/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ // vim:cindent:ts=2:et:sw=2: /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "mozilla/Assertions.h" #include "mozilla/Attributes.h" #include "mozilla/HashFunctions.h" #include "mozilla/MemoryReporting.h" #include "nsAtomTable.h" #include "nsStaticAtom.h" #include "nsString.h" #include "nsCRT.h" #include "pldhash.h" #include "prenv.h" #include "nsThreadUtils.h" #include "nsDataHashtable.h" #include "nsHashKeys.h" #include "nsAutoPtr.h" #include "nsUnicharUtils.h" using namespace mozilla; /** * The shared hash table for atom lookups. * * XXX This should be manipulated in a threadsafe way or we should make * sure it's only manipulated from the main thread. Probably the latter * is better, since the former would hurt performance. * * If |gAtomTable.ops| is 0, then the table is uninitialized. */ static PLDHashTable gAtomTable; /** * A hashtable of static atoms that existed at app startup. This hashtable helps * nsHtml5AtomTable. */ static nsDataHashtable* gStaticAtomTable = 0; /** * Whether it is still OK to add atoms to gStaticAtomTable. */ static bool gStaticAtomTableSealed = false; //---------------------------------------------------------------------- /** * Note that AtomImpl objects are sometimes converted into PermanentAtomImpl * objects using placement new and just overwriting the vtable pointer. */ class AtomImpl : public nsIAtom { public: AtomImpl(const nsAString& aString, PLDHashNumber aKeyHash); // This is currently only used during startup when creating a permanent atom // from NS_RegisterStaticAtoms AtomImpl(nsStringBuffer* aData, uint32_t aLength, PLDHashNumber aKeyHash); protected: // This is only intended to be used when a normal atom is turned into a // permanent one. AtomImpl() { // We can't really assert that mString is a valid nsStringBuffer string, // so do the best we can do and check for some consistencies. NS_ASSERTION((mLength + 1) * sizeof(PRUnichar) <= nsStringBuffer::FromData(mString)->StorageSize() && mString[mLength] == 0, "Not initialized atom"); } // We don't need a virtual destructor here because PermanentAtomImpl // deletions aren't handled through Release(). ~AtomImpl(); public: NS_DECL_ISUPPORTS NS_DECL_NSIATOM enum { REFCNT_PERMANENT_SENTINEL = UINT32_MAX }; virtual bool IsPermanent(); // We can't use the virtual function in the base class destructor. bool IsPermanentInDestructor() { return mRefCnt == REFCNT_PERMANENT_SENTINEL; } // for |#ifdef NS_BUILD_REFCNT_LOGGING| access to reference count nsrefcnt GetRefCount() { return mRefCnt; } size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const; }; /** * A non-refcounted implementation of nsIAtom. */ class PermanentAtomImpl MOZ_FINAL : public AtomImpl { public: PermanentAtomImpl(const nsAString& aString, PLDHashNumber aKeyHash) : AtomImpl(aString, aKeyHash) {} PermanentAtomImpl(nsStringBuffer* aData, uint32_t aLength, PLDHashNumber aKeyHash) : AtomImpl(aData, aLength, aKeyHash) {} PermanentAtomImpl() {} ~PermanentAtomImpl(); NS_IMETHOD_(nsrefcnt) AddRef(); NS_IMETHOD_(nsrefcnt) Release(); virtual bool IsPermanent(); // SizeOfIncludingThis() isn't needed -- the one inherited from AtomImpl is // good enough, because PermanentAtomImpl doesn't add any new data members. void* operator new(size_t size, AtomImpl* aAtom) CPP_THROW_NEW; void* operator new(size_t size) CPP_THROW_NEW { return ::operator new(size); } }; //---------------------------------------------------------------------- struct AtomTableEntry : public PLDHashEntryHdr { AtomImpl* mAtom; }; struct AtomTableKey { AtomTableKey(const PRUnichar* aUTF16String, uint32_t aLength) : mUTF16String(aUTF16String), mUTF8String(nullptr), mLength(aLength) { } AtomTableKey(const char* aUTF8String, uint32_t aLength) : mUTF16String(nullptr), mUTF8String(aUTF8String), mLength(aLength) { } const PRUnichar* mUTF16String; const char* mUTF8String; uint32_t mLength; }; static PLDHashNumber AtomTableGetHash(PLDHashTable *table, const void *key) { const AtomTableKey *k = static_cast(key); if (k->mUTF8String) { bool err; uint32_t hash = HashUTF8AsUTF16(k->mUTF8String, k->mLength, &err); if (err) { AtomTableKey* mutableKey = const_cast(k); mutableKey->mUTF8String = nullptr; mutableKey->mLength = 0; hash = 0; } return hash; } return HashString(k->mUTF16String, k->mLength); } static bool AtomTableMatchKey(PLDHashTable *table, const PLDHashEntryHdr *entry, const void *key) { const AtomTableEntry *he = static_cast(entry); const AtomTableKey *k = static_cast(key); if (k->mUTF8String) { return CompareUTF8toUTF16(nsDependentCSubstring(k->mUTF8String, k->mUTF8String + k->mLength), nsDependentAtomString(he->mAtom)) == 0; } uint32_t length = he->mAtom->GetLength(); if (length != k->mLength) { return false; } return memcmp(he->mAtom->GetUTF16String(), k->mUTF16String, length * sizeof(PRUnichar)) == 0; } static void AtomTableClearEntry(PLDHashTable *table, PLDHashEntryHdr *entry) { // Normal |AtomImpl| atoms are deleted when their refcount hits 0, and // they then remove themselves from the table. In other words, they // are owned by the callers who own references to them. // |PermanentAtomImpl| permanent atoms ignore their refcount and are // deleted when they are removed from the table at table destruction. // In other words, they are owned by the atom table. AtomImpl *atom = static_cast(entry)->mAtom; if (atom->IsPermanent()) { // Note that the cast here is important since AtomImpls doesn't have a // virtual dtor. delete static_cast(atom); } } static bool AtomTableInitEntry(PLDHashTable *table, PLDHashEntryHdr *entry, const void *key) { static_cast(entry)->mAtom = nullptr; return true; } static const PLDHashTableOps AtomTableOps = { PL_DHashAllocTable, PL_DHashFreeTable, AtomTableGetHash, AtomTableMatchKey, PL_DHashMoveEntryStub, AtomTableClearEntry, PL_DHashFinalizeStub, AtomTableInitEntry }; #ifdef DEBUG static PLDHashOperator DumpAtomLeaks(PLDHashTable *table, PLDHashEntryHdr *he, uint32_t index, void *arg) { AtomTableEntry *entry = static_cast(he); AtomImpl* atom = entry->mAtom; if (!atom->IsPermanent()) { ++*static_cast(arg); nsAutoCString str; atom->ToUTF8String(str); fputs(str.get(), stdout); fputs("\n", stdout); } return PL_DHASH_NEXT; } #endif static inline void PromoteToPermanent(AtomImpl* aAtom) { #ifdef NS_BUILD_REFCNT_LOGGING { nsrefcnt refcount = aAtom->GetRefCount(); do { NS_LOG_RELEASE(aAtom, --refcount, "AtomImpl"); } while (refcount); } #endif aAtom = new (aAtom) PermanentAtomImpl(); } void NS_PurgeAtomTable() { delete gStaticAtomTable; if (gAtomTable.ops) { #ifdef DEBUG const char *dumpAtomLeaks = PR_GetEnv("MOZ_DUMP_ATOM_LEAKS"); if (dumpAtomLeaks && *dumpAtomLeaks) { uint32_t leaked = 0; printf("*** %d atoms still exist (including permanent):\n", gAtomTable.entryCount); PL_DHashTableEnumerate(&gAtomTable, DumpAtomLeaks, &leaked); printf("*** %u non-permanent atoms leaked\n", leaked); } #endif PL_DHashTableFinish(&gAtomTable); gAtomTable.entryCount = 0; gAtomTable.ops = nullptr; } } AtomImpl::AtomImpl(const nsAString& aString, PLDHashNumber aKeyHash) { mLength = aString.Length(); nsRefPtr buf = nsStringBuffer::FromString(aString); if (buf) { mString = static_cast(buf->Data()); } else { buf = nsStringBuffer::Alloc((mLength + 1) * sizeof(PRUnichar)); mString = static_cast(buf->Data()); CopyUnicodeTo(aString, 0, mString, mLength); mString[mLength] = PRUnichar(0); } // The low bit of aKeyHash is generally useless, so shift it out MOZ_ASSERT(sizeof(mHash) == sizeof(PLDHashNumber)); mHash = aKeyHash >> 1; NS_ASSERTION(mString[mLength] == PRUnichar(0), "null terminated"); NS_ASSERTION(buf && buf->StorageSize() >= (mLength+1) * sizeof(PRUnichar), "enough storage"); NS_ASSERTION(Equals(aString), "correct data"); // Take ownership of buffer buf.forget(); } AtomImpl::AtomImpl(nsStringBuffer* aStringBuffer, uint32_t aLength, PLDHashNumber aKeyHash) { mLength = aLength; mString = static_cast(aStringBuffer->Data()); // Technically we could currently avoid doing this addref by instead making // the static atom buffers have an initial refcount of 2. aStringBuffer->AddRef(); // The low bit of aKeyHash is generally useless, so shift it out MOZ_ASSERT(sizeof(mHash) == sizeof(PLDHashNumber)); mHash = aKeyHash >> 1; NS_ASSERTION(mString[mLength] == PRUnichar(0), "null terminated"); NS_ASSERTION(aStringBuffer && aStringBuffer->StorageSize() == (mLength+1) * sizeof(PRUnichar), "correct storage"); } AtomImpl::~AtomImpl() { NS_PRECONDITION(gAtomTable.ops, "uninitialized atom hashtable"); // Permanent atoms are removed from the hashtable at shutdown, and we // don't want to remove them twice. See comment above in // |AtomTableClearEntry|. if (!IsPermanentInDestructor()) { AtomTableKey key(mString, mLength); PL_DHashTableOperate(&gAtomTable, &key, PL_DHASH_REMOVE); if (gAtomTable.entryCount == 0) { PL_DHashTableFinish(&gAtomTable); NS_ASSERTION(gAtomTable.entryCount == 0, "PL_DHashTableFinish changed the entry count"); } } nsStringBuffer::FromData(mString)->Release(); } NS_IMPL_ISUPPORTS1(AtomImpl, nsIAtom) PermanentAtomImpl::~PermanentAtomImpl() { // So we can tell if we were permanent while running the base class dtor. mRefCnt = REFCNT_PERMANENT_SENTINEL; } NS_IMETHODIMP_(nsrefcnt) PermanentAtomImpl::AddRef() { MOZ_ASSERT(NS_IsMainThread(), "wrong thread"); return 2; } NS_IMETHODIMP_(nsrefcnt) PermanentAtomImpl::Release() { MOZ_ASSERT(NS_IsMainThread(), "wrong thread"); return 1; } /* virtual */ bool AtomImpl::IsPermanent() { return false; } /* virtual */ bool PermanentAtomImpl::IsPermanent() { return true; } void* PermanentAtomImpl::operator new ( size_t size, AtomImpl* aAtom ) CPP_THROW_NEW { MOZ_ASSERT(!aAtom->IsPermanent(), "converting atom that's already permanent"); // Just let the constructor overwrite the vtable pointer. return aAtom; } NS_IMETHODIMP AtomImpl::ScriptableToString(nsAString& aBuf) { nsStringBuffer::FromData(mString)->ToString(mLength, aBuf); return NS_OK; } NS_IMETHODIMP AtomImpl::ToUTF8String(nsACString& aBuf) { CopyUTF16toUTF8(nsDependentString(mString, mLength), aBuf); return NS_OK; } NS_IMETHODIMP_(bool) AtomImpl::EqualsUTF8(const nsACString& aString) { return CompareUTF8toUTF16(aString, nsDependentString(mString, mLength)) == 0; } NS_IMETHODIMP AtomImpl::ScriptableEquals(const nsAString& aString, bool* aResult) { *aResult = aString.Equals(nsDependentString(mString, mLength)); return NS_OK; } NS_IMETHODIMP_(bool) AtomImpl::IsStaticAtom() { return IsPermanent(); } size_t AtomImpl::SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const { return aMallocSizeOf(this) + nsStringBuffer::FromData(mString)-> SizeOfIncludingThisIfUnshared(aMallocSizeOf); } //---------------------------------------------------------------------- static size_t SizeOfAtomTableEntryExcludingThis(PLDHashEntryHdr *aHdr, MallocSizeOf aMallocSizeOf, void *aArg) { AtomTableEntry* entry = static_cast(aHdr); return entry->mAtom->SizeOfIncludingThis(aMallocSizeOf); } static size_t SizeOfStaticAtomTableEntryExcludingThis(const nsAString& aKey, nsIAtom* const& aData, MallocSizeOf aMallocSizeOf, void* aArg) { return aKey.SizeOfExcludingThisIfUnshared(aMallocSizeOf); } size_t NS_SizeOfAtomTablesIncludingThis(MallocSizeOf aMallocSizeOf) { size_t n = 0; if (gAtomTable.ops) { n += PL_DHashTableSizeOfExcludingThis(&gAtomTable, SizeOfAtomTableEntryExcludingThis, aMallocSizeOf); } if (gStaticAtomTable) { n += gStaticAtomTable->SizeOfIncludingThis(SizeOfStaticAtomTableEntryExcludingThis, aMallocSizeOf); } return n; } #define ATOM_HASHTABLE_INITIAL_SIZE 4096 static void HandleOOM() { fputs("Out of memory allocating atom hashtable.\n", stderr); MOZ_CRASH(); } static inline void EnsureTableExists() { if (!gAtomTable.ops && !PL_DHashTableInit(&gAtomTable, &AtomTableOps, 0, sizeof(AtomTableEntry), ATOM_HASHTABLE_INITIAL_SIZE)) { // Initialization failed. HandleOOM(); } } static inline AtomTableEntry* GetAtomHashEntry(const char* aString, uint32_t aLength) { MOZ_ASSERT(NS_IsMainThread(), "wrong thread"); EnsureTableExists(); AtomTableKey key(aString, aLength); AtomTableEntry* e = static_cast (PL_DHashTableOperate(&gAtomTable, &key, PL_DHASH_ADD)); if (!e) { HandleOOM(); } return e; } static inline AtomTableEntry* GetAtomHashEntry(const PRUnichar* aString, uint32_t aLength) { MOZ_ASSERT(NS_IsMainThread(), "wrong thread"); EnsureTableExists(); AtomTableKey key(aString, aLength); AtomTableEntry* e = static_cast (PL_DHashTableOperate(&gAtomTable, &key, PL_DHASH_ADD)); if (!e) { HandleOOM(); } return e; } class CheckStaticAtomSizes { CheckStaticAtomSizes() { static_assert((sizeof(nsFakeStringBuffer<1>().mRefCnt) == sizeof(nsStringBuffer().mRefCount)) && (sizeof(nsFakeStringBuffer<1>().mSize) == sizeof(nsStringBuffer().mStorageSize)) && (offsetof(nsFakeStringBuffer<1>, mRefCnt) == offsetof(nsStringBuffer, mRefCount)) && (offsetof(nsFakeStringBuffer<1>, mSize) == offsetof(nsStringBuffer, mStorageSize)) && (offsetof(nsFakeStringBuffer<1>, mStringData) == sizeof(nsStringBuffer)), "mocked-up strings' representations should be compatible"); } }; nsresult RegisterStaticAtoms(const nsStaticAtom* aAtoms, uint32_t aAtomCount) { // this does three things: // 1) wraps each static atom in a wrapper, if necessary // 2) initializes the address pointed to by each mBits slot // 3) puts the atom into the static atom table as well if (!gStaticAtomTable && !gStaticAtomTableSealed) { gStaticAtomTable = new nsDataHashtable(); } for (uint32_t i=0; iData()), "Static atoms must be ASCII!"); uint32_t stringLen = aAtoms[i].mStringBuffer->StorageSize() / sizeof(PRUnichar) - 1; AtomTableEntry *he = GetAtomHashEntry((PRUnichar*)aAtoms[i].mStringBuffer->Data(), stringLen); if (he->mAtom) { // there already is an atom with this name in the table.. but we // still have to update mBits if (!he->mAtom->IsPermanent()) { // since we wanted to create a static atom but there is // already one there, we convert it to a non-refcounting // permanent atom PromoteToPermanent(he->mAtom); } *aAtoms[i].mAtom = he->mAtom; } else { AtomImpl* atom = new PermanentAtomImpl(aAtoms[i].mStringBuffer, stringLen, he->keyHash); he->mAtom = atom; *aAtoms[i].mAtom = atom; if (!gStaticAtomTableSealed) { gStaticAtomTable->Put(nsAtomString(atom), atom); } } } return NS_OK; } already_AddRefed NS_NewAtom(const char* aUTF8String) { return NS_NewAtom(nsDependentCString(aUTF8String)); } already_AddRefed NS_NewAtom(const nsACString& aUTF8String) { AtomTableEntry *he = GetAtomHashEntry(aUTF8String.Data(), aUTF8String.Length()); if (he->mAtom) { nsCOMPtr atom = he->mAtom; return atom.forget(); } // This results in an extra addref/release of the nsStringBuffer. // Unfortunately there doesn't seem to be any APIs to avoid that. // Actually, now there is, sort of: ForgetSharedBuffer. nsString str; CopyUTF8toUTF16(aUTF8String, str); nsRefPtr atom = new AtomImpl(str, he->keyHash); he->mAtom = atom; return atom.forget(); } already_AddRefed NS_NewAtom(const PRUnichar* aUTF16String) { return NS_NewAtom(nsDependentString(aUTF16String)); } already_AddRefed NS_NewAtom(const nsAString& aUTF16String) { AtomTableEntry *he = GetAtomHashEntry(aUTF16String.Data(), aUTF16String.Length()); if (he->mAtom) { nsCOMPtr atom = he->mAtom; return atom.forget(); } nsRefPtr atom = new AtomImpl(aUTF16String, he->keyHash); he->mAtom = atom; return atom.forget(); } nsIAtom* NS_NewPermanentAtom(const nsAString& aUTF16String) { AtomTableEntry *he = GetAtomHashEntry(aUTF16String.Data(), aUTF16String.Length()); AtomImpl* atom = he->mAtom; if (atom) { if (!atom->IsPermanent()) { PromoteToPermanent(atom); } } else { atom = new PermanentAtomImpl(aUTF16String, he->keyHash); he->mAtom = atom; } // No need to addref since permanent atoms aren't refcounted anyway return atom; } nsrefcnt NS_GetNumberOfAtoms(void) { return gAtomTable.entryCount; } nsIAtom* NS_GetStaticAtom(const nsAString& aUTF16String) { NS_PRECONDITION(gStaticAtomTable, "Static atom table not created yet."); NS_PRECONDITION(gStaticAtomTableSealed, "Static atom table not sealed yet."); nsIAtom* atom; if (!gStaticAtomTable->Get(aUTF16String, &atom)) { atom = nullptr; } return atom; } void NS_SealStaticAtomTable() { gStaticAtomTableSealed = true; }