice! we can avoid a string copy :-) // |aStr| should be null-terminated NS_ASSERTION(aStr.mDataFlags & DataFlags::TERMINATED, "shared, but not terminated"); ::ReleaseData(this->mData, this->mDataFlags); SetData(aStr.mData, aStr.mLength, DataFlags::TERMINATED | DataFlags::SHARED); // get an owning reference to the this->mData nsStringBuffer::FromData(this->mData)->AddRef(); return true; } else if (aStr.mDataFlags & DataFlags::LITERAL) { MOZ_ASSERT(aStr.mDataFlags & DataFlags::TERMINATED, "Unterminated literal"); AssignLiteral(aStr.mData, aStr.mLength); return true; } // else, treat this like an ordinary assignment. return Assign(aStr.Data(), aStr.Length(), aFallible); } template void nsTSubstring::Assign(self_type&& aStr) { if (!Assign(mozilla::Move(aStr), mozilla::fallible)) { AllocFailed(aStr.Length()); } } template bool nsTSubstring::Assign(self_type&& aStr, const fallible_t& aFallible) { // We're moving |aStr| in this method, so we need to try to steal the data, // and in the fallback perform a copy-assignment followed by a truncation of // the original string. if (&aStr == this) { NS_WARNING("Move assigning a string to itself?"); return true; } if (aStr.mDataFlags & (DataFlags::SHARED | DataFlags::OWNED)) { // If they have a SHARED or OWNED buffer, we can avoid a copy - so steal // their buffer and reset them to the empty string. // |aStr| should be null-terminated NS_ASSERTION(aStr.mDataFlags & DataFlags::TERMINATED, "shared or owned, but not terminated"); ::ReleaseData(this->mData, this->mDataFlags); SetData(aStr.mData, aStr.mLength, aStr.mDataFlags); aStr.SetToEmptyBuffer(); return true; } // Otherwise treat this as a normal assignment, and truncate the moved string. // We don't truncate the source string if the allocation failed. if (!Assign(aStr, aFallible)) { return false; } aStr.Truncate(); return true; } // NOTE(nika): gcc 4.9 workaround. Remove when support is dropped. template void nsTSubstring::Assign(const literalstring_type& aStr) { Assign(aStr.AsString()); } template void nsTSubstring::Assign(const substring_tuple_type& aTuple) { if (!Assign(aTuple, mozilla::fallible)) { AllocFailed(aTuple.Length()); } } template bool nsTSubstring::Assign(const substring_tuple_type& aTuple, const fallible_t& aFallible) { if (aTuple.IsDependentOn(this->mData, this->mData + this->mLength)) { // take advantage of sharing here... return Assign(string_type(aTuple), aFallible); } size_type length = aTuple.Length(); // don't use ReplacePrep here because it changes the length char_type* oldData; DataFlags oldFlags; if (!MutatePrep(length, &oldData, &oldFlags)) { return false; } if (oldData) { ::ReleaseData(oldData, oldFlags); } aTuple.WriteTo(this->mData, length); this->mData[length] = 0; this->mLength = length; return true; } template void nsTSubstring::Adopt(char_type* aData, size_type aLength) { if (aData) { ::ReleaseData(this->mData, this->mDataFlags); if (aLength == size_type(-1)) { aLength = char_traits::length(aData); } MOZ_RELEASE_ASSERT(CheckCapacity(aLength), "adopting a too-long string"); SetData(aData, aLength, DataFlags::TERMINATED | DataFlags::OWNED); STRING_STAT_INCREMENT(Adopt); // Treat this as construction of a "StringAdopt" object for leak // tracking purposes. MOZ_LOG_CTOR(this->mData, "StringAdopt", 1); } else { SetIsVoid(true); } } // This version of Replace is optimized for single-character replacement. template void nsTSubstring::Replace(index_type aCutStart, size_type aCutLength, char_type aChar) { aCutStart = XPCOM_MIN(aCutStart, this->Length()); if (ReplacePrep(aCutStart, aCutLength, 1)) { this->mData[aCutStart] = aChar; } } template bool nsTSubstring::Replace(index_type aCutStart, size_type aCutLength, char_type aChar, const fallible_t&) { aCutStart = XPCOM_MIN(aCutStart, this->Length()); if (!ReplacePrep(aCutStart, aCutLength, 1)) { return false; } this->mData[aCutStart] = aChar; return true; } template void nsTSubstring::Replace(index_type aCutStart, size_type aCutLength, const char_type* aData, size_type aLength) { if (!Replace(aCutStart, aCutLength, aData, aLength, mozilla::fallible)) { AllocFailed(this->Length() - aCutLength + 1); } } template bool nsTSubstring::Replace(index_type aCutStart, size_type aCutLength, const char_type* aData, size_type aLength, const fallible_t& aFallible) { // unfortunately, some callers pass null :-( if (!aData) { aLength = 0; } else { if (aLength == size_type(-1)) { aLength = char_traits::length(aData); } if (this->IsDependentOn(aData, aData + aLength)) { nsTAutoString temp(aData, aLength); return Replace(aCutStart, aCutLength, temp, aFallible); } } aCutStart = XPCOM_MIN(aCutStart, this->Length()); bool ok = ReplacePrep(aCutStart, aCutLength, aLength); if (!ok) { return false; } if (aLength > 0) { char_traits::copy(this->mData + aCutStart, aData, aLength); } return true; } template void nsTSubstring::ReplaceASCII(index_type aCutStart, size_type aCutLength, const char* aData, size_type aLength) { if (!ReplaceASCII(aCutStart, aCutLength, aData, aLength, mozilla::fallible)) { AllocFailed(this->Length() - aCutLength + 1); } } template bool nsTSubstring::ReplaceASCII(index_type aCutStart, size_type aCutLength, const char* aData, size_type aLength, const fallible_t& aFallible) { if (aLength == size_type(-1)) { aLength = strlen(aData); } // A Unicode string can't depend on an ASCII string buffer, // so this dependence check only applies to CStrings. #ifdef CharT_is_char if (this->IsDependentOn(aData, aData + aLength)) { nsTAutoString_CharT temp(aData, aLength); return Replace(aCutStart, aCutLength, temp, aFallible); } #endif aCutStart = XPCOM_MIN(aCutStart, this->Length()); bool ok = ReplacePrep(aCutStart, aCutLength, aLength); if (!ok) { return false; } if (aLength > 0) { char_traits::copyASCII(this->mData + aCutStart, aData, aLength); } return true; } template void nsTSubstring::Replace(index_type aCutStart, size_type aCutLength, const substring_tuple_type& aTuple) { if (aTuple.IsDependentOn(this->mData, this->mData + this->mLength)) { nsTAutoString temp(aTuple); Replace(aCutStart, aCutLength, temp); return; } size_type length = aTuple.Length(); aCutStart = XPCOM_MIN(aCutStart, this->Length()); if (ReplacePrep(aCutStart, aCutLength, length) && length > 0) { aTuple.WriteTo(this->mData + aCutStart, length); } } template void nsTSubstring::ReplaceLiteral(index_type aCutStart, size_type aCutLength, const char_type* aData, size_type aLength) { aCutStart = XPCOM_MIN(aCutStart, this->Length()); if (!aCutStart && aCutLength == this->Length()) { AssignLiteral(aData, aLength); } else if (ReplacePrep(aCutStart, aCutLength, aLength) && aLength > 0) { char_traits::copy(this->mData + aCutStart, aData, aLength); } } template void nsTSubstring::SetCapacity(size_type aCapacity) { if (!SetCapacity(aCapacity, mozilla::fallible)) { AllocFailed(aCapacity); } } template bool nsTSubstring::SetCapacity(size_type aCapacity, const fallible_t&) { // capacity does not include room for the terminating null char // if our capacity is reduced to zero, then free our buffer. if (aCapacity == 0) { ::ReleaseData(this->mData, this->mDataFlags); SetToEmptyBuffer(); return true; } char_type* oldData; DataFlags oldFlags; if (!MutatePrep(aCapacity, &oldData, &oldFlags)) { return false; // out-of-memory } // compute new string length size_type newLen = XPCOM_MIN(this->mLength, aCapacity); if (oldData) { // preserve old data if (this->mLength > 0) { char_traits::copy(this->mData, oldData, newLen); } ::ReleaseData(oldData, oldFlags); } // adjust this->mLength if our buffer shrunk down in size if (newLen < this->mLength) { this->mLength = newLen; } // always null-terminate here, even if the buffer got longer. this is // for backwards compat with the old string implementation. this->mData[aCapacity] = char_type(0); return true; } template void nsTSubstring::SetLength(size_type aLength) { SetCapacity(aLength); this->mLength = aLength; } template bool nsTSubstring::SetLength(size_type aLength, const fallible_t& aFallible) { if (!SetCapacity(aLength, aFallible)) { return false; } this->mLength = aLength; return true; } template void nsTSubstring::SetIsVoid(bool aVal) { if (aVal) { Truncate(); this->mDataFlags |= DataFlags::VOIDED; } else { this->mDataFlags &= ~DataFlags::VOIDED; } } namespace mozilla { namespace detail { template typename nsTStringRepr::char_type nsTStringRepr::First() const { MOZ_RELEASE_ASSERT(this->mLength > 0, "|First()| called on an empty string"); return this->mData[0]; } template typename nsTStringRepr::char_type nsTStringRepr::Last() const { MOZ_RELEASE_ASSERT(this->mLength > 0, "|Last()| called on an empty string"); return this->mData[this->mLength - 1]; } template bool nsTStringRepr::Equals(const self_type& aStr) const { return this->mLength == aStr.mLength && char_traits::compare(this->mData, aStr.mData, this->mLength) == 0; } template bool nsTStringRepr::Equals(const self_type& aStr, const comparator_type& aComp) const { return this->mLength == aStr.mLength && aComp(this->mData, aStr.mData, this->mLength, aStr.mLength) == 0; } template bool nsTStringRepr::Equals(const substring_tuple_type& aTuple) const { return Equals(substring_type(aTuple)); } template bool nsTStringRepr::Equals(const substring_tuple_type& aTuple, const comparator_type& aComp) const { return Equals(substring_type(aTuple), aComp); } template bool nsTStringRepr::Equals(const char_type* aData) const { // unfortunately, some callers pass null :-( if (!aData) { NS_NOTREACHED("null data pointer"); return this->mLength == 0; } // XXX avoid length calculation? size_type length = char_traits::length(aData); return this->mLength == length && char_traits::compare(this->mData, aData, this->mLength) == 0; } template bool nsTStringRepr::Equals(const char_type* aData, const comparator_type& aComp) const { // unfortunately, some callers pass null :-( if (!aData) { NS_NOTREACHED("null data pointer"); return this->mLength == 0; } // XXX avoid length calculation? size_type length = char_traits::length(aData); return this->mLength == length && aComp(this->mData, aData, this->mLength, length) == 0; } template bool nsTStringRepr::EqualsASCII(const char* aData, size_type aLen) const { return this->mLength == aLen && char_traits::compareASCII(this->mData, aData, aLen) == 0; } template bool nsTStringRepr::EqualsASCII(const char* aData) const { return char_traits::compareASCIINullTerminated(this->mData, this->mLength, aData) == 0; } template bool nsTStringRepr::LowerCaseEqualsASCII(const char* aData, size_type aLen) const { return this->mLength == aLen && char_traits::compareLowerCaseToASCII(this->mData, aData, aLen) == 0; } template bool nsTStringRepr::LowerCaseEqualsASCII(const char* aData) const { return char_traits::compareLowerCaseToASCIINullTerminated(this->mData, this->mLength, aData) == 0; } template typename nsTStringRepr::size_type nsTStringRepr::CountChar(char_type aChar) const { const char_type* start = this->mData; const char_type* end = this->mData + this->mLength; return NS_COUNT(start, end, aChar); } template int32_t nsTStringRepr::FindChar(char_type aChar, index_type aOffset) const { if (aOffset < this->mLength) { const char_type* result = char_traits::find(this->mData + aOffset, this->mLength - aOffset, aChar); if (result) { return result - this->mData; } } return -1; } } // namespace detail } // namespace mozilla template void nsTSubstring::StripChar(char_type aChar) { if (this->mLength == 0) { return; } if (!EnsureMutable()) { // XXX do this lazily? AllocFailed(this->mLength); } // XXX(darin): this code should defer writing until necessary. char_type* to = this->mData; char_type* from = this->mData; char_type* end = this->mData + this->mLength; while (from < end) { char_type theChar = *from++; if (aChar != theChar) { *to++ = theChar; } } *to = char_type(0); // add the null this->mLength = to - this->mData; } template void nsTSubstring::StripChars(const char_type* aChars) { if (this->mLength == 0) { return; } if (!EnsureMutable()) { // XXX do this lazily? AllocFailed(this->mLength); } // XXX(darin): this code should defer writing until necessary. char_type* to = this->mData; char_type* from = this->mData; char_type* end = this->mData + this->mLength; while (from < end) { char_type theChar = *from++; const char_type* test = aChars; for (; *test && *test != theChar; ++test); if (!*test) { // Not stripped, copy this char. *to++ = theChar; } } *to = char_type(0); // add the null this->mLength = to - this->mData; } template void nsTSubstring::StripTaggedASCII(const ASCIIMaskArray& aToStrip) { if (this->mLength == 0) { return; } if (!EnsureMutable()) { AllocFailed(this->mLength); } char_type* to = this->mData; char_type* from = this->mData; char_type* end = this->mData + this->mLength; while (from < end) { uint32_t theChar = (uint32_t)*from++; // Replacing this with a call to ASCIIMask::IsMasked // regresses performance somewhat, so leaving it inlined. if (!mozilla::ASCIIMask::IsMasked(aToStrip, theChar)) { // Not stripped, copy this char. *to++ = (char_type)theChar; } } *to = char_type(0); // add the null this->mLength = to - this->mData; } template void nsTSubstring::StripCRLF() { // Expanding this call to copy the code from StripTaggedASCII // instead of just calling it does somewhat help with performance // but it is not worth it given the duplicated code. StripTaggedASCII(mozilla::ASCIIMask::MaskCRLF()); } template struct MOZ_STACK_CLASS PrintfAppend : public mozilla::PrintfTarget { explicit PrintfAppend(nsTSubstring* aString) : mString(aString) { } bool append(const char* aStr, size_t aLen) override { if (aLen == 0) { return true; } mString->AppendASCII(aStr, aLen); return true; } private: nsTSubstring* mString; }; template void nsTSubstring::AppendPrintf(const char* aFormat, ...) { PrintfAppend appender(this); va_list ap; va_start(ap, aFormat); bool r = appender.vprint(aFormat, ap); if (!r) { MOZ_CRASH("Allocation or other failure in PrintfTarget::print"); } va_end(ap); } template void nsTSubstring::AppendPrintf(const char* aFormat, va_list aAp) { PrintfAppend appender(this); bool r = appender.vprint(aFormat, aAp); if (!r) { MOZ_CRASH("Allocation or other failure in PrintfTarget::print"); } } // Returns the length of the formatted aDouble in aBuf. static int FormatWithoutTrailingZeros(char (&aBuf)[40], double aDouble, int aPrecision) { static const DoubleToStringConverter converter(DoubleToStringConverter::UNIQUE_ZERO | DoubleToStringConverter::EMIT_POSITIVE_EXPONENT_SIGN, "Infinity", "NaN", 'e', -6, 21, 6, 1); double_conversion::StringBuilder builder(aBuf, sizeof(aBuf)); bool exponential_notation = false; converter.ToPrecision(aDouble, aPrecision, &exponential_notation, &builder); int length = builder.position(); char* formattedDouble = builder.Finalize(); // If we have a shorter string than aPrecision, it means we have a special // value (NaN or Infinity). All other numbers will be formatted with at // least aPrecision digits. if (length <= aPrecision) { return length; } char* end = formattedDouble + length; char* decimalPoint = strchr(aBuf, '.'); // No trailing zeros to remove. if (!decimalPoint) { return length; } if (MOZ_UNLIKELY(exponential_notation)) { // We need to check for cases like 1.00000e-10 (yes, this is // disgusting). char* exponent = end - 1; for (; ; --exponent) { if (*exponent == 'e') { break; } } char* zerosBeforeExponent = exponent - 1; for (; zerosBeforeExponent != decimalPoint; --zerosBeforeExponent) { if (*zerosBeforeExponent != '0') { break; } } if (zerosBeforeExponent == decimalPoint) { --zerosBeforeExponent; } // Slide the exponent to the left over the trailing zeros. Don't // worry about copying the trailing NUL character. size_t exponentSize = end - exponent; memmove(zerosBeforeExponent + 1, exponent, exponentSize); length -= exponent - (zerosBeforeExponent + 1); } else { char* trailingZeros = end - 1; for (; trailingZeros != decimalPoint; --trailingZeros) { if (*trailingZeros != '0') { break; } } if (trailingZeros == decimalPoint) { --trailingZeros; } length -= end - (trailingZeros + 1); } return length; } template void nsTSubstring::AppendFloat(float aFloat) { char buf[40]; int length = FormatWithoutTrailingZeros(buf, aFloat, 6); AppendASCII(buf, length); } template void nsTSubstring::AppendFloat(double aFloat) { char buf[40]; int length = FormatWithoutTrailingZeros(buf, aFloat, 15); AppendASCII(buf, length); } template size_t nsTSubstring::SizeOfExcludingThisIfUnshared( mozilla::MallocSizeOf aMallocSizeOf) const { if (this->mDataFlags & DataFlags::SHARED) { return nsStringBuffer::FromData(this->mData)-> SizeOfIncludingThisIfUnshared(aMallocSizeOf); } if (this->mDataFlags & DataFlags::OWNED) { return aMallocSizeOf(this->mData); } // If we reach here, exactly one of the following must be true: // - DataFlags::VOIDED is set, and this->mData points to sEmptyBuffer; // - DataFlags::INLINE is set, and this->mData points to a buffer within a // string object (e.g. nsAutoString); // - None of DataFlags::SHARED, DataFlags::OWNED, DataFlags::INLINE is set, // and this->mData points to a buffer owned by something else. // // In all three cases, we don't measure it. return 0; } template size_t nsTSubstring::SizeOfExcludingThisEvenIfShared( mozilla::MallocSizeOf aMallocSizeOf) const { // This is identical to SizeOfExcludingThisIfUnshared except for the // DataFlags::SHARED case. if (this->mDataFlags & DataFlags::SHARED) { return nsStringBuffer::FromData(this->mData)-> SizeOfIncludingThisEvenIfShared(aMallocSizeOf); } if (this->mDataFlags & DataFlags::OWNED) { return aMallocSizeOf(this->mData); } return 0; } template size_t nsTSubstring::SizeOfIncludingThisIfUnshared( mozilla::MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThisIfUnshared(aMallocSizeOf); } template size_t nsTSubstring::SizeOfIncludingThisEvenIfShared( mozilla::MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + SizeOfExcludingThisEvenIfShared(aMallocSizeOf); } template inline nsTSubstringSplitter::nsTSubstringSplitter( const nsTSubstring* aStr, char_type aDelim) : mStr(aStr) , mArray(nullptr) , mDelim(aDelim) { if (mStr->IsEmpty()) { mArraySize = 0; return; } size_type delimCount = mStr->CountChar(aDelim); mArraySize = delimCount + 1; mArray.reset(new nsTDependentSubstring[mArraySize]); size_t seenParts = 0; size_type start = 0; do { MOZ_ASSERT(seenParts < mArraySize); int32_t offset = mStr->FindChar(aDelim, start); if (offset != -1) { size_type length = static_cast(offset) - start; mArray[seenParts++].Rebind(mStr->Data() + start, length); start = static_cast(offset) + 1; } else { // Get the remainder mArray[seenParts++].Rebind(mStr->Data() + start, mStr->Length() - start); break; } } while (start < mStr->Length()); } template nsTSubstringSplitter nsTSubstring::Split(const char_type aChar) const { return nsTSubstringSplitter(this, aChar); } template const nsTDependentSubstring& nsTSubstringSplitter::nsTSubstringSplit_Iter::operator* () const { return mObj.Get(mPos); }