/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 4 -*- * ***** BEGIN LICENSE BLOCK ***** * Version: MPL 1.1/GPL 2.0/LGPL 2.1 * * The contents of this file are subject to the Mozilla Public License Version * 1.1 (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * http://www.mozilla.org/MPL/ * * Software distributed under the License is distributed on an "AS IS" basis, * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License * for the specific language governing rights and limitations under the * License. * * The Original Code is Thebes gfx. * * The Initial Developer of the Original Code is Mozilla Foundation. * Portions created by the Initial Developer are Copyright (C) 2007 * the Initial Developer. All Rights Reserved. * * Contributor(s): * Vladimir Vukicevic * * Alternatively, the contents of this file may be used under the terms of * either the GNU General Public License Version 2 or later (the "GPL"), or * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), * in which case the provisions of the GPL or the LGPL are applicable instead * of those above. If you wish to allow use of your version of this file only * under the terms of either the GPL or the LGPL, and not to allow others to * use your version of this file under the terms of the MPL, indicate your * decision by deleting the provisions above and replace them with the notice * and other provisions required by the GPL or the LGPL. If you do not delete * the provisions above, a recipient may use your version of this file under * the terms of any one of the MPL, the GPL or the LGPL. * * ***** END LICENSE BLOCK ***** */ #ifndef _GFXALPHARECOVERY_H_ #define _GFXALPHARECOVERY_H_ #include "gfxContext.h" #include "gfxImageSurface.h" #include "mozilla/SSE.h" #include "nsRect.h" class THEBES_API gfxAlphaRecovery { public: struct Analysis { bool uniformColor; bool uniformAlpha; gfxFloat alpha; gfxFloat r, g, b; }; /** * Some SIMD fast-paths only can be taken if the relative * byte-alignment of images' pointers and strides meets certain * criteria. Aligning image pointers and strides by * |GoodAlignmentLog2()| below will ensure that fast-paths aren't * skipped because of misalignment. Fast-paths may still be taken * even if GoodAlignmentLog2() is not met, in some conditions. */ static PRUint32 GoodAlignmentLog2() { return 4; /* for SSE2 */ } /* Given two surfaces of equal size with the same rendering, one onto a * black background and the other onto white, recovers alpha values from * the difference and sets the alpha values on the black surface. * The surfaces must have format RGB24 or ARGB32. * Returns PR_TRUE on success. */ static bool RecoverAlpha (gfxImageSurface *blackSurface, const gfxImageSurface *whiteSurface, Analysis *analysis = nsnull); #ifdef MOZILLA_MAY_SUPPORT_SSE2 /* This does the same as the previous function, but uses SSE2 * optimizations. Usually this should not be called directly. Be sure to * check mozilla::supports_sse2() before calling this function. */ static bool RecoverAlphaSSE2 (gfxImageSurface *blackSurface, const gfxImageSurface *whiteSurface); /** * A common use-case for alpha recovery is to paint into a * temporary "white image", then paint onto a subrect of the * surface, the "black image", into which alpha-recovered pixels * are eventually to be written. This function returns a rect * aligned so that recovering alpha for that rect will hit SIMD * fast-paths, if possible. It's not always possible to align * |aRect| so that fast-paths will be taken. * * The returned rect is always a superset of |aRect|. */ static nsIntRect AlignRectForSubimageRecovery(const nsIntRect& aRect, gfxImageSurface* aSurface); #else static nsIntRect AlignRectForSubimageRecovery(const nsIntRect& aRect, gfxImageSurface*) { return aRect; } #endif /** from cairo-xlib-utils.c, modified */ /** * Given the RGB data for two image surfaces, one a source image composited * with OVER onto a black background, and one a source image composited with * OVER onto a white background, reconstruct the original image data into * black_data. * * Consider a single color channel and a given pixel. Suppose the original * premultiplied color value was C and the alpha value was A. Let the final * on-black color be B and the final on-white color be W. All values range * over 0-255. * * Then B=C and W=(255*(255 - A) + C*255)/255. Solving for A, we get * A=255 - (W - C). Therefore it suffices to leave the black_data color * data alone and set the alpha values using that simple formula. It shouldn't * matter what color channel we pick for the alpha computation, but we'll * pick green because if we went through a color channel downsample the green * bits are likely to be the most accurate. * * This function needs to be in the header file since it's used by both * gfxRecoverAlpha.cpp and gfxRecoverAlphaSSE2.cpp. */ static inline PRUint32 RecoverPixel(PRUint32 black, PRUint32 white) { const PRUint32 GREEN_MASK = 0x0000FF00; const PRUint32 ALPHA_MASK = 0xFF000000; /* |diff| here is larger when the source image pixel is more transparent. If both renderings are from the same source image composited with OVER, then the color values on white will always be greater than those on black, so |diff| would not overflow. However, overflow may happen, for example, when a plugin plays a video and the image is rapidly changing. If there is overflow, then behave as if we limit to the difference to >= 0, which will make the rendering opaque. (Without this overflow will make the rendering transparent.) */ PRUint32 diff = (white & GREEN_MASK) - (black & GREEN_MASK); /* |diff| is 0xFFFFxx00 on overflow and 0x0000xx00 otherwise, so use this to limit the transparency. */ PRUint32 limit = diff & ALPHA_MASK; /* The alpha bits of the result */ PRUint32 alpha = (ALPHA_MASK - (diff << 16)) | limit; return alpha | (black & ~ALPHA_MASK); } }; #endif /* _GFXALPHARECOVERY_H_ */