/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "Decoder.h" #include "DecodePool.h" #include "GeckoProfiler.h" #include "IDecodingTask.h" #include "ISurfaceProvider.h" #include "mozilla/gfx/2D.h" #include "mozilla/gfx/Point.h" #include "mozilla/Telemetry.h" #include "nsComponentManagerUtils.h" #include "nsProxyRelease.h" #include "nsServiceManagerUtils.h" using mozilla::gfx::IntPoint; using mozilla::gfx::IntRect; using mozilla::gfx::IntSize; using mozilla::gfx::SurfaceFormat; namespace mozilla { namespace image { class MOZ_STACK_CLASS AutoRecordDecoderTelemetry final { public: explicit AutoRecordDecoderTelemetry(Decoder* aDecoder) : mDecoder(aDecoder) { MOZ_ASSERT(mDecoder); // Begin recording telemetry data. mStartTime = TimeStamp::Now(); } ~AutoRecordDecoderTelemetry() { // Finish telemetry. mDecoder->mDecodeTime += (TimeStamp::Now() - mStartTime); } private: Decoder* mDecoder; TimeStamp mStartTime; }; Decoder::Decoder(RasterImage* aImage) : mImageData(nullptr), mImageDataLength(0), mColormap(nullptr), mColormapSize(0), mImage(aImage), mFrameRecycler(nullptr), mProgress(NoProgress), mFrameCount(0), mLoopLength(FrameTimeout::Zero()), mDecoderFlags(DefaultDecoderFlags()), mSurfaceFlags(DefaultSurfaceFlags()), mInitialized(false), mMetadataDecode(false), mHaveExplicitOutputSize(false), mInFrame(false), mFinishedNewFrame(false), mHasFrameToTake(false), mReachedTerminalState(false), mDecodeDone(false), mError(false), mShouldReportError(false), mFinalizeFrames(true) {} Decoder::~Decoder() { MOZ_ASSERT(mProgress == NoProgress || !mImage, "Destroying Decoder without taking all its progress changes"); MOZ_ASSERT(mInvalidRect.IsEmpty() || !mImage, "Destroying Decoder without taking all its invalidations"); mInitialized = false; if (mImage && !NS_IsMainThread()) { // Dispatch mImage to main thread to prevent it from being destructed by the // decode thread. NS_ReleaseOnMainThreadSystemGroup(mImage.forget()); } } /* * Common implementation of the decoder interface. */ nsresult Decoder::Init() { // No re-initializing MOZ_ASSERT(!mInitialized, "Can't re-initialize a decoder!"); // All decoders must have a SourceBufferIterator. MOZ_ASSERT(mIterator); // Metadata decoders must not set an output size. MOZ_ASSERT_IF(mMetadataDecode, !mHaveExplicitOutputSize); // All decoders must be anonymous except for metadata decoders. // XXX(seth): Soon that exception will be removed. MOZ_ASSERT_IF(mImage, IsMetadataDecode()); // Implementation-specific initialization. nsresult rv = InitInternal(); mInitialized = true; return rv; } LexerResult Decoder::Decode(IResumable* aOnResume /* = nullptr */) { MOZ_ASSERT(mInitialized, "Should be initialized here"); MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator"); // If we're already done, don't attempt to keep decoding. if (GetDecodeDone()) { return LexerResult(HasError() ? TerminalState::FAILURE : TerminalState::SUCCESS); } LexerResult lexerResult(TerminalState::FAILURE); { AUTO_PROFILER_LABEL_CATEGORY_PAIR(GRAPHICS_ImageDecoding); AutoRecordDecoderTelemetry telemetry(this); lexerResult = DoDecode(*mIterator, aOnResume); }; if (lexerResult.is()) { // We either need more data to continue (in which case either @aOnResume or // the caller will reschedule us to run again later), or the decoder is // yielding to allow the caller access to some intermediate output. return lexerResult; } // We reached a terminal state; we're now done decoding. MOZ_ASSERT(lexerResult.is()); mReachedTerminalState = true; // If decoding failed, record that fact. if (lexerResult.as() == TerminalState::FAILURE) { PostError(); } // Perform final cleanup. CompleteDecode(); return LexerResult(HasError() ? TerminalState::FAILURE : TerminalState::SUCCESS); } LexerResult Decoder::TerminateFailure() { PostError(); // Perform final cleanup if need be. if (!mReachedTerminalState) { mReachedTerminalState = true; CompleteDecode(); } return LexerResult(TerminalState::FAILURE); } bool Decoder::ShouldSyncDecode(size_t aByteLimit) { MOZ_ASSERT(aByteLimit > 0); MOZ_ASSERT(mIterator, "Should have a SourceBufferIterator"); return mIterator->RemainingBytesIsNoMoreThan(aByteLimit); } void Decoder::CompleteDecode() { // Implementation-specific finalization. nsresult rv = BeforeFinishInternal(); if (NS_FAILED(rv)) { PostError(); } rv = HasError() ? FinishWithErrorInternal() : FinishInternal(); if (NS_FAILED(rv)) { PostError(); } if (IsMetadataDecode()) { // If this was a metadata decode and we never got a size, the decode failed. if (!HasSize()) { PostError(); } return; } // If the implementation left us mid-frame, finish that up. Note that it may // have left us transparent. if (mInFrame) { PostHasTransparency(); PostFrameStop(); } // If PostDecodeDone() has not been called, we may need to send teardown // notifications if it is unrecoverable. if (!mDecodeDone) { // We should always report an error to the console in this case. mShouldReportError = true; if (GetCompleteFrameCount() > 0) { // We're usable if we have at least one complete frame, so do exactly // what we should have when the decoder completed. PostHasTransparency(); PostDecodeDone(); } else { // We're not usable. Record some final progress indicating the error. mProgress |= FLAG_DECODE_COMPLETE | FLAG_HAS_ERROR; } } if (mDecodeDone) { MOZ_ASSERT(HasError() || mCurrentFrame, "Should have an error or a frame"); // If this image wasn't animated and isn't a transient image, mark its frame // as optimizable. We don't support optimizing animated images and // optimizing transient images isn't worth it. if (!HasAnimation() && !(mDecoderFlags & DecoderFlags::IMAGE_IS_TRANSIENT) && mCurrentFrame) { mCurrentFrame->SetOptimizable(); } } } void Decoder::SetOutputSize(const gfx::IntSize& aSize) { mOutputSize = Some(aSize); mHaveExplicitOutputSize = true; } Maybe Decoder::ExplicitOutputSize() const { MOZ_ASSERT_IF(mHaveExplicitOutputSize, mOutputSize); return mHaveExplicitOutputSize ? mOutputSize : Nothing(); } Maybe Decoder::TakeCompleteFrameCount() { const bool finishedNewFrame = mFinishedNewFrame; mFinishedNewFrame = false; return finishedNewFrame ? Some(GetCompleteFrameCount()) : Nothing(); } DecoderFinalStatus Decoder::FinalStatus() const { return DecoderFinalStatus(IsMetadataDecode(), GetDecodeDone(), HasError(), ShouldReportError()); } DecoderTelemetry Decoder::Telemetry() const { MOZ_ASSERT(mIterator); return DecoderTelemetry(SpeedHistogram(), mIterator ? mIterator->ByteCount() : 0, mIterator ? mIterator->ChunkCount() : 0, mDecodeTime); } nsresult Decoder::AllocateFrame(const gfx::IntSize& aOutputSize, const gfx::IntRect& aFrameRect, gfx::SurfaceFormat aFormat, uint8_t aPaletteDepth, const Maybe& aAnimParams) { mCurrentFrame = AllocateFrameInternal(aOutputSize, aFrameRect, aFormat, aPaletteDepth, aAnimParams, std::move(mCurrentFrame)); if (mCurrentFrame) { mHasFrameToTake = true; // Gather the raw pointers the decoders will use. mCurrentFrame->GetImageData(&mImageData, &mImageDataLength); mCurrentFrame->GetPaletteData(&mColormap, &mColormapSize); // We should now be on |aFrameNum|. (Note that we're comparing the frame // number, which is zero-based, with the frame count, which is one-based.) MOZ_ASSERT_IF(aAnimParams, aAnimParams->mFrameNum + 1 == mFrameCount); // If we're past the first frame, PostIsAnimated() should've been called. MOZ_ASSERT_IF(mFrameCount > 1, HasAnimation()); // Update our state to reflect the new frame. MOZ_ASSERT(!mInFrame, "Starting new frame but not done with old one!"); mInFrame = true; } return mCurrentFrame ? NS_OK : NS_ERROR_FAILURE; } RawAccessFrameRef Decoder::AllocateFrameInternal( const gfx::IntSize& aOutputSize, const gfx::IntRect& aFrameRect, SurfaceFormat aFormat, uint8_t aPaletteDepth, const Maybe& aAnimParams, RawAccessFrameRef&& aPreviousFrame) { if (HasError()) { return RawAccessFrameRef(); } uint32_t frameNum = aAnimParams ? aAnimParams->mFrameNum : 0; if (frameNum != mFrameCount) { MOZ_ASSERT_UNREACHABLE("Allocating frames out of order"); return RawAccessFrameRef(); } if (aOutputSize.width <= 0 || aOutputSize.height <= 0 || aFrameRect.Width() <= 0 || aFrameRect.Height() <= 0) { NS_WARNING("Trying to add frame with zero or negative size"); return RawAccessFrameRef(); } if (frameNum == 1) { MOZ_ASSERT(aPreviousFrame, "Must provide a previous frame when animated"); aPreviousFrame->SetRawAccessOnly(); } if (frameNum > 0) { if (ShouldBlendAnimation()) { if (aPreviousFrame->GetDisposalMethod() != DisposalMethod::RESTORE_PREVIOUS) { // If the new restore frame is the direct previous frame, then we know // the dirty rect is composed only of the current frame's blend rect and // the restore frame's clear rect (if applicable) which are handled in // filters. mRestoreFrame = std::move(aPreviousFrame); mRestoreDirtyRect.SetBox(0, 0, 0, 0); } else { // We only need the previous frame's dirty rect, because while there may // have been several frames between us and mRestoreFrame, the only areas // that changed are the restore frame's clear rect, the current frame // blending rect, and the previous frame's blending rect. All else is // forgotten due to us restoring the same frame again. mRestoreDirtyRect = aPreviousFrame->GetBoundedBlendRect(); } } } RawAccessFrameRef ref; // If we have a frame recycler, it must be for an animated image producing // full frames. If the higher layers are discarding frames because of the // memory footprint, then the recycler will allow us to reuse the buffers. // Each frame should be the same size and have mostly the same properties. if (mFrameRecycler) { MOZ_ASSERT(ShouldBlendAnimation()); MOZ_ASSERT(aPaletteDepth == 0); MOZ_ASSERT(aAnimParams); MOZ_ASSERT(aFrameRect.IsEqualEdges(IntRect(IntPoint(0, 0), aOutputSize))); ref = mFrameRecycler->RecycleFrame(mRecycleRect); if (ref) { // If the recycled frame is actually the current restore frame, we cannot // use it. If the next restore frame is the new frame we are creating, in // theory we could reuse it, but we would need to store the restore frame // animation parameters elsewhere. For now we just drop it. bool blocked = ref.get() == mRestoreFrame.get(); if (!blocked) { blocked = NS_FAILED(ref->InitForDecoderRecycle(aAnimParams.ref())); } if (blocked) { ref.reset(); } } } // Either the recycler had nothing to give us, or we don't have a recycler. // Produce a new frame to store the data. if (!ref) { // There is no underlying data to reuse, so reset the recycle rect to be // the full frame, to ensure the restore frame is fully copied. mRecycleRect = IntRect(IntPoint(0, 0), aOutputSize); bool nonPremult = bool(mSurfaceFlags & SurfaceFlags::NO_PREMULTIPLY_ALPHA); auto frame = MakeNotNull>(); if (NS_FAILED(frame->InitForDecoder( aOutputSize, aFrameRect, aFormat, aPaletteDepth, nonPremult, aAnimParams, ShouldBlendAnimation(), bool(mFrameRecycler)))) { NS_WARNING("imgFrame::Init should succeed"); return RawAccessFrameRef(); } ref = frame->RawAccessRef(); if (!ref) { frame->Abort(); return RawAccessFrameRef(); } if (frameNum > 0) { frame->SetRawAccessOnly(); } } mFrameCount++; return ref; } /* * Hook stubs. Override these as necessary in decoder implementations. */ nsresult Decoder::InitInternal() { return NS_OK; } nsresult Decoder::BeforeFinishInternal() { return NS_OK; } nsresult Decoder::FinishInternal() { return NS_OK; } nsresult Decoder::FinishWithErrorInternal() { MOZ_ASSERT(!mInFrame); return NS_OK; } /* * Progress Notifications */ void Decoder::PostSize(int32_t aWidth, int32_t aHeight, Orientation aOrientation /* = Orientation()*/) { // Validate. MOZ_ASSERT(aWidth >= 0, "Width can't be negative!"); MOZ_ASSERT(aHeight >= 0, "Height can't be negative!"); // Set our intrinsic size. mImageMetadata.SetSize(aWidth, aHeight, aOrientation); // Verify it is the expected size, if given. Note that this is only used by // the ICO decoder for embedded image types, so only its subdecoders are // required to handle failures in PostSize. if (!IsExpectedSize()) { PostError(); return; } // Set our output size if it's not already set. if (!mOutputSize) { mOutputSize = Some(IntSize(aWidth, aHeight)); } MOZ_ASSERT(mOutputSize->width <= aWidth && mOutputSize->height <= aHeight, "Output size will result in upscaling"); // Create a downscaler if we need to downscale. This is used by legacy // decoders that haven't been converted to use SurfacePipe yet. // XXX(seth): Obviously, we'll remove this once all decoders use SurfacePipe. if (mOutputSize->width < aWidth || mOutputSize->height < aHeight) { mDownscaler.emplace(*mOutputSize); } // Record this notification. mProgress |= FLAG_SIZE_AVAILABLE; } void Decoder::PostHasTransparency() { mProgress |= FLAG_HAS_TRANSPARENCY; } void Decoder::PostIsAnimated(FrameTimeout aFirstFrameTimeout) { mProgress |= FLAG_IS_ANIMATED; mImageMetadata.SetHasAnimation(); mImageMetadata.SetFirstFrameTimeout(aFirstFrameTimeout); } void Decoder::PostFrameStop(Opacity aFrameOpacity) { // We should be mid-frame MOZ_ASSERT(!IsMetadataDecode(), "Stopping frame during metadata decode"); MOZ_ASSERT(mInFrame, "Stopping frame when we didn't start one"); MOZ_ASSERT(mCurrentFrame, "Stopping frame when we don't have one"); // Update our state. mInFrame = false; mFinishedNewFrame = true; mCurrentFrame->Finish(aFrameOpacity, mFinalizeFrames); mProgress |= FLAG_FRAME_COMPLETE; mLoopLength += mCurrentFrame->GetTimeout(); if (mFrameCount == 1) { // If we're not sending partial invalidations, then we send an invalidation // here when the first frame is complete. if (!ShouldSendPartialInvalidations()) { mInvalidRect.UnionRect(mInvalidRect, IntRect(IntPoint(), Size())); } // If we dispose of the first frame by clearing it, then the first frame's // refresh area is all of itself. RESTORE_PREVIOUS is invalid (assumed to // be DISPOSE_CLEAR). switch (mCurrentFrame->GetDisposalMethod()) { default: MOZ_FALLTHROUGH_ASSERT("Unexpected DisposalMethod"); case DisposalMethod::CLEAR: case DisposalMethod::CLEAR_ALL: case DisposalMethod::RESTORE_PREVIOUS: mFirstFrameRefreshArea = IntRect(IntPoint(), Size()); break; case DisposalMethod::KEEP: case DisposalMethod::NOT_SPECIFIED: break; } } else { // Some GIFs are huge but only have a small area that they animate. We only // need to refresh that small area when frame 0 comes around again. mFirstFrameRefreshArea.UnionRect(mFirstFrameRefreshArea, mCurrentFrame->GetBoundedBlendRect()); } } void Decoder::PostInvalidation(const gfx::IntRect& aRect, const Maybe& aRectAtOutputSize /* = Nothing() */) { // We should be mid-frame MOZ_ASSERT(mInFrame, "Can't invalidate when not mid-frame!"); MOZ_ASSERT(mCurrentFrame, "Can't invalidate when not mid-frame!"); // Record this invalidation, unless we're not sending partial invalidations // or we're past the first frame. if (ShouldSendPartialInvalidations() && mFrameCount == 1) { mInvalidRect.UnionRect(mInvalidRect, aRect); mCurrentFrame->ImageUpdated(aRectAtOutputSize.valueOr(aRect)); } } void Decoder::PostDecodeDone(int32_t aLoopCount /* = 0 */) { MOZ_ASSERT(!IsMetadataDecode(), "Done with decoding in metadata decode"); MOZ_ASSERT(!mInFrame, "Can't be done decoding if we're mid-frame!"); MOZ_ASSERT(!mDecodeDone, "Decode already done!"); mDecodeDone = true; mImageMetadata.SetLoopCount(aLoopCount); // Some metadata that we track should take into account every frame in the // image. If this is a first-frame-only decode, our accumulated loop length // and first frame refresh area only includes the first frame, so it's not // correct and we don't record it. if (!IsFirstFrameDecode()) { mImageMetadata.SetLoopLength(mLoopLength); mImageMetadata.SetFirstFrameRefreshArea(mFirstFrameRefreshArea); } mProgress |= FLAG_DECODE_COMPLETE; } void Decoder::PostError() { mError = true; if (mInFrame) { MOZ_ASSERT(mCurrentFrame); MOZ_ASSERT(mFrameCount > 0); mCurrentFrame->Abort(); mInFrame = false; --mFrameCount; mHasFrameToTake = false; } } } // namespace image } // namespace mozilla