/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef MOZILLA_GFX_POLYGON_H #define MOZILLA_GFX_POLYGON_H #include "Matrix.h" #include "mozilla/Move.h" #include "nsTArray.h" #include "Point.h" #include "Triangle.h" #include namespace mozilla { namespace gfx { /** * Calculates the w = 0 intersection point for the edge defined by * |aFirst| and |aSecond|. */ template Point4DTyped CalculateEdgeIntersect(const Point4DTyped& aFirst, const Point4DTyped& aSecond) { static const float w = 0.00001f; const float t = (w - aFirst.w) / (aSecond.w - aFirst.w); return aFirst + (aSecond - aFirst) * t; } /** * Clips the polygon defined by |aPoints| so that there are no points with * w <= 0. */ template nsTArray> ClipPointsAtInfinity(const nsTArray>& aPoints) { nsTArray> outPoints(aPoints.Length()); const size_t pointCount = aPoints.Length(); for (size_t i = 0; i < pointCount; ++i) { const Point4DTyped& first = aPoints[i]; const Point4DTyped& second = aPoints[(i + 1) % pointCount]; if (!first.w || !second.w) { // Skip edges at infinity. continue; } if (first.w > 0.0f) { outPoints.AppendElement(first); } if ((first.w <= 0.0f) ^ (second.w <= 0.0f)) { outPoints.AppendElement(CalculateEdgeIntersect(first, second)); } } return outPoints; } /** * Calculates the distances between the points in |aPoints| and the plane * defined by |aPlaneNormal| and |aPlanePoint|. */ template nsTArray CalculatePointPlaneDistances(const nsTArray>& aPoints, const Point4DTyped& aPlaneNormal, const Point4DTyped& aPlanePoint, size_t& aPos, size_t& aNeg) { // Point classification might produce incorrect results due to numerical // inaccuracies. Using an epsilon value makes the splitting plane "thicker". const float epsilon = 0.05f; aPos = aNeg = 0; nsTArray distances(aPoints.Length()); for (const Point4DTyped& point : aPoints) { float dot = (point - aPlanePoint).DotProduct(aPlaneNormal); if (dot > epsilon) { aPos++; } else if (dot < -epsilon) { aNeg++; } else { // The point is within the thick plane. dot = 0.0f; } distances.AppendElement(dot); } return distances; } /** * Clips the polygon defined by |aPoints|. The clipping uses previously * calculated plane to point distances and the plane normal |aNormal|. * The result of clipping is stored in |aBackPoints| and |aFrontPoints|. */ template void ClipPointsWithPlane(const nsTArray>& aPoints, const Point4DTyped& aNormal, const nsTArray& aDots, nsTArray>& aBackPoints, nsTArray>& aFrontPoints) { static const auto Sign = [](const float& f) { if (f > 0.0f) return 1; if (f < 0.0f) return -1; return 0; }; const size_t pointCount = aPoints.Length(); for (size_t i = 0; i < pointCount; ++i) { size_t j = (i + 1) % pointCount; const Point4DTyped& a = aPoints[i]; const Point4DTyped& b = aPoints[j]; const float dotA = aDots[i]; const float dotB = aDots[j]; // The point is in front of or on the plane. if (dotA >= 0) { aFrontPoints.AppendElement(a); } // The point is behind or on the plane. if (dotA <= 0) { aBackPoints.AppendElement(a); } // If the sign of the dot products changes between two consecutive // vertices, then the plane intersects with the polygon edge. // The case where the polygon edge is within the plane is handled above. if (Sign(dotA) && Sign(dotB) && Sign(dotA) != Sign(dotB)) { // Calculate the line segment and plane intersection point. const Point4DTyped ab = b - a; const float dotAB = ab.DotProduct(aNormal); const float t = -dotA / dotAB; const Point4DTyped p = a + (ab * t); // Add the intersection point to both polygons. aBackPoints.AppendElement(p); aFrontPoints.AppendElement(p); } } } /** * PolygonTyped stores the points of a convex planar polygon. */ template class PolygonTyped { typedef Point3DTyped Point3DType; typedef Point4DTyped Point4DType; public: PolygonTyped() {} explicit PolygonTyped(const nsTArray& aPoints, const Point4DType& aNormal = DefaultNormal()) : mNormal(aNormal), mPoints(aPoints) {} explicit PolygonTyped(nsTArray&& aPoints, const Point4DType& aNormal = DefaultNormal()) : mNormal(aNormal), mPoints(std::move(aPoints)) {} explicit PolygonTyped(const std::initializer_list& aPoints, const Point4DType& aNormal = DefaultNormal()) : mNormal(aNormal), mPoints(aPoints) { #ifdef DEBUG EnsurePlanarPolygon(); #endif } /** * Returns the smallest 2D rectangle that can fully cover the polygon. */ RectTyped BoundingBox() const { if (mPoints.IsEmpty()) { return RectTyped(); } float minX, maxX, minY, maxY; minX = maxX = mPoints[0].x; minY = maxY = mPoints[0].y; for (const Point4DType& point : mPoints) { minX = std::min(point.x, minX); maxX = std::max(point.x, maxX); minY = std::min(point.y, minY); maxY = std::max(point.y, maxY); } return RectTyped(minX, minY, maxX - minX, maxY - minY); } /** * Clips the polygon against the given 2D rectangle. */ PolygonTyped ClipPolygon(const RectTyped& aRect) const { if (aRect.IsEmpty()) { return PolygonTyped(); } return ClipPolygon(FromRect(aRect)); } /** * Clips this polygon against |aPolygon| in 2D and returns a new polygon. */ PolygonTyped ClipPolygon(const PolygonTyped& aPolygon) const { const nsTArray& points = aPolygon.GetPoints(); if (mPoints.IsEmpty() || points.IsEmpty()) { return PolygonTyped(); } nsTArray clippedPoints(mPoints); size_t pos, neg; nsTArray backPoints(4), frontPoints(4); // Iterate over all the edges of the clipping polygon |aPolygon| and clip // this polygon against the edges. const size_t pointCount = points.Length(); for (size_t i = 0; i < pointCount; ++i) { const Point4DType p1 = points[(i + 1) % pointCount]; const Point4DType p2 = points[i]; // Calculate the normal for the edge defined by |p1| and |p2|. const Point4DType normal(p2.y - p1.y, p1.x - p2.x, 0.0f, 0.0f); // Calculate the distances between the points of the polygon and the // plane defined by |aPolygon|. const nsTArray distances = CalculatePointPlaneDistances(clippedPoints, normal, p1, pos, neg); backPoints.ClearAndRetainStorage(); frontPoints.ClearAndRetainStorage(); // Clip the polygon points using the previously calculated distances. ClipPointsWithPlane(clippedPoints, normal, distances, backPoints, frontPoints); // Only use the points behind the clipping plane. clippedPoints = std::move(backPoints); if (clippedPoints.Length() < 3) { // The clipping created a polygon with no area. return PolygonTyped(); } } return PolygonTyped(std::move(clippedPoints), mNormal); } /** * Returns a new polygon containing the bounds of the given 2D rectangle. */ static PolygonTyped FromRect(const RectTyped& aRect) { nsTArray points { Point4DType(aRect.X(), aRect.Y(), 0.0f, 1.0f), Point4DType(aRect.X(), aRect.YMost(), 0.0f, 1.0f), Point4DType(aRect.XMost(), aRect.YMost(), 0.0f, 1.0f), Point4DType(aRect.XMost(), aRect.Y(), 0.0f, 1.0f) }; return PolygonTyped(std::move(points)); } const Point4DType& GetNormal() const { return mNormal; } const nsTArray& GetPoints() const { return mPoints; } bool IsEmpty() const { // If the polygon has less than three points, it has no visible area. return mPoints.Length() < 3; } /** * Returns a list of triangles covering the polygon. */ nsTArray> ToTriangles() const { nsTArray> triangles; if (IsEmpty()) { return triangles; } // This fan triangulation method only works for convex polygons. for (size_t i = 1; i < mPoints.Length() - 1; ++i) { TriangleTyped triangle(Point(mPoints[0].x, mPoints[0].y), Point(mPoints[i].x, mPoints[i].y), Point(mPoints[i + 1].x, mPoints[i + 1].y)); triangles.AppendElement(std::move(triangle)); } return triangles; } void TransformToLayerSpace(const Matrix4x4Typed& aTransform) { TransformPoints(aTransform, true); mNormal = DefaultNormal(); } void TransformToScreenSpace(const Matrix4x4Typed& aTransform, const Matrix4x4Typed& aInverseTransform) { TransformPoints(aTransform, false); // Perspective projection transformation might produce points with w <= 0, // so we need to clip these points. mPoints = ClipPointsAtInfinity(mPoints); // Normal vectors should be transformed using inverse transpose. mNormal = aInverseTransform.TransposeTransform4D(mNormal); } void TransformToScreenSpace(const Matrix4x4Typed& aTransform) { MOZ_ASSERT(!aTransform.IsSingular()); TransformToScreenSpace(aTransform, aTransform.Inverse()); } private: static Point4DType DefaultNormal() { return Point4DType(0.0f, 0.0f, 1.0f, 0.0f); } #ifdef DEBUG void EnsurePlanarPolygon() const { if (mPoints.Length() <= 3) { // Polygons with three or less points are guaranteed to be planar. return; } // This normal calculation method works only for planar polygons. // The resulting normal vector will point towards the viewer when the // polygon has a counter-clockwise winding order from the perspective // of the viewer. Point3DType normal; const Point3DType p0 = mPoints[0].As3DPoint(); for (size_t i = 1; i < mPoints.Length() - 1; ++i) { const Point3DType p1 = mPoints[i].As3DPoint(); const Point3DType p2 = mPoints[i + 1].As3DPoint(); normal += (p1 - p0).CrossProduct(p2 - p0); } // Ensure that at least one component is greater than zero. // This avoids division by zero when normalizing the vector. bool hasNonZeroComponent = std::abs(normal.x) > 0.0f || std::abs(normal.y) > 0.0f || std::abs(normal.z) > 0.0f; MOZ_ASSERT(hasNonZeroComponent); normal.Normalize(); // Ensure that the polygon is planar. // http://mathworld.wolfram.com/Point-PlaneDistance.html const float epsilon = 0.01f; for (const Point4DType& point : mPoints) { const Point3DType p1 = point.As3DPoint(); const float d = normal.DotProduct(p1 - p0); MOZ_ASSERT(std::abs(d) < epsilon); } } #endif void TransformPoints(const Matrix4x4Typed& aTransform, const bool aDivideByW) { for (Point4DType& point : mPoints) { point = aTransform.TransformPoint(point); if (aDivideByW && point.w > 0.0f) { point = point / point.w; } } } Point4DType mNormal; nsTArray mPoints; }; typedef PolygonTyped Polygon; } // namespace gfx } // namespace mozilla #endif /* MOZILLA_GFX_POLYGON_H */