/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* vim: set ts=8 sts=2 et sw=2 tw=80: */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ /** * A SurfacePipe is a pipeline that consists of a series of SurfaceFilters * terminating in a SurfaceSink. Each SurfaceFilter transforms the image data in * some way before the SurfaceSink ultimately writes it to the surface. This * design allows for each transformation to be tested independently, for the * transformations to be combined as needed to meet the needs of different * situations, and for all image decoders to share the same code for these * transformations. * * Writing to the SurfacePipe is done using lambdas that act as generator * functions. Because the SurfacePipe machinery controls where the writes take * place, a bug in an image decoder cannot cause a buffer overflow of the * underlying surface. In particular, when using WritePixels() a buffer overflow * is impossible as long as the SurfacePipe code is correct. */ #ifndef mozilla_image_SurfacePipe_h #define mozilla_image_SurfacePipe_h #include #include "mozilla/Maybe.h" #include "mozilla/Move.h" #include "mozilla/UniquePtr.h" #include "mozilla/unused.h" #include "mozilla/Variant.h" #include "mozilla/gfx/2D.h" namespace mozilla { namespace image { class Decoder; /** * An invalid rect for a surface. Results are given both in the space of the * input image (i.e., before any SurfaceFilters are applied) and in the space * of the output surface (after all SurfaceFilters). */ struct SurfaceInvalidRect { gfx::IntRect mInputSpaceRect; /// The invalid rect in pre-SurfacePipe space. gfx::IntRect mOutputSpaceRect; /// The invalid rect in post-SurfacePipe space. }; /** * An enum used to allow the lambdas passed to WritePixels() and WriteRows() to * communicate their state to the caller. */ enum class WriteState : uint8_t { NEED_MORE_DATA, /// The lambda ran out of data. FINISHED, /// The lambda is done writing to the surface; future writes /// will fail. FAILURE /// The lambda encountered an error. The caller may recover /// if possible and continue to write. (This never indicates /// an error in the SurfacePipe machinery itself; it's only /// generated by the lambdas.) }; /** * A template alias used to make the return value of WritePixels() lambdas * (which may return either a pixel value or a WriteState) easier to specify. * WriteRows() doesn't need such a template alias since WriteRows() lambdas * don't return a pixel value. */ template using NextPixel = Variant; /** * SurfaceFilter is the abstract superclass of SurfacePipe pipeline stages. * It implements the the code that actually writes to the surface - * WritePixels() and WriteRows() - which are non-virtual for efficiency. * * SurfaceFilter's API is nonpublic; only SurfacePipe and other SurfaceFilters * should use it. Non-SurfacePipe code should use the methods on SurfacePipe. * * To implement a SurfaceFilter, it's necessary to subclass SurfaceFilter and * implement, at a minimum, the pure virtual methods. It's also necessary to * define a Config struct with a Filter typedef member that identifies the * matching SurfaceFilter class, and a Configure() template method. See an * existing SurfaceFilter subclass, such as RemoveFrameRectFilter, for an * example of how the Configure() method must be implemented. It takes a list of * Config structs, passes the tail of the list to the next filter in the chain's * Configure() method, and then uses the head of the list to configure itself. A * SurfaceFilter's Configure() method must also call * SurfaceFilter::ConfigureFilter() to provide WritePixels() and WriteRows() * with the information they need to do their jobs. */ class SurfaceFilter { public: SurfaceFilter() : mRowPointer(nullptr) , mCol(0) , mPixelSize(0) { } virtual ~SurfaceFilter() { } /** * Reset this surface to the first row. It's legal for this filter to throw * away any previously written data at this point, as all rows must be written * to on every pass. * * @return a pointer to the buffer for the first row. */ uint8_t* ResetToFirstRow() { mCol = 0; mRowPointer = DoResetToFirstRow(); return mRowPointer; } /** * Called by WritePixels() and WriteRows() to advance this filter to the next * row. * * @return a pointer to the buffer for the next row, or nullptr to indicate * that we've finished the entire surface. */ uint8_t* AdvanceRow() { mCol = 0; mRowPointer = DoAdvanceRow(); return mRowPointer; } /// @return a pointer to the buffer for the current row. uint8_t* CurrentRowPointer() const { return mRowPointer; } /// @return true if we've finished writing to the surface. bool IsSurfaceFinished() const { return mRowPointer == nullptr; } /// @return the input size this filter expects. gfx::IntSize InputSize() const { return mInputSize; } /** * Write pixels to the surface one at a time by repeatedly calling a lambda * that yields pixels. WritePixels() should be preferred over WriteRows() * whenever using it will not introduce additional copies or other performance * penalties, because it is completely memory safe. * * Writing continues until every pixel in the surface has been written to * (i.e., IsSurfaceFinished() returns true) or the lambda returns a WriteState * which WritePixels() will return to the caller. * * The template parameter PixelType must be uint8_t (for paletted surfaces) or * uint32_t (for BGRA/BGRX surfaces) and must be in agreement with the pixel * size passed to ConfigureFilter(). * * XXX(seth): We'll remove all support for paletted surfaces in bug 1247520, * which means we can remove the PixelType template parameter from this * method. * * @param aFunc A lambda that functions as a generator, yielding the next * pixel in the surface each time it's called. The lambda must * return a NextPixel value. * * @return A WriteState value indicating the lambda generator's state. * WritePixels() itself will return WriteState::FINISHED if writing * has finished, regardless of the lambda's internal state. */ template WriteState WritePixels(Func aFunc) { MOZ_ASSERT(mPixelSize == 1 || mPixelSize == 4); MOZ_ASSERT_IF(mPixelSize == 1, sizeof(PixelType) == sizeof(uint8_t)); MOZ_ASSERT_IF(mPixelSize == 4, sizeof(PixelType) == sizeof(uint32_t)); while (!IsSurfaceFinished()) { PixelType* rowPtr = reinterpret_cast(mRowPointer); for (; mCol < mInputSize.width; ++mCol) { NextPixel result = aFunc(); if (result.template is()) { rowPtr[mCol] = result.template as(); continue; } switch (result.template as()) { case WriteState::NEED_MORE_DATA: return WriteState::NEED_MORE_DATA; case WriteState::FINISHED: // Make sure that IsSurfaceFinished() returns true so the caller // can't write anything else to the pipeline. mRowPointer = nullptr; mCol = 0; return WriteState::FINISHED; case WriteState::FAILURE: // Note that we don't need to record this anywhere, because this // indicates an error in aFunc, and there's nothing wrong with our // machinery. The caller can recover as needed and continue writing to // the row. return WriteState::FAILURE; } } AdvanceRow(); // We've finished the row. } // We've finished the entire surface. return WriteState::FINISHED; } /** * Write rows to the surface one at a time by repeatedly calling a lambda * that yields rows. Because WriteRows() is not completely memory safe, * WritePixels() should be preferred whenever it can be used without * introducing additional copies or other performance penalties. * * Writing continues until every row in the surface has been written to (i.e., * IsSurfaceFinished() returns true) or the lambda returns a WriteState which * WriteRows() will return to the caller. * * The template parameter PixelType must be uint8_t (for paletted surfaces) or * uint32_t (for BGRA/BGRX surfaces) and must be in agreement with the pixel * size passed to ConfigureFilter(). * * XXX(seth): We'll remove all support for paletted surfaces in bug 1247520, * which means we can remove the PixelType template parameter from this * method. * * @param aFunc A lambda that functions as a generator, yielding the next * row in the surface each time it's called. The lambda must * return a Maybe value; if Some(), the return value * indicates a WriteState to return to the caller, while * Nothing() indicates that the lambda can generate more rows. * * @return A WriteState value indicating the lambda generator's state. * WriteRows() itself will return WriteState::FINISHED if writing * has finished, regardless of the lambda's internal state. */ template WriteState WriteRows(Func aFunc) { MOZ_ASSERT(mPixelSize == 1 || mPixelSize == 4); MOZ_ASSERT_IF(mPixelSize == 1, sizeof(PixelType) == sizeof(uint8_t)); MOZ_ASSERT_IF(mPixelSize == 4, sizeof(PixelType) == sizeof(uint32_t)); if (IsSurfaceFinished()) { return WriteState::FINISHED; // Already done. } while (true) { PixelType* rowPtr = reinterpret_cast(mRowPointer); Maybe result = aFunc(rowPtr, mInputSize.width); if (result != Some(WriteState::FAILURE)) { AdvanceRow(); // We've finished the row. } if (IsSurfaceFinished()) { break; } if (result == Some(WriteState::FINISHED)) { // Make sure that IsSurfaceFinished() returns true so the caller can't // write anything else to the pipeline. mRowPointer = nullptr; mCol = 0; } if (result) { return *result; } } // We've finished the entire surface. return WriteState::FINISHED; } ////////////////////////////////////////////////////////////////////////////// // Methods Subclasses Should Override ////////////////////////////////////////////////////////////////////////////// /// @return true if this SurfaceFilter can be used with paletted surfaces. virtual bool IsValidPalettedPipe() const { return false; } /** * @return a SurfaceInvalidRect representing the region of the surface that * has been written to since the last time TakeInvalidRect() was * called, or Nothing() if the region is empty (i.e. nothing has been * written). */ virtual Maybe TakeInvalidRect() = 0; protected: /** * Called by ResetToFirstRow() to actually perform the reset. It's legal to * throw away any previously written data at this point, as all rows must be * written to on every pass. */ virtual uint8_t* DoResetToFirstRow() = 0; /** * Called by AdvanceRow() to actually advance this filter to the next row. * * @return a pointer to the buffer for the next row, or nullptr to indicate * that we've finished the entire surface. */ virtual uint8_t* DoAdvanceRow() = 0; ////////////////////////////////////////////////////////////////////////////// // Methods For Internal Use By Subclasses ////////////////////////////////////////////////////////////////////////////// /** * Called by subclasses' Configure() methods to initialize the configuration * of this filter. After the filter is configured, calls ResetToFirstRow(). * * @param aInputSize The input size of this filter, in pixels. The previous * filter in the chain will expect to write into rows * |aInputSize.width| pixels wide. * @param aPixelSize How large, in bytes, each pixel in the surface is. This * should be either 1 for paletted images or 4 for BGRA/BGRX * images. */ void ConfigureFilter(gfx::IntSize aInputSize, uint8_t aPixelSize) { mInputSize = aInputSize; mPixelSize = aPixelSize; ResetToFirstRow(); } private: gfx::IntSize mInputSize; /// The size of the input this filter expects. uint8_t* mRowPointer; /// Pointer to the current row or null if finished. int32_t mCol; /// The current column we're writing to. (0-indexed) uint8_t mPixelSize; /// How large each pixel in the surface is, in bytes. }; class NullSurfaceSink; /// A trivial configuration struct for NullSurfaceSink. struct NullSurfaceConfig { using Filter = NullSurfaceSink; }; /** * NullSurfaceSink is a trivial SurfaceFilter implementation that behaves as if * it were a zero-size SurfaceSink. It's used as the default filter chain for an * uninitialized SurfacePipe. * * To avoid unnecessary allocations when creating SurfacePipe objects, * NullSurfaceSink is a singleton. (This implies that the implementation must be * stateless.) */ class NullSurfaceSink final : public SurfaceFilter { public: /// Returns the singleton instance of NullSurfaceSink. static NullSurfaceSink* Singleton(); virtual ~NullSurfaceSink() { } nsresult Configure(const NullSurfaceConfig& aConfig); Maybe TakeInvalidRect() override { return Nothing(); } protected: uint8_t* DoResetToFirstRow() override { return nullptr; } uint8_t* DoAdvanceRow() override { return nullptr; } private: static UniquePtr sSingleton; /// The singleton instance. }; /** * SurfacePipe is the public API that decoders should use to interact with a * SurfaceFilter pipeline. */ class SurfacePipe { public: /// Initialize global state used by all SurfacePipes. static void Initialize() { NullSurfaceSink::Singleton(); } SurfacePipe() : mHead(NullSurfaceSink::Singleton()) { } SurfacePipe(SurfacePipe&& aOther) : mHead(Move(aOther.mHead)) { } ~SurfacePipe() { // Ensure that we don't free the NullSurfaceSink singleton. if (mHead.get() == NullSurfaceSink::Singleton()) { Unused << mHead.release(); } } SurfacePipe& operator=(SurfacePipe&& aOther) { MOZ_ASSERT(this != &aOther); // Ensure that we don't free the NullSurfaceSink singleton. if (mHead.get() == NullSurfaceSink::Singleton()) { Unused << mHead.release(); } mHead = Move(aOther.mHead); return *this; } /// Begins a new pass, seeking to the first row of the surface. void ResetToFirstRow() { mHead->ResetToFirstRow(); } /** * Write pixels to the surface one at a time by repeatedly calling a lambda * that yields pixels. WritePixels() should be preferred over WriteRows() * whenever using it will not introduce additional copies or other performance * penalties, because it is completely memory safe. * * @see SurfaceFilter::WritePixels() for the canonical documentation. */ template WriteState WritePixels(Func aFunc) { return mHead->WritePixels(Forward(aFunc)); } /** * Write rows to the surface one at a time by repeatedly calling a lambda * that yields rows. Because WriteRows() is not completely memory safe, * WritePixels() should be preferred whenever it can be used without * introducing additional copies or other performance penalties. * * @see SurfaceFilter::WriteRows() for the canonical documentation. */ template WriteState WriteRows(Func aFunc) { return mHead->WriteRows(Forward(aFunc)); } /// @return true if we've finished writing to the surface. bool IsSurfaceFinished() const { return mHead->IsSurfaceFinished(); } /// @see SurfaceFilter::TakeInvalidRect() for the canonical documentation. Maybe TakeInvalidRect() const { return mHead->TakeInvalidRect(); } private: friend class SurfacePipeFactory; friend class TestSurfacePipeFactory; explicit SurfacePipe(UniquePtr&& aHead) : mHead(Move(aHead)) { } SurfacePipe(const SurfacePipe&) = delete; SurfacePipe& operator=(const SurfacePipe&) = delete; UniquePtr mHead; /// The first filter in the chain. }; /** * AbstractSurfaceSink contains shared implementation for both SurfaceSink and * PalettedSurfaceSink. */ class AbstractSurfaceSink : public SurfaceFilter { public: AbstractSurfaceSink() : mImageData(nullptr) , mImageDataLength(0) , mRow(0) , mFlipVertically(false) { } Maybe TakeInvalidRect() override final; protected: uint8_t* DoResetToFirstRow() override final; uint8_t* DoAdvanceRow() override final; virtual uint8_t* GetRowPointer() const = 0; gfx::IntRect mInvalidRect; /// The region of the surface that has been written /// to since the last call to TakeInvalidRect(). uint8_t* mImageData; /// A pointer to the beginning of the surface data. uint32_t mImageDataLength; /// The length of the surface data. uint32_t mRow; /// The row to which we're writing. (0-indexed) bool mFlipVertically; /// If true, write the rows from top to bottom. }; class SurfaceSink; /// A configuration struct for SurfaceSink. struct SurfaceConfig { using Filter = SurfaceSink; Decoder* mDecoder; /// Which Decoder to use to allocate the surface. uint32_t mFrameNum; /// Which frame of animation this surface is for. gfx::IntSize mOutputSize; /// The size of the surface. gfx::SurfaceFormat mFormat; /// The surface format (BGRA or BGRX). bool mFlipVertically; /// If true, write the rows from bottom to top. }; /** * A sink for normal (i.e., non-paletted) surfaces. It handles the allocation of * the surface and protects against buffer overflow. This sink should be used * for all non-animated images and for the first frame of animated images. * * Sinks must always be at the end of the SurfaceFilter chain. */ class SurfaceSink final : public AbstractSurfaceSink { public: nsresult Configure(const SurfaceConfig& aConfig); protected: uint8_t* GetRowPointer() const override; }; class PalettedSurfaceSink; struct PalettedSurfaceConfig { using Filter = PalettedSurfaceSink; Decoder* mDecoder; /// Which Decoder to use to allocate the surface. uint32_t mFrameNum; /// Which frame of animation this surface is for. gfx::IntSize mOutputSize; /// The logical size of the surface. gfx::IntRect mFrameRect; /// The surface subrect which contains data. gfx::SurfaceFormat mFormat; /// The surface format (BGRA or BGRX). uint8_t mPaletteDepth; /// The palette depth of this surface. bool mFlipVertically; /// If true, write the rows from bottom to top. }; /** * A sink for paletted surfaces. It handles the allocation of the surface and * protects against buffer overflow. This sink can be used for frames of * animated images except the first. * * Sinks must always be at the end of the SurfaceFilter chain. * * XXX(seth): We'll remove all support for paletted surfaces in bug 1247520, * which means we can remove PalettedSurfaceSink entirely. */ class PalettedSurfaceSink final : public AbstractSurfaceSink { public: bool IsValidPalettedPipe() const override { return true; } nsresult Configure(const PalettedSurfaceConfig& aConfig); protected: uint8_t* GetRowPointer() const override; private: /** * The surface subrect which contains data. Note that the surface size we * actually allocate is the size of the frame rect, not the logical size of * the surface. */ gfx::IntRect mFrameRect; }; } // namespace image } // namespace mozilla #endif // mozilla_image_SurfacePipe_h