/* vim: set ts=8 sw=8 noexpandtab: */ // qcms // Copyright (C) 2009 Mozilla Foundation // Copyright (C) 1998-2007 Marti Maria // // Permission is hereby granted, free of charge, to any person obtaining // a copy of this software and associated documentation files (the "Software"), // to deal in the Software without restriction, including without limitation // the rights to use, copy, modify, merge, publish, distribute, sublicense, // and/or sell copies of the Software, and to permit persons to whom the Software // is furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. #include #include "qcmsint.h" #include "matrix.h" struct vector matrix_eval(struct matrix mat, struct vector v) { struct vector result; result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2]; result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2]; result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2]; return result; } //XXX: should probably pass by reference and we could //probably reuse this computation in matrix_invert float matrix_det(struct matrix mat) { float det; det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] + mat.m[0][1]*mat.m[1][2]*mat.m[2][0] + mat.m[0][2]*mat.m[1][0]*mat.m[2][1] - mat.m[0][0]*mat.m[1][2]*mat.m[2][1] - mat.m[0][1]*mat.m[1][0]*mat.m[2][2] - mat.m[0][2]*mat.m[1][1]*mat.m[2][0]; return det; } /* from pixman and cairo and Mathematics for Game Programmers */ /* lcms uses gauss-jordan elimination with partial pivoting which is * less efficient and not as numerically stable. See Mathematics for * Game Programmers. */ struct matrix matrix_invert(struct matrix mat) { struct matrix dest_mat; int i,j; static int a[3] = { 2, 2, 1 }; static int b[3] = { 1, 0, 0 }; /* inv (A) = 1/det (A) * adj (A) */ float det = matrix_det(mat); if (det == 0) { dest_mat.invalid = true; return dest_mat; } dest_mat.invalid = false; det = 1/det; for (j = 0; j < 3; j++) { for (i = 0; i < 3; i++) { double p; int ai = a[i]; int aj = a[j]; int bi = b[i]; int bj = b[j]; p = mat.m[ai][aj] * mat.m[bi][bj] - mat.m[ai][bj] * mat.m[bi][aj]; if (((i + j) & 1) != 0) p = -p; dest_mat.m[j][i] = det * p; } } return dest_mat; } struct matrix matrix_identity(void) { struct matrix i; i.m[0][0] = 1; i.m[0][1] = 0; i.m[0][2] = 0; i.m[1][0] = 0; i.m[1][1] = 1; i.m[1][2] = 0; i.m[2][0] = 0; i.m[2][1] = 0; i.m[2][2] = 1; i.invalid = false; return i; } struct matrix matrix_invalid(void) { struct matrix inv = matrix_identity(); inv.invalid = true; return inv; } /* from pixman */ /* MAT3per... */ struct matrix matrix_multiply(struct matrix a, struct matrix b) { struct matrix result; int dx, dy; int o; for (dy = 0; dy < 3; dy++) { for (dx = 0; dx < 3; dx++) { double v = 0; for (o = 0; o < 3; o++) { v += a.m[dy][o] * b.m[o][dx]; } result.m[dy][dx] = v; } } result.invalid = a.invalid || b.invalid; return result; }