/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "imgFrame.h" #include "ImageRegion.h" #include "ShutdownTracker.h" #include "prenv.h" #include "gfx2DGlue.h" #include "gfxPlatform.h" #include "gfxPrefs.h" #include "gfxUtils.h" #include "GeckoProfiler.h" #include "MainThreadUtils.h" #include "mozilla/CheckedInt.h" #include "mozilla/gfx/gfxVars.h" #include "mozilla/gfx/Tools.h" #include "mozilla/gfx/SourceSurfaceRawData.h" #include "mozilla/layers/SourceSurfaceSharedData.h" #include "mozilla/layers/SourceSurfaceVolatileData.h" #include "mozilla/Likely.h" #include "mozilla/MemoryReporting.h" #include "nsMargin.h" #include "nsThreadUtils.h" namespace mozilla { using namespace gfx; namespace image { static void ScopedMapRelease(void* aMap) { delete static_cast(aMap); } static int32_t VolatileSurfaceStride(const IntSize& size, SurfaceFormat format) { // Stride must be a multiple of four or cairo will complain. return (size.width * BytesPerPixel(format) + 0x3) & ~0x3; } static already_AddRefed CreateLockedSurface(DataSourceSurface *aSurface, const IntSize& size, SurfaceFormat format) { // Shared memory is never released until the surface itself is released if (aSurface->GetType() == SurfaceType::DATA_SHARED) { RefPtr surf(aSurface); return surf.forget(); } DataSourceSurface::ScopedMap* smap = new DataSourceSurface::ScopedMap(aSurface, DataSourceSurface::READ_WRITE); if (smap->IsMapped()) { // The ScopedMap is held by this DataSourceSurface. RefPtr surf = Factory::CreateWrappingDataSourceSurface(smap->GetData(), aSurface->Stride(), size, format, &ScopedMapRelease, static_cast(smap)); if (surf) { return surf.forget(); } } delete smap; return nullptr; } static bool ShouldUseHeap(const IntSize& aSize, int32_t aStride, bool aIsAnimated) { // On some platforms (i.e. Android), a volatile buffer actually keeps a file // handle active. We would like to avoid too many since we could easily // exhaust the pool. However, other platforms we do not have the file handle // problem, and additionally we may avoid a superfluous memset since the // volatile memory starts out as zero-filled. Hence the knobs below. // For as long as an animated image is retained, its frames will never be // released to let the OS purge volatile buffers. if (aIsAnimated && gfxPrefs::ImageMemAnimatedUseHeap()) { return true; } // Lets us avoid too many small images consuming all of the handles. The // actual allocation checks for overflow. int32_t bufferSize = (aStride * aSize.width) / 1024; if (bufferSize < gfxPrefs::ImageMemVolatileMinThresholdKB()) { return true; } return false; } static already_AddRefed AllocateBufferForImage(const IntSize& size, SurfaceFormat format, bool aIsAnimated = false) { int32_t stride = VolatileSurfaceStride(size, format); if (ShouldUseHeap(size, stride, aIsAnimated)) { RefPtr newSurf = new SourceSurfaceAlignedRawData(); if (newSurf->Init(size, format, false, 0, stride)) { return newSurf.forget(); } } if (!aIsAnimated && gfxVars::GetUseWebRenderOrDefault() && gfxPrefs::ImageMemShared()) { RefPtr newSurf = new SourceSurfaceSharedData(); if (newSurf->Init(size, stride, format)) { return newSurf.forget(); } } else { RefPtr newSurf= new SourceSurfaceVolatileData(); if (newSurf->Init(size, stride, format)) { return newSurf.forget(); } } return nullptr; } static bool ClearSurface(DataSourceSurface* aSurface, const IntSize& aSize, SurfaceFormat aFormat) { int32_t stride = aSurface->Stride(); uint8_t* data = aSurface->GetData(); MOZ_ASSERT(data); if (aFormat == SurfaceFormat::B8G8R8X8) { // Skia doesn't support RGBX surfaces, so ensure the alpha value is set // to opaque white. While it would be nice to only do this for Skia, // imgFrame can run off main thread and past shutdown where // we might not have gfxPlatform, so just memset everytime instead. memset(data, 0xFF, stride * aSize.height); } else if (aSurface->OnHeap()) { // We only need to memset it if the buffer was allocated on the heap. // Otherwise, it's allocated via mmap and refers to a zeroed page and will // be COW once it's written to. memset(data, 0, stride * aSize.height); } return true; } // Returns true if an image of aWidth x aHeight is allowed and legal. static bool AllowedImageSize(int32_t aWidth, int32_t aHeight) { // reject over-wide or over-tall images const int32_t k64KLimit = 0x0000FFFF; if (MOZ_UNLIKELY(aWidth > k64KLimit || aHeight > k64KLimit )) { NS_WARNING("image too big"); return false; } // protect against invalid sizes if (MOZ_UNLIKELY(aHeight <= 0 || aWidth <= 0)) { return false; } // check to make sure we don't overflow a 32-bit CheckedInt32 requiredBytes = CheckedInt32(aWidth) * CheckedInt32(aHeight) * 4; if (MOZ_UNLIKELY(!requiredBytes.isValid())) { NS_WARNING("width or height too large"); return false; } return true; } static bool AllowedImageAndFrameDimensions(const nsIntSize& aImageSize, const nsIntRect& aFrameRect) { if (!AllowedImageSize(aImageSize.width, aImageSize.height)) { return false; } if (!AllowedImageSize(aFrameRect.Width(), aFrameRect.Height())) { return false; } nsIntRect imageRect(0, 0, aImageSize.width, aImageSize.height); if (!imageRect.Contains(aFrameRect)) { NS_WARNING("Animated image frame does not fit inside bounds of image"); } return true; } imgFrame::imgFrame() : mMonitor("imgFrame") , mDecoded(0, 0, 0, 0) , mLockCount(0) , mTimeout(FrameTimeout::FromRawMilliseconds(100)) , mDisposalMethod(DisposalMethod::NOT_SPECIFIED) , mBlendMethod(BlendMethod::OVER) , mAborted(false) , mFinished(false) , mOptimizable(false) , mPalettedImageData(nullptr) , mPaletteDepth(0) , mNonPremult(false) , mCompositingFailed(false) { } imgFrame::~imgFrame() { #ifdef DEBUG MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mAborted || AreAllPixelsWritten()); MOZ_ASSERT(mAborted || mFinished); #endif free(mPalettedImageData); mPalettedImageData = nullptr; } nsresult imgFrame::InitForDecoder(const nsIntSize& aImageSize, const nsIntRect& aRect, SurfaceFormat aFormat, uint8_t aPaletteDepth /* = 0 */, bool aNonPremult /* = false */, bool aIsAnimated /* = false */) { // Assert for properties that should be verified by decoders, // warn for properties related to bad content. if (!AllowedImageAndFrameDimensions(aImageSize, aRect)) { NS_WARNING("Should have legal image size"); mAborted = true; return NS_ERROR_FAILURE; } mImageSize = aImageSize; mFrameRect = aRect; // We only allow a non-trivial frame rect (i.e., a frame rect that doesn't // cover the entire image) for paletted animation frames. We never draw those // frames directly; we just use FrameAnimator to composite them and produce a // BGRA surface that we actually draw. We enforce this here to make sure that // imgFrame::Draw(), which is responsible for drawing all other kinds of // frames, never has to deal with a non-trivial frame rect. if (aPaletteDepth == 0 && !mFrameRect.IsEqualEdges(IntRect(IntPoint(), mImageSize))) { MOZ_ASSERT_UNREACHABLE("Creating a non-paletted imgFrame with a " "non-trivial frame rect"); return NS_ERROR_FAILURE; } mFormat = aFormat; mPaletteDepth = aPaletteDepth; mNonPremult = aNonPremult; if (aPaletteDepth != 0) { // We're creating for a paletted image. if (aPaletteDepth > 8) { NS_WARNING("Should have legal palette depth"); NS_ERROR("This Depth is not supported"); mAborted = true; return NS_ERROR_FAILURE; } // Use the fallible allocator here. Paletted images always use 1 byte per // pixel, so calculating the amount of memory we need is straightforward. size_t dataSize = PaletteDataLength() + mFrameRect.Area(); mPalettedImageData = static_cast(calloc(dataSize, sizeof(uint8_t))); if (!mPalettedImageData) { NS_WARNING("Call to calloc for paletted image data should succeed"); } NS_ENSURE_TRUE(mPalettedImageData, NS_ERROR_OUT_OF_MEMORY); } else { MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitForDecoder() twice?"); mRawSurface = AllocateBufferForImage(mFrameRect.Size(), mFormat, aIsAnimated); if (!mRawSurface) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } mLockedSurface = CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat); if (!mLockedSurface) { NS_WARNING("Failed to create LockedSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (!ClearSurface(mRawSurface, mFrameRect.Size(), mFormat)) { NS_WARNING("Could not clear allocated buffer"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } } return NS_OK; } nsresult imgFrame::InitWithDrawable(gfxDrawable* aDrawable, const nsIntSize& aSize, const SurfaceFormat aFormat, SamplingFilter aSamplingFilter, uint32_t aImageFlags, gfx::BackendType aBackend) { // Assert for properties that should be verified by decoders, // warn for properties related to bad content. if (!AllowedImageSize(aSize.width, aSize.height)) { NS_WARNING("Should have legal image size"); mAborted = true; return NS_ERROR_FAILURE; } mImageSize = aSize; mFrameRect = IntRect(IntPoint(0, 0), aSize); mFormat = aFormat; mPaletteDepth = 0; RefPtr target; bool canUseDataSurface = Factory::DoesBackendSupportDataDrawtarget(aBackend); if (canUseDataSurface) { // It's safe to use data surfaces for content on this platform, so we can // get away with using volatile buffers. MOZ_ASSERT(!mLockedSurface, "Called imgFrame::InitWithDrawable() twice?"); mRawSurface = AllocateBufferForImage(mFrameRect.Size(), mFormat); if (!mRawSurface) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } mLockedSurface = CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat); if (!mLockedSurface) { NS_WARNING("Failed to create LockedSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (!ClearSurface(mRawSurface, mFrameRect.Size(), mFormat)) { NS_WARNING("Could not clear allocated buffer"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } target = gfxPlatform::CreateDrawTargetForData( mLockedSurface->GetData(), mFrameRect.Size(), mLockedSurface->Stride(), mFormat); } else { // We can't use data surfaces for content, so we'll create an offscreen // surface instead. This means if someone later calls RawAccessRef(), we // may have to do an expensive readback, but we warned callers about that in // the documentation for this method. MOZ_ASSERT(!mOptSurface, "Called imgFrame::InitWithDrawable() twice?"); if (gfxPlatform::GetPlatform()->SupportsAzureContentForType(aBackend)) { target = gfxPlatform::GetPlatform()-> CreateDrawTargetForBackend(aBackend, mFrameRect.Size(), mFormat); } else { target = gfxPlatform::GetPlatform()-> CreateOffscreenContentDrawTarget(mFrameRect.Size(), mFormat); } } if (!target || !target->IsValid()) { mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } // Draw using the drawable the caller provided. RefPtr ctx = gfxContext::CreateOrNull(target); MOZ_ASSERT(ctx); // Already checked the draw target above. gfxUtils::DrawPixelSnapped(ctx, aDrawable, SizeDouble(mFrameRect.Size()), ImageRegion::Create(ThebesRect(mFrameRect)), mFormat, aSamplingFilter, aImageFlags); if (canUseDataSurface && !mLockedSurface) { NS_WARNING("Failed to create VolatileDataSourceSurface"); mAborted = true; return NS_ERROR_OUT_OF_MEMORY; } if (!canUseDataSurface) { // We used an offscreen surface, which is an "optimized" surface from // imgFrame's perspective. mOptSurface = target->Snapshot(); } else { FinalizeSurface(); } // If we reach this point, we should regard ourselves as complete. mDecoded = GetRect(); mFinished = true; #ifdef DEBUG MonitorAutoLock lock(mMonitor); MOZ_ASSERT(AreAllPixelsWritten()); #endif return NS_OK; } nsresult imgFrame::Optimize(DrawTarget* aTarget) { MOZ_ASSERT(NS_IsMainThread()); mMonitor.AssertCurrentThreadOwns(); if (mLockCount > 0 || !mOptimizable) { // Don't optimize right now. return NS_OK; } // Check whether image optimization is disabled -- not thread safe! static bool gDisableOptimize = false; static bool hasCheckedOptimize = false; if (!hasCheckedOptimize) { if (PR_GetEnv("MOZ_DISABLE_IMAGE_OPTIMIZE")) { gDisableOptimize = true; } hasCheckedOptimize = true; } // Don't optimize during shutdown because gfxPlatform may not be available. if (ShutdownTracker::ShutdownHasStarted()) { return NS_OK; } if (gDisableOptimize) { return NS_OK; } if (mPalettedImageData || mOptSurface) { return NS_OK; } // XXX(seth): It's currently unclear if there's any reason why we can't // optimize non-premult surfaces. We should look into removing this. if (mNonPremult) { return NS_OK; } mOptSurface = gfxPlatform::GetPlatform() ->ScreenReferenceDrawTarget()->OptimizeSourceSurface(mLockedSurface); if (mOptSurface == mLockedSurface) { mOptSurface = nullptr; } if (mOptSurface) { // There's no reason to keep our original surface around if we have an // optimized surface. Release our reference to it. This will leave // |mLockedSurface| as the only thing keeping it alive, so it'll get freed // below. mRawSurface = nullptr; } // Release all strong references to the surface's memory. If the underlying // surface is volatile, this will allow the operating system to free the // memory if it needs to. mLockedSurface = nullptr; mOptimizable = false; return NS_OK; } DrawableFrameRef imgFrame::DrawableRef() { return DrawableFrameRef(this); } RawAccessFrameRef imgFrame::RawAccessRef() { return RawAccessFrameRef(this); } void imgFrame::SetRawAccessOnly() { AssertImageDataLocked(); // Lock our data and throw away the key. LockImageData(); } imgFrame::SurfaceWithFormat imgFrame::SurfaceForDrawing(bool aDoPartialDecode, bool aDoTile, ImageRegion& aRegion, SourceSurface* aSurface) { MOZ_ASSERT(NS_IsMainThread()); mMonitor.AssertCurrentThreadOwns(); if (!aDoPartialDecode) { return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, mImageSize), mFormat); } gfxRect available = gfxRect(mDecoded.X(), mDecoded.Y(), mDecoded.Width(), mDecoded.Height()); if (aDoTile) { // Create a temporary surface. // Give this surface an alpha channel because there are // transparent pixels in the padding or undecoded area RefPtr target = gfxPlatform::GetPlatform()-> CreateOffscreenContentDrawTarget(mImageSize, SurfaceFormat::B8G8R8A8); if (!target) { return SurfaceWithFormat(); } SurfacePattern pattern(aSurface, aRegion.GetExtendMode(), Matrix::Translation(mDecoded.X(), mDecoded.Y())); target->FillRect(ToRect(aRegion.Intersect(available).Rect()), pattern); RefPtr newsurf = target->Snapshot(); return SurfaceWithFormat(new gfxSurfaceDrawable(newsurf, mImageSize), target->GetFormat()); } // Not tiling, and we have a surface, so we can account for // a partial decode just by twiddling parameters. aRegion = aRegion.Intersect(available); IntSize availableSize(mDecoded.Width(), mDecoded.Height()); return SurfaceWithFormat(new gfxSurfaceDrawable(aSurface, availableSize), mFormat); } bool imgFrame::Draw(gfxContext* aContext, const ImageRegion& aRegion, SamplingFilter aSamplingFilter, uint32_t aImageFlags, float aOpacity) { AUTO_PROFILER_LABEL("imgFrame::Draw", GRAPHICS); MOZ_ASSERT(NS_IsMainThread()); NS_ASSERTION(!aRegion.Rect().IsEmpty(), "Drawing empty region!"); NS_ASSERTION(!aRegion.IsRestricted() || !aRegion.Rect().Intersect(aRegion.Restriction()).IsEmpty(), "We must be allowed to sample *some* source pixels!"); MOZ_ASSERT(mFrameRect.IsEqualEdges(IntRect(IntPoint(), mImageSize)), "Directly drawing an image with a non-trivial frame rect!"); if (mPalettedImageData) { MOZ_ASSERT_UNREACHABLE("Directly drawing a paletted image!"); return false; } MonitorAutoLock lock(mMonitor); // Possibly convert this image into a GPU texture, this may also cause our // mLockedSurface to be released and the OS to release the underlying memory. Optimize(aContext->GetDrawTarget()); bool doPartialDecode = !AreAllPixelsWritten(); RefPtr surf = GetSourceSurfaceInternal(); if (!surf) { return false; } gfxRect imageRect(0, 0, mImageSize.width, mImageSize.height); bool doTile = !imageRect.Contains(aRegion.Rect()) && !(aImageFlags & imgIContainer::FLAG_CLAMP); ImageRegion region(aRegion); SurfaceWithFormat surfaceResult = SurfaceForDrawing(doPartialDecode, doTile, region, surf); if (surfaceResult.IsValid()) { gfxUtils::DrawPixelSnapped(aContext, surfaceResult.mDrawable, imageRect.Size(), region, surfaceResult.mFormat, aSamplingFilter, aImageFlags, aOpacity); } return true; } nsresult imgFrame::ImageUpdated(const nsIntRect& aUpdateRect) { MonitorAutoLock lock(mMonitor); return ImageUpdatedInternal(aUpdateRect); } nsresult imgFrame::ImageUpdatedInternal(const nsIntRect& aUpdateRect) { mMonitor.AssertCurrentThreadOwns(); mDecoded.UnionRect(mDecoded, aUpdateRect); // Clamp to the frame rect to ensure that decoder bugs don't result in a // decoded rect that extends outside the bounds of the frame rect. mDecoded.IntersectRect(mDecoded, mFrameRect); // Update our invalidation counters for any consumers watching for changes // in the surface. if (mRawSurface) { mRawSurface->Invalidate(); } if (mLockedSurface && mRawSurface != mLockedSurface) { mLockedSurface->Invalidate(); } return NS_OK; } void imgFrame::Finish(Opacity aFrameOpacity /* = Opacity::SOME_TRANSPARENCY */, DisposalMethod aDisposalMethod /* = DisposalMethod::KEEP */, FrameTimeout aTimeout /* = FrameTimeout::FromRawMilliseconds(0) */, BlendMethod aBlendMethod /* = BlendMethod::OVER */, const Maybe& aBlendRect /* = Nothing() */, bool aFinalize /* = true */) { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); mDisposalMethod = aDisposalMethod; mTimeout = aTimeout; mBlendMethod = aBlendMethod; mBlendRect = aBlendRect; ImageUpdatedInternal(GetRect()); if (aFinalize) { FinalizeSurfaceInternal(); } mFinished = true; // The image is now complete, wake up anyone who's waiting. mMonitor.NotifyAll(); } uint32_t imgFrame::GetImageBytesPerRow() const { mMonitor.AssertCurrentThreadOwns(); if (mRawSurface) { return mFrameRect.Width() * BytesPerPixel(mFormat); } if (mPaletteDepth) { return mFrameRect.Width(); } return 0; } uint32_t imgFrame::GetImageDataLength() const { return GetImageBytesPerRow() * mFrameRect.Height(); } void imgFrame::GetImageData(uint8_t** aData, uint32_t* aLength) const { MonitorAutoLock lock(mMonitor); GetImageDataInternal(aData, aLength); } void imgFrame::GetImageDataInternal(uint8_t** aData, uint32_t* aLength) const { mMonitor.AssertCurrentThreadOwns(); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); if (mLockedSurface) { // TODO: This is okay for now because we only realloc shared surfaces on // the main thread after decoding has finished, but if animations want to // read frame data off the main thread, we will need to reconsider this. *aData = mLockedSurface->GetData(); MOZ_ASSERT(*aData, "mLockedSurface is non-null, but GetData is null in GetImageData"); } else if (mPalettedImageData) { *aData = mPalettedImageData + PaletteDataLength(); MOZ_ASSERT(*aData, "mPalettedImageData is non-null, but result is null in GetImageData"); } else { MOZ_ASSERT(false, "Have neither mLockedSurface nor mPalettedImageData in GetImageData"); *aData = nullptr; } *aLength = GetImageDataLength(); } uint8_t* imgFrame::GetImageData() const { uint8_t* data; uint32_t length; GetImageData(&data, &length); return data; } bool imgFrame::GetIsPaletted() const { return mPalettedImageData != nullptr; } void imgFrame::GetPaletteData(uint32_t** aPalette, uint32_t* length) const { AssertImageDataLocked(); if (!mPalettedImageData) { *aPalette = nullptr; *length = 0; } else { *aPalette = (uint32_t*) mPalettedImageData; *length = PaletteDataLength(); } } uint32_t* imgFrame::GetPaletteData() const { uint32_t* data; uint32_t length; GetPaletteData(&data, &length); return data; } nsresult imgFrame::LockImageData() { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount >= 0, "Unbalanced locks and unlocks"); if (mLockCount < 0) { return NS_ERROR_FAILURE; } mLockCount++; // If we are not the first lock, there's nothing to do. if (mLockCount != 1) { return NS_OK; } // If we're the first lock, but have the locked surface, we're OK. if (mLockedSurface) { return NS_OK; } // Paletted images don't have surfaces, so there's nothing to do. if (mPalettedImageData) { return NS_OK; } MOZ_ASSERT_UNREACHABLE("It's illegal to re-lock an optimized imgFrame"); return NS_ERROR_FAILURE; } void imgFrame::AssertImageDataLocked() const { #ifdef DEBUG MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); #endif } nsresult imgFrame::UnlockImageData() { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Unlocking an unlocked image!"); if (mLockCount <= 0) { return NS_ERROR_FAILURE; } MOZ_ASSERT(mLockCount > 1 || mFinished || mAborted, "Should have Finish()'d or aborted before unlocking"); mLockCount--; return NS_OK; } void imgFrame::SetOptimizable() { AssertImageDataLocked(); MonitorAutoLock lock(mMonitor); mOptimizable = true; } void imgFrame::FinalizeSurface() { MonitorAutoLock lock(mMonitor); FinalizeSurfaceInternal(); } void imgFrame::FinalizeSurfaceInternal() { mMonitor.AssertCurrentThreadOwns(); // Not all images will have mRawSurface to finalize (i.e. paletted images). if (!mRawSurface || mRawSurface->GetType() != SurfaceType::DATA_SHARED) { return; } auto sharedSurf = static_cast(mRawSurface.get()); sharedSurf->Finalize(); } already_AddRefed imgFrame::GetSourceSurface() { MonitorAutoLock lock(mMonitor); return GetSourceSurfaceInternal(); } already_AddRefed imgFrame::GetSourceSurfaceInternal() { mMonitor.AssertCurrentThreadOwns(); if (mOptSurface) { if (mOptSurface->IsValid()) { RefPtr surf(mOptSurface); return surf.forget(); } else { mOptSurface = nullptr; } } if (mLockedSurface) { RefPtr surf(mLockedSurface); return surf.forget(); } if (!mRawSurface) { return nullptr; } return CreateLockedSurface(mRawSurface, mFrameRect.Size(), mFormat); } AnimationData imgFrame::GetAnimationData() const { MonitorAutoLock lock(mMonitor); MOZ_ASSERT(mLockCount > 0, "Image data should be locked"); uint8_t* data; if (mPalettedImageData) { data = mPalettedImageData; } else { uint32_t length; GetImageDataInternal(&data, &length); } bool hasAlpha = mFormat == SurfaceFormat::B8G8R8A8; return AnimationData(data, PaletteDataLength(), mTimeout, GetRect(), mBlendMethod, mBlendRect, mDisposalMethod, hasAlpha); } void imgFrame::Abort() { MonitorAutoLock lock(mMonitor); mAborted = true; // Wake up anyone who's waiting. mMonitor.NotifyAll(); } bool imgFrame::IsAborted() const { MonitorAutoLock lock(mMonitor); return mAborted; } bool imgFrame::IsFinished() const { MonitorAutoLock lock(mMonitor); return mFinished; } void imgFrame::WaitUntilFinished() const { MonitorAutoLock lock(mMonitor); while (true) { // Return if we're aborted or complete. if (mAborted || mFinished) { return; } // Not complete yet, so we'll have to wait. mMonitor.Wait(); } } bool imgFrame::AreAllPixelsWritten() const { mMonitor.AssertCurrentThreadOwns(); return mDecoded.IsEqualInterior(mFrameRect); } bool imgFrame::GetCompositingFailed() const { MOZ_ASSERT(NS_IsMainThread()); return mCompositingFailed; } void imgFrame::SetCompositingFailed(bool val) { MOZ_ASSERT(NS_IsMainThread()); mCompositingFailed = val; } void imgFrame::AddSizeOfExcludingThis(MallocSizeOf aMallocSizeOf, size_t& aHeapSizeOut, size_t& aNonHeapSizeOut, size_t& aExtHandlesOut) const { MonitorAutoLock lock(mMonitor); if (mPalettedImageData) { aHeapSizeOut += aMallocSizeOf(mPalettedImageData); } if (mLockedSurface) { aHeapSizeOut += aMallocSizeOf(mLockedSurface); } if (mOptSurface) { aHeapSizeOut += aMallocSizeOf(mOptSurface); } if (mRawSurface) { aHeapSizeOut += aMallocSizeOf(mRawSurface); mRawSurface->AddSizeOfExcludingThis(aMallocSizeOf, aHeapSizeOut, aNonHeapSizeOut, aExtHandlesOut); } } } // namespace image } // namespace mozilla