// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This webpage shows layout of YV12 and other YUV formats // http://www.fourcc.org/yuv.php // The actual conversion is best described here // http://en.wikipedia.org/wiki/YUV // An article on optimizing YUV conversion using tables instead of multiplies // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf // // YV12 is a full plane of Y and a half height, half width chroma planes // YV16 is a full plane of Y and a full height, half width chroma planes // YV24 is a full plane of Y and a full height, full width chroma planes // // ARGB pixel format is output, which on little endian is stored as BGRA. // The alpha is set to 255, allowing the application to use RGBA or RGB32. #include "yuv_convert.h" #include "gfxPrefs.h" #include "libyuv.h" #include "scale_yuv_argb.h" // Header for low level row functions. #include "yuv_row.h" #include "mozilla/SSE.h" namespace mozilla { namespace gfx { // 16.16 fixed point arithmetic const int kFractionBits = 16; const int kFractionMax = 1 << kFractionBits; const int kFractionMask = ((1 << kFractionBits) - 1); YUVType TypeFromSize(int ywidth, int yheight, int cbcrwidth, int cbcrheight) { if (ywidth == cbcrwidth && yheight == cbcrheight) { return YV24; } else if ((ywidth + 1) / 2 == cbcrwidth && yheight == cbcrheight) { return YV16; } else { return YV12; } } libyuv::FourCC FourCCFromYUVType(YUVType aYUVType) { if (aYUVType == YV24) { return libyuv::FOURCC_I444; } else if (aYUVType == YV16) { return libyuv::FOURCC_I422; } else if (aYUVType == YV12) { return libyuv::FOURCC_I420; } else { return libyuv::FOURCC_ANY; } } // Convert a frame of YUV to 32 bit ARGB. void ConvertYCbCrToRGB32(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int pic_x, int pic_y, int pic_width, int pic_height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type) { // Deprecated function's conversion is accurate. // libyuv converion is a bit inaccurate to get performance. It dynamically // calculates RGB from YUV to use simd. In it, signed byte is used for conversion's // coefficient, but it requests 129. libyuv cut 129 to 127. And only 6 bits are // used for a decimal part during the dynamic calculation. // // The function is still fast on some old intel chips. // See Bug 1256475. bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() || (supports_mmx() && supports_sse() && !supports_sse3()); if (use_deprecated) { ConvertYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf, pic_x, pic_y, pic_width, pic_height, y_pitch, uv_pitch, rgb_pitch, yuv_type); return; } if (yuv_type == YV24) { const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x; const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x; DebugOnly err = libyuv::I444ToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch, rgb_buf, rgb_pitch, pic_width, pic_height); MOZ_ASSERT(!err); } else if (yuv_type == YV16) { const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; const uint8* src_u = u_buf + uv_pitch * pic_y + pic_x / 2; const uint8* src_v = v_buf + uv_pitch * pic_y + pic_x / 2; DebugOnly err = libyuv::I422ToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch, rgb_buf, rgb_pitch, pic_width, pic_height); MOZ_ASSERT(!err); } else { MOZ_ASSERT(yuv_type == YV12); const uint8* src_y = y_buf + y_pitch * pic_y + pic_x; const uint8* src_u = u_buf + (uv_pitch * pic_y + pic_x) / 2; const uint8* src_v = v_buf + (uv_pitch * pic_y + pic_x) / 2; DebugOnly err = libyuv::I420ToARGB(src_y, y_pitch, src_u, uv_pitch, src_v, uv_pitch, rgb_buf, rgb_pitch, pic_width, pic_height); MOZ_ASSERT(!err); } } // Convert a frame of YUV to 32 bit ARGB. void ConvertYCbCrToRGB32_deprecated(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int pic_x, int pic_y, int pic_width, int pic_height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type) { unsigned int y_shift = yuv_type == YV12 ? 1 : 0; unsigned int x_shift = yuv_type == YV24 ? 0 : 1; // Test for SSE because the optimized code uses movntq, which is not part of MMX. bool has_sse = supports_mmx() && supports_sse(); // There is no optimized YV24 SSE routine so we check for this and // fall back to the C code. has_sse &= yuv_type != YV24; bool odd_pic_x = yuv_type != YV24 && pic_x % 2 != 0; int x_width = odd_pic_x ? pic_width - 1 : pic_width; for (int y = pic_y; y < pic_height + pic_y; ++y) { uint8* rgb_row = rgb_buf + (y - pic_y) * rgb_pitch; const uint8* y_ptr = y_buf + y * y_pitch + pic_x; const uint8* u_ptr = u_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); const uint8* v_ptr = v_buf + (y >> y_shift) * uv_pitch + (pic_x >> x_shift); if (odd_pic_x) { // Handle the single odd pixel manually and use the // fast routines for the remaining. FastConvertYUVToRGB32Row_C(y_ptr++, u_ptr++, v_ptr++, rgb_row, 1, x_shift); rgb_row += 4; } if (has_sse) { FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, rgb_row, x_width); } else { FastConvertYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr, rgb_row, x_width, x_shift); } } // MMX used for FastConvertYUVToRGB32Row requires emms instruction. if (has_sse) EMMS(); } // C version does 8 at a time to mimic MMX code static void FilterRows_C(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction) { int y1_fraction = source_y_fraction; int y0_fraction = 256 - y1_fraction; uint8* end = ybuf + source_width; do { ybuf[0] = (y0_ptr[0] * y0_fraction + y1_ptr[0] * y1_fraction) >> 8; ybuf[1] = (y0_ptr[1] * y0_fraction + y1_ptr[1] * y1_fraction) >> 8; ybuf[2] = (y0_ptr[2] * y0_fraction + y1_ptr[2] * y1_fraction) >> 8; ybuf[3] = (y0_ptr[3] * y0_fraction + y1_ptr[3] * y1_fraction) >> 8; ybuf[4] = (y0_ptr[4] * y0_fraction + y1_ptr[4] * y1_fraction) >> 8; ybuf[5] = (y0_ptr[5] * y0_fraction + y1_ptr[5] * y1_fraction) >> 8; ybuf[6] = (y0_ptr[6] * y0_fraction + y1_ptr[6] * y1_fraction) >> 8; ybuf[7] = (y0_ptr[7] * y0_fraction + y1_ptr[7] * y1_fraction) >> 8; y0_ptr += 8; y1_ptr += 8; ybuf += 8; } while (ybuf < end); } #ifdef MOZILLA_MAY_SUPPORT_MMX void FilterRows_MMX(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction); #endif #ifdef MOZILLA_MAY_SUPPORT_SSE2 void FilterRows_SSE2(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction); #endif static inline void FilterRows(uint8* ybuf, const uint8* y0_ptr, const uint8* y1_ptr, int source_width, int source_y_fraction) { #ifdef MOZILLA_MAY_SUPPORT_SSE2 if (mozilla::supports_sse2()) { FilterRows_SSE2(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); return; } #endif #ifdef MOZILLA_MAY_SUPPORT_MMX if (mozilla::supports_mmx()) { FilterRows_MMX(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); return; } #endif FilterRows_C(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); } // Scale a frame of YUV to 32 bit ARGB. void ScaleYCbCrToRGB32(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int source_width, int source_height, int width, int height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type, ScaleFilter filter) { bool use_deprecated = gfxPrefs::YCbCrAccurateConversion() || (supports_mmx() && supports_sse() && !supports_sse3()); if (use_deprecated) { ScaleYCbCrToRGB32_deprecated(y_buf, u_buf, v_buf, rgb_buf, source_width, source_height, width, height, y_pitch, uv_pitch, rgb_pitch, yuv_type, ROTATE_0, filter); return; } DebugOnly err = libyuv::YUVToARGBScale(y_buf, y_pitch, u_buf, uv_pitch, v_buf, uv_pitch, FourCCFromYUVType(yuv_type), source_width, source_height, rgb_buf, rgb_pitch, width, height, libyuv::kFilterBilinear); MOZ_ASSERT(!err); return; } // Scale a frame of YUV to 32 bit ARGB. void ScaleYCbCrToRGB32_deprecated(const uint8* y_buf, const uint8* u_buf, const uint8* v_buf, uint8* rgb_buf, int source_width, int source_height, int width, int height, int y_pitch, int uv_pitch, int rgb_pitch, YUVType yuv_type, Rotate view_rotate, ScaleFilter filter) { bool has_mmx = supports_mmx(); // 4096 allows 3 buffers to fit in 12k. // Helps performance on CPU with 16K L1 cache. // Large enough for 3830x2160 and 30" displays which are 2560x1600. const int kFilterBufferSize = 4096; // Disable filtering if the screen is too big (to avoid buffer overflows). // This should never happen to regular users: they don't have monitors // wider than 4096 pixels. // TODO(fbarchard): Allow rotated videos to filter. if (source_width > kFilterBufferSize || view_rotate) filter = FILTER_NONE; unsigned int y_shift = yuv_type == YV12 ? 1 : 0; // Diagram showing origin and direction of source sampling. // ->0 4<- // 7 3 // // 6 5 // ->1 2<- // Rotations that start at right side of image. if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) || (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) { y_buf += source_width - 1; u_buf += source_width / 2 - 1; v_buf += source_width / 2 - 1; source_width = -source_width; } // Rotations that start at bottom of image. if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) || (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) { y_buf += (source_height - 1) * y_pitch; u_buf += ((source_height >> y_shift) - 1) * uv_pitch; v_buf += ((source_height >> y_shift) - 1) * uv_pitch; source_height = -source_height; } // Handle zero sized destination. if (width == 0 || height == 0) return; int source_dx = source_width * kFractionMax / width; int source_dy = source_height * kFractionMax / height; int source_dx_uv = source_dx; if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) { int tmp = height; height = width; width = tmp; tmp = source_height; source_height = source_width; source_width = tmp; int original_dx = source_dx; int original_dy = source_dy; source_dx = ((original_dy >> kFractionBits) * y_pitch) << kFractionBits; source_dx_uv = ((original_dy >> kFractionBits) * uv_pitch) << kFractionBits; source_dy = original_dx; if (view_rotate == ROTATE_90) { y_pitch = -1; uv_pitch = -1; source_height = -source_height; } else { y_pitch = 1; uv_pitch = 1; } } // Need padding because FilterRows() will write 1 to 16 extra pixels // after the end for SSE2 version. uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16]; uint8* ybuf = reinterpret_cast(reinterpret_cast(yuvbuf + 15) & ~15); uint8* ubuf = ybuf + kFilterBufferSize; uint8* vbuf = ubuf + kFilterBufferSize; // TODO(fbarchard): Fixed point math is off by 1 on negatives. int yscale_fixed = (source_height << kFractionBits) / height; // TODO(fbarchard): Split this into separate function for better efficiency. for (int y = 0; y < height; ++y) { uint8* dest_pixel = rgb_buf + y * rgb_pitch; int source_y_subpixel = (y * yscale_fixed); if (yscale_fixed >= (kFractionMax * 2)) { source_y_subpixel += kFractionMax / 2; // For 1/2 or less, center filter. } int source_y = source_y_subpixel >> kFractionBits; const uint8* y0_ptr = y_buf + source_y * y_pitch; const uint8* y1_ptr = y0_ptr + y_pitch; const uint8* u0_ptr = u_buf + (source_y >> y_shift) * uv_pitch; const uint8* u1_ptr = u0_ptr + uv_pitch; const uint8* v0_ptr = v_buf + (source_y >> y_shift) * uv_pitch; const uint8* v1_ptr = v0_ptr + uv_pitch; // vertical scaler uses 16.8 fixed point int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8; int source_uv_fraction = ((source_y_subpixel >> y_shift) & kFractionMask) >> 8; const uint8* y_ptr = y0_ptr; const uint8* u_ptr = u0_ptr; const uint8* v_ptr = v0_ptr; // Apply vertical filtering if necessary. // TODO(fbarchard): Remove memcpy when not necessary. if (filter & mozilla::gfx::FILTER_BILINEAR_V) { if (yscale_fixed != kFractionMax && source_y_fraction && ((source_y + 1) < source_height)) { FilterRows(ybuf, y0_ptr, y1_ptr, source_width, source_y_fraction); } else { memcpy(ybuf, y0_ptr, source_width); } y_ptr = ybuf; ybuf[source_width] = ybuf[source_width-1]; int uv_source_width = (source_width + 1) / 2; if (yscale_fixed != kFractionMax && source_uv_fraction && (((source_y >> y_shift) + 1) < (source_height >> y_shift))) { FilterRows(ubuf, u0_ptr, u1_ptr, uv_source_width, source_uv_fraction); FilterRows(vbuf, v0_ptr, v1_ptr, uv_source_width, source_uv_fraction); } else { memcpy(ubuf, u0_ptr, uv_source_width); memcpy(vbuf, v0_ptr, uv_source_width); } u_ptr = ubuf; v_ptr = vbuf; ubuf[uv_source_width] = ubuf[uv_source_width - 1]; vbuf[uv_source_width] = vbuf[uv_source_width - 1]; } if (source_dx == kFractionMax) { // Not scaled FastConvertYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width); } else if (filter & FILTER_BILINEAR_H) { LinearScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } else { // Specialized scalers and rotation. #if defined(MOZILLA_MAY_SUPPORT_SSE) && defined(_MSC_VER) && defined(_M_IX86) if(mozilla::supports_sse()) { if (width == (source_width * 2)) { DoubleYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, dest_pixel, width); } else if ((source_dx & kFractionMask) == 0) { // Scaling by integer scale factor. ie half. ConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx >> kFractionBits); } else if (source_dx_uv == source_dx) { // Not rotated. ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } else { RotateConvertYUVToRGB32Row_SSE(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx >> kFractionBits, source_dx_uv >> kFractionBits); } } else { ScaleYUVToRGB32Row_C(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); } #else (void)source_dx_uv; ScaleYUVToRGB32Row(y_ptr, u_ptr, v_ptr, dest_pixel, width, source_dx); #endif } } // MMX used for FastConvertYUVToRGB32Row and FilterRows requires emms. if (has_mmx) EMMS(); } } // namespace gfx } // namespace mozilla