/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- * This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #include "PathHelpers.h" namespace mozilla { namespace gfx { UserDataKey sDisablePixelSnapping; void AppendRoundedRectToPath(PathBuilder* aPathBuilder, const Rect& aRect, const RectCornerRadii& aRadii, bool aDrawClockwise) { // For CW drawing, this looks like: // // ...******0** 1 C // **** // *** 2 // ** // * // * // 3 // * // * // // Where 0, 1, 2, 3 are the control points of the Bezier curve for // the corner, and C is the actual corner point. // // At the start of the loop, the current point is assumed to be // the point adjacent to the top left corner on the top // horizontal. Note that corner indices start at the top left and // continue clockwise, whereas in our loop i = 0 refers to the top // right corner. // // When going CCW, the control points are swapped, and the first // corner that's drawn is the top left (along with the top segment). // // There is considerable latitude in how one chooses the four // control points for a Bezier curve approximation to an ellipse. // For the overall path to be continuous and show no corner at the // endpoints of the arc, points 0 and 3 must be at the ends of the // straight segments of the rectangle; points 0, 1, and C must be // collinear; and points 3, 2, and C must also be collinear. This // leaves only two free parameters: the ratio of the line segments // 01 and 0C, and the ratio of the line segments 32 and 3C. See // the following papers for extensive discussion of how to choose // these ratios: // // Dokken, Tor, et al. "Good approximation of circles by // curvature-continuous Bezier curves." Computer-Aided // Geometric Design 7(1990) 33--41. // Goldapp, Michael. "Approximation of circular arcs by cubic // polynomials." Computer-Aided Geometric Design 8(1991) 227--238. // Maisonobe, Luc. "Drawing an elliptical arc using polylines, // quadratic, or cubic Bezier curves." // http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf // // We follow the approach in section 2 of Goldapp (least-error, // Hermite-type approximation) and make both ratios equal to // // 2 2 + n - sqrt(2n + 28) // alpha = - * --------------------- // 3 n - 4 // // where n = 3( cbrt(sqrt(2)+1) - cbrt(sqrt(2)-1) ). // // This is the result of Goldapp's equation (10b) when the angle // swept out by the arc is pi/2, and the parameter "a-bar" is the // expression given immediately below equation (21). // // Using this value, the maximum radial error for a circle, as a // fraction of the radius, is on the order of 0.2 x 10^-3. // Neither Dokken nor Goldapp discusses error for a general // ellipse; Maisonobe does, but his choice of control points // follows different constraints, and Goldapp's expression for // 'alpha' gives much smaller radial error, even for very flat // ellipses, than Maisonobe's equivalent. // // For the various corners and for each axis, the sign of this // constant changes, or it might be 0 -- it's multiplied by the // appropriate multiplier from the list before using. const Float alpha = Float(0.55191497064665766025); typedef struct { Float a, b; } twoFloats; twoFloats cwCornerMults[4] = { { -1, 0 }, // cc == clockwise { 0, -1 }, { +1, 0 }, { 0, +1 } }; twoFloats ccwCornerMults[4] = { { +1, 0 }, // ccw == counter-clockwise { 0, -1 }, { -1, 0 }, { 0, +1 } }; twoFloats *cornerMults = aDrawClockwise ? cwCornerMults : ccwCornerMults; Point cornerCoords[] = { aRect.TopLeft(), aRect.TopRight(), aRect.BottomRight(), aRect.BottomLeft() }; Point pc, p0, p1, p2, p3; if (aDrawClockwise) { aPathBuilder->MoveTo(Point(aRect.X() + aRadii[RectCorner::TopLeft].width, aRect.Y())); } else { aPathBuilder->MoveTo(Point(aRect.X() + aRect.Width() - aRadii[RectCorner::TopRight].width, aRect.Y())); } for (int i = 0; i < 4; ++i) { // the corner index -- either 1 2 3 0 (cw) or 0 3 2 1 (ccw) int c = aDrawClockwise ? ((i+1) % 4) : ((4-i) % 4); // i+2 and i+3 respectively. These are used to index into the corner // multiplier table, and were deduced by calculating out the long form // of each corner and finding a pattern in the signs and values. int i2 = (i+2) % 4; int i3 = (i+3) % 4; pc = cornerCoords[c]; if (aRadii[c].width > 0.0 && aRadii[c].height > 0.0) { p0.x = pc.x + cornerMults[i].a * aRadii[c].width; p0.y = pc.y + cornerMults[i].b * aRadii[c].height; p3.x = pc.x + cornerMults[i3].a * aRadii[c].width; p3.y = pc.y + cornerMults[i3].b * aRadii[c].height; p1.x = p0.x + alpha * cornerMults[i2].a * aRadii[c].width; p1.y = p0.y + alpha * cornerMults[i2].b * aRadii[c].height; p2.x = p3.x - alpha * cornerMults[i3].a * aRadii[c].width; p2.y = p3.y - alpha * cornerMults[i3].b * aRadii[c].height; aPathBuilder->LineTo(p0); aPathBuilder->BezierTo(p1, p2, p3); } else { aPathBuilder->LineTo(pc); } } aPathBuilder->Close(); } void AppendEllipseToPath(PathBuilder* aPathBuilder, const Point& aCenter, const Size& aDimensions) { Size halfDim = aDimensions / 2.f; Rect rect(aCenter - Point(halfDim.width, halfDim.height), aDimensions); RectCornerRadii radii(halfDim.width, halfDim.height); AppendRoundedRectToPath(aPathBuilder, rect, radii); } bool SnapLineToDevicePixelsForStroking(Point& aP1, Point& aP2, const DrawTarget& aDrawTarget) { Matrix mat = aDrawTarget.GetTransform(); if (mat.HasNonTranslation()) { return false; } if (aP1.x != aP2.x && aP1.y != aP2.y) { return false; // not a horizontal or vertical line } Point p1 = aP1 + mat.GetTranslation(); // into device space Point p2 = aP2 + mat.GetTranslation(); p1.Round(); p2.Round(); p1 -= mat.GetTranslation(); // back into user space p2 -= mat.GetTranslation(); if (aP1.x == aP2.x) { // snap vertical line, adding 0.5 to align it to be mid-pixel: aP1 = p1 + Point(0.5, 0); aP2 = p2 + Point(0.5, 0); } else { // snap horizontal line, adding 0.5 to align it to be mid-pixel: aP1 = p1 + Point(0, 0.5); aP2 = p2 + Point(0, 0.5); } return true; } void StrokeSnappedEdgesOfRect(const Rect& aRect, DrawTarget& aDrawTarget, const ColorPattern& aColor, const StrokeOptions& aStrokeOptions) { if (aRect.IsEmpty()) { return; } Point p1 = aRect.TopLeft(); Point p2 = aRect.BottomLeft(); SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget); aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions); p1 = aRect.BottomLeft(); p2 = aRect.BottomRight(); SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget); aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions); p1 = aRect.TopLeft(); p2 = aRect.TopRight(); SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget); aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions); p1 = aRect.TopRight(); p2 = aRect.BottomRight(); SnapLineToDevicePixelsForStroking(p1, p2, aDrawTarget); aDrawTarget.StrokeLine(p1, p2, aColor, aStrokeOptions); } } // namespace gfx } // namespace mozilla