gecko-dev/gfx/2d/DrawTargetSkia.cpp

2098 строки
71 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetSkia.h"
#include "SourceSurfaceSkia.h"
#include "ScaledFontBase.h"
#include "FilterNodeSoftware.h"
#include "HelpersSkia.h"
#include "mozilla/ArrayUtils.h"
#include "mozilla/CheckedInt.h"
#include "mozilla/Vector.h"
#include "skia/include/core/SkSurface.h"
#include "skia/include/core/SkTypeface.h"
#include "skia/include/effects/SkGradientShader.h"
#include "skia/include/core/SkColorFilter.h"
#include "skia/include/core/SkRegion.h"
#include "skia/include/effects/SkBlurImageFilter.h"
#include "Blur.h"
#include "Logging.h"
#include "Tools.h"
#include "DataSurfaceHelpers.h"
#include "PathHelpers.h"
#include "SourceSurfaceCapture.h"
#include "Swizzle.h"
#include <algorithm>
#ifdef USE_SKIA_GPU
#include "GLDefs.h"
#include "skia/include/gpu/GrContext.h"
#include "skia/include/gpu/GrTexture.h"
#include "skia/include/gpu/gl/GrGLInterface.h"
#endif
#ifdef MOZ_WIDGET_COCOA
#include "BorrowedContext.h"
#include <ApplicationServices/ApplicationServices.h>
#include "ScaledFontMac.h"
#include "CGTextDrawing.h"
#endif
#ifdef XP_WIN
#include "ScaledFontDWrite.h"
#endif
using namespace std;
namespace mozilla {
namespace gfx {
class GradientStopsSkia : public GradientStops {
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GradientStopsSkia, override)
GradientStopsSkia(const std::vector<GradientStop>& aStops, uint32_t aNumStops,
ExtendMode aExtendMode)
: mCount(aNumStops), mExtendMode(aExtendMode) {
if (mCount == 0) {
return;
}
// Skia gradients always require a stop at 0.0 and 1.0, insert these if
// we don't have them.
uint32_t shift = 0;
if (aStops[0].offset != 0) {
mCount++;
shift = 1;
}
if (aStops[aNumStops - 1].offset != 1) {
mCount++;
}
mColors.resize(mCount);
mPositions.resize(mCount);
if (aStops[0].offset != 0) {
mColors[0] = ColorToSkColor(aStops[0].color, 1.0);
mPositions[0] = 0;
}
for (uint32_t i = 0; i < aNumStops; i++) {
mColors[i + shift] = ColorToSkColor(aStops[i].color, 1.0);
mPositions[i + shift] = SkFloatToScalar(aStops[i].offset);
}
if (aStops[aNumStops - 1].offset != 1) {
mColors[mCount - 1] = ColorToSkColor(aStops[aNumStops - 1].color, 1.0);
mPositions[mCount - 1] = SK_Scalar1;
}
}
BackendType GetBackendType() const override { return BackendType::SKIA; }
std::vector<SkColor> mColors;
std::vector<SkScalar> mPositions;
int mCount;
ExtendMode mExtendMode;
};
/**
* When constructing a temporary SkImage via GetSkImageForSurface, we may also
* have to construct a temporary DataSourceSurface, which must live as long as
* the SkImage. We attach this temporary surface to the image's pixelref, so
* that it can be released once the pixelref is freed.
*/
static void ReleaseTemporarySurface(const void* aPixels, void* aContext) {
DataSourceSurface* surf = static_cast<DataSourceSurface*>(aContext);
if (surf) {
surf->Release();
}
}
static void WriteRGBXFormat(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return;
}
SwizzleData(aData, aStride, SurfaceFormat::X8R8G8B8_UINT32, aData, aStride,
SurfaceFormat::A8R8G8B8_UINT32, aSize);
}
#ifdef DEBUG
static IntRect CalculateSurfaceBounds(const IntSize& aSize, const Rect* aBounds,
const Matrix* aMatrix) {
IntRect surfaceBounds(IntPoint(0, 0), aSize);
if (!aBounds) {
return surfaceBounds;
}
MOZ_ASSERT(aMatrix);
Matrix inverse(*aMatrix);
if (!inverse.Invert()) {
return surfaceBounds;
}
IntRect bounds;
Rect sampledBounds = inverse.TransformBounds(*aBounds);
if (!sampledBounds.ToIntRect(&bounds)) {
return surfaceBounds;
}
return surfaceBounds.Intersect(bounds);
}
static const int kARGBAlphaOffset =
SurfaceFormat::A8R8G8B8_UINT32 == SurfaceFormat::B8G8R8A8 ? 3 : 0;
static bool VerifyRGBXFormat(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
// We should've initialized the data to be opaque already
// On debug builds, verify that this is actually true.
int height = aSize.height;
int width = aSize.width * 4;
for (int row = 0; row < height; ++row) {
for (int column = 0; column < width; column += 4) {
if (aData[column + kARGBAlphaOffset] != 0xFF) {
gfxCriticalError() << "RGBX pixel at (" << column << "," << row
<< ") in " << width << "x" << height
<< " surface is not opaque: " << int(aData[column])
<< "," << int(aData[column + 1]) << ","
<< int(aData[column + 2]) << ","
<< int(aData[column + 3]);
}
}
aData += aStride;
}
return true;
}
// Since checking every pixel is expensive, this only checks the four corners
// and center of a surface that their alpha value is 0xFF.
static bool VerifyRGBXCorners(uint8_t* aData, const IntSize& aSize,
const int32_t aStride, SurfaceFormat aFormat,
const Rect* aBounds = nullptr,
const Matrix* aMatrix = nullptr) {
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
IntRect bounds = CalculateSurfaceBounds(aSize, aBounds, aMatrix);
if (bounds.IsEmpty()) {
return true;
}
const int height = bounds.Height();
const int width = bounds.Width();
const int pixelSize = 4;
MOZ_ASSERT(aSize.width * pixelSize <= aStride);
const int translation = bounds.Y() * aStride + bounds.X() * pixelSize;
const int topLeft = translation;
const int topRight = topLeft + (width - 1) * pixelSize;
const int bottomLeft = translation + (height - 1) * aStride;
const int bottomRight = bottomLeft + (width - 1) * pixelSize;
// Lastly the center pixel
const int middleRowHeight = height / 2;
const int middleRowWidth = (width / 2) * pixelSize;
const int middle = translation + aStride * middleRowHeight + middleRowWidth;
const int offsets[] = {topLeft, topRight, bottomRight, bottomLeft, middle};
for (int offset : offsets) {
if (aData[offset + kARGBAlphaOffset] != 0xFF) {
int row = offset / aStride;
int column = (offset % aStride) / pixelSize;
gfxCriticalError() << "RGBX corner pixel at (" << column << "," << row
<< ") in " << aSize.width << "x" << aSize.height
<< " surface, bounded by "
<< "(" << bounds.X() << "," << bounds.Y() << ","
<< width << "," << height
<< ") is not opaque: " << int(aData[offset]) << ","
<< int(aData[offset + 1]) << ","
<< int(aData[offset + 2]) << ","
<< int(aData[offset + 3]);
}
}
return true;
}
#endif
static sk_sp<SkImage> GetSkImageForSurface(SourceSurface* aSurface,
const Rect* aBounds = nullptr,
const Matrix* aMatrix = nullptr) {
if (!aSurface) {
gfxDebug() << "Creating null Skia image from null SourceSurface";
return nullptr;
}
if (aSurface->GetType() == SurfaceType::CAPTURE) {
SourceSurfaceCapture* capture =
static_cast<SourceSurfaceCapture*>(aSurface);
RefPtr<SourceSurface> resolved = capture->Resolve(BackendType::SKIA);
if (!resolved) {
return nullptr;
}
MOZ_ASSERT(resolved->GetType() != SurfaceType::CAPTURE);
return GetSkImageForSurface(resolved, aBounds, aMatrix);
}
if (aSurface->GetType() == SurfaceType::SKIA) {
return static_cast<SourceSurfaceSkia*>(aSurface)->GetImage();
}
DataSourceSurface* surf = aSurface->GetDataSurface().take();
if (!surf) {
gfxWarning() << "Failed getting DataSourceSurface for Skia image";
return nullptr;
}
SkPixmap pixmap(MakeSkiaImageInfo(surf->GetSize(), surf->GetFormat()),
surf->GetData(), surf->Stride());
sk_sp<SkImage> image =
SkImage::MakeFromRaster(pixmap, ReleaseTemporarySurface, surf);
if (!image) {
ReleaseTemporarySurface(nullptr, surf);
gfxDebug() << "Failed making Skia raster image for temporary surface";
}
// Skia doesn't support RGBX surfaces so ensure that the alpha value is opaque
// white.
MOZ_ASSERT(VerifyRGBXCorners(surf->GetData(), surf->GetSize(), surf->Stride(),
surf->GetFormat(), aBounds, aMatrix));
return image;
}
DrawTargetSkia::DrawTargetSkia()
: mCanvas(nullptr), mSnapshot(nullptr), mSnapshotLock {
"DrawTargetSkia::mSnapshotLock"
}
#ifdef MOZ_WIDGET_COCOA
, mCG(nullptr), mColorSpace(nullptr), mCanvasData(nullptr), mCGSize(0, 0),
mNeedLayer(false)
#endif
{
}
DrawTargetSkia::~DrawTargetSkia() {
if (mSnapshot) {
MutexAutoLock lock(mSnapshotLock);
// We're going to go away, hand our SkSurface to the SourceSurface.
mSnapshot->GiveSurface(mSurface);
}
#ifdef MOZ_WIDGET_COCOA
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
if (mColorSpace) {
CGColorSpaceRelease(mColorSpace);
mColorSpace = nullptr;
}
#endif
}
already_AddRefed<SourceSurface> DrawTargetSkia::Snapshot() {
// Without this lock, this could cause us to get out a snapshot and race with
// Snapshot::~Snapshot() actually destroying itself.
MutexAutoLock lock(mSnapshotLock);
RefPtr<SourceSurfaceSkia> snapshot = mSnapshot;
if (mSurface && !snapshot) {
snapshot = new SourceSurfaceSkia();
sk_sp<SkImage> image;
// If the surface is raster, making a snapshot may trigger a pixel copy.
// Instead, try to directly make a raster image referencing the surface
// pixels.
SkPixmap pixmap;
if (mSurface->peekPixels(&pixmap)) {
image = SkImage::MakeFromRaster(pixmap, nullptr, nullptr);
} else {
image = mSurface->makeImageSnapshot();
}
if (!snapshot->InitFromImage(image, mFormat, this)) {
return nullptr;
}
mSnapshot = snapshot;
}
return snapshot.forget();
}
bool DrawTargetSkia::LockBits(uint8_t** aData, IntSize* aSize, int32_t* aStride,
SurfaceFormat* aFormat, IntPoint* aOrigin) {
SkImageInfo info;
size_t rowBytes;
SkIPoint origin;
void* pixels = mCanvas->accessTopLayerPixels(&info, &rowBytes, &origin);
if (!pixels ||
// Ensure the layer is at the origin if required.
(!aOrigin && !origin.isZero())) {
return false;
}
MarkChanged();
*aData = reinterpret_cast<uint8_t*>(pixels);
*aSize = IntSize(info.width(), info.height());
*aStride = int32_t(rowBytes);
*aFormat = SkiaColorTypeToGfxFormat(info.colorType(), info.alphaType());
if (aOrigin) {
*aOrigin = IntPoint(origin.x(), origin.y());
}
return true;
}
void DrawTargetSkia::ReleaseBits(uint8_t* aData) {}
static void ReleaseImage(const void* aPixels, void* aContext) {
SkImage* image = static_cast<SkImage*>(aContext);
SkSafeUnref(image);
}
static sk_sp<SkImage> ExtractSubset(sk_sp<SkImage> aImage,
const IntRect& aRect) {
SkIRect subsetRect = IntRectToSkIRect(aRect);
if (aImage->bounds() == subsetRect) {
return aImage;
}
// makeSubset is slow, so prefer to use SkPixmap::extractSubset where
// possible.
SkPixmap pixmap, subsetPixmap;
if (aImage->peekPixels(&pixmap) &&
pixmap.extractSubset(&subsetPixmap, subsetRect)) {
// Release the original image reference so only the subset image keeps it
// alive.
return SkImage::MakeFromRaster(subsetPixmap, ReleaseImage,
aImage.release());
}
return aImage->makeSubset(subsetRect);
}
static void FreeBitmapPixels(void* aBuf, void*) { sk_free(aBuf); }
static bool ExtractAlphaBitmap(const sk_sp<SkImage>& aImage,
SkBitmap* aResultBitmap) {
SkImageInfo info = SkImageInfo::MakeA8(aImage->width(), aImage->height());
// Skia does not fully allocate the last row according to stride.
// Since some of our algorithms (i.e. blur) depend on this, we must allocate
// the bitmap pixels manually.
size_t stride = SkAlign4(info.minRowBytes());
CheckedInt<size_t> size = stride;
size *= info.height();
if (size.isValid()) {
void* buf = sk_malloc_flags(size.value(), 0);
if (buf) {
SkBitmap bitmap;
if (bitmap.installPixels(info, buf, stride, FreeBitmapPixels, nullptr) &&
aImage->readPixels(bitmap.info(), bitmap.getPixels(),
bitmap.rowBytes(), 0, 0)) {
*aResultBitmap = bitmap;
return true;
}
}
}
gfxWarning() << "Failed reading alpha pixels for Skia bitmap";
return false;
}
static sk_sp<SkImage> ExtractAlphaForSurface(SourceSurface* aSurface) {
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return nullptr;
}
if (image->isAlphaOnly()) {
return image;
}
SkBitmap bitmap;
if (!ExtractAlphaBitmap(image, &bitmap)) {
return nullptr;
}
// Mark the bitmap immutable so that it will be shared rather than copied.
bitmap.setImmutable();
return SkImage::MakeFromBitmap(bitmap);
}
static void SetPaintPattern(SkPaint& aPaint, const Pattern& aPattern,
Float aAlpha = 1.0,
const SkMatrix* aMatrix = nullptr,
const Rect* aBounds = nullptr) {
switch (aPattern.GetType()) {
case PatternType::COLOR: {
Color color = static_cast<const ColorPattern&>(aPattern).mColor;
aPaint.setColor(ColorToSkColor(color, aAlpha));
break;
}
case PatternType::LINEAR_GRADIENT: {
const LinearGradientPattern& pat =
static_cast<const LinearGradientPattern&>(aPattern);
GradientStopsSkia* stops =
static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 || !pat.mBegin.IsFinite() ||
!pat.mEnd.IsFinite()) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkShader::TileMode mode =
ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mBegin.x),
SkFloatToScalar(pat.mBegin.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mEnd.x),
SkFloatToScalar(pat.mEnd.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
sk_sp<SkShader> shader = SkGradientShader::MakeLinear(
points, &stops->mColors.front(), &stops->mPositions.front(),
stops->mCount, mode, 0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::RADIAL_GRADIENT: {
const RadialGradientPattern& pat =
static_cast<const RadialGradientPattern&>(aPattern);
GradientStopsSkia* stops =
static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 || !pat.mCenter1.IsFinite() ||
!IsFinite(pat.mRadius1) || !pat.mCenter2.IsFinite() ||
!IsFinite(pat.mRadius2)) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkShader::TileMode mode =
ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mCenter1.x),
SkFloatToScalar(pat.mCenter1.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mCenter2.x),
SkFloatToScalar(pat.mCenter2.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
sk_sp<SkShader> shader = SkGradientShader::MakeTwoPointConical(
points[0], SkFloatToScalar(pat.mRadius1), points[1],
SkFloatToScalar(pat.mRadius2), &stops->mColors.front(),
&stops->mPositions.front(), stops->mCount, mode, 0, &mat);
if (shader) {
aPaint.setShader(shader);
} else {
aPaint.setColor(SK_ColorTRANSPARENT);
}
}
break;
}
case PatternType::SURFACE: {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
sk_sp<SkImage> image =
GetSkImageForSurface(pat.mSurface, aBounds, &pat.mMatrix);
if (!image) {
aPaint.setColor(SK_ColorTRANSPARENT);
break;
}
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (aMatrix) {
mat.postConcat(*aMatrix);
}
if (!pat.mSamplingRect.IsEmpty()) {
image = ExtractSubset(image, pat.mSamplingRect);
mat.preTranslate(pat.mSamplingRect.X(), pat.mSamplingRect.Y());
}
SkShader::TileMode xTileMode =
ExtendModeToTileMode(pat.mExtendMode, Axis::X_AXIS);
SkShader::TileMode yTileMode =
ExtendModeToTileMode(pat.mExtendMode, Axis::Y_AXIS);
aPaint.setShader(image->makeShader(xTileMode, yTileMode, &mat));
if (pat.mSamplingFilter == SamplingFilter::POINT) {
aPaint.setFilterQuality(kNone_SkFilterQuality);
}
break;
}
}
}
static inline Rect GetClipBounds(SkCanvas* aCanvas) {
// Use a manually transformed getClipDeviceBounds instead of
// getClipBounds because getClipBounds inflates the the bounds
// by a pixel in each direction to compensate for antialiasing.
SkIRect deviceBounds;
if (!aCanvas->getDeviceClipBounds(&deviceBounds)) {
return Rect();
}
SkMatrix inverseCTM;
if (!aCanvas->getTotalMatrix().invert(&inverseCTM)) {
return Rect();
}
SkRect localBounds;
inverseCTM.mapRect(&localBounds, SkRect::Make(deviceBounds));
return SkRectToRect(localBounds);
}
struct AutoPaintSetup {
AutoPaintSetup(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Pattern& aPattern, const Rect* aMaskBounds = nullptr,
const SkMatrix* aMatrix = nullptr,
const Rect* aSourceBounds = nullptr)
: mNeedsRestore(false), mAlpha(1.0) {
Init(aCanvas, aOptions, aMaskBounds, false);
SetPaintPattern(mPaint, aPattern, mAlpha, aMatrix, aSourceBounds);
}
AutoPaintSetup(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Rect* aMaskBounds = nullptr, bool aForceGroup = false)
: mNeedsRestore(false), mAlpha(1.0) {
Init(aCanvas, aOptions, aMaskBounds, aForceGroup);
}
~AutoPaintSetup() {
if (mNeedsRestore) {
mCanvas->restore();
}
}
void Init(SkCanvas* aCanvas, const DrawOptions& aOptions,
const Rect* aMaskBounds, bool aForceGroup) {
mPaint.setBlendMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
mCanvas = aCanvas;
// TODO: Can we set greyscale somehow?
if (aOptions.mAntialiasMode != AntialiasMode::NONE) {
mPaint.setAntiAlias(true);
} else {
mPaint.setAntiAlias(false);
}
bool needsGroup =
aForceGroup ||
(!IsOperatorBoundByMask(aOptions.mCompositionOp) &&
(!aMaskBounds || !aMaskBounds->Contains(GetClipBounds(aCanvas))));
// TODO: We could skip the temporary for operator_source and just
// clear the clip rect. The other operators would be harder
// but could be worth it to skip pushing a group.
if (needsGroup) {
mPaint.setBlendMode(SkBlendMode::kSrcOver);
SkPaint temp;
temp.setBlendMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
temp.setAlpha(ColorFloatToByte(aOptions.mAlpha));
// TODO: Get a rect here
mCanvas->saveLayerPreserveLCDTextRequests(nullptr, &temp);
mNeedsRestore = true;
} else {
mPaint.setAlpha(ColorFloatToByte(aOptions.mAlpha));
mAlpha = aOptions.mAlpha;
}
mPaint.setFilterQuality(kLow_SkFilterQuality);
}
// TODO: Maybe add an operator overload to access this easier?
SkPaint mPaint;
bool mNeedsRestore;
SkCanvas* mCanvas;
Float mAlpha;
};
void DrawTargetSkia::Flush() { mCanvas->flush(); }
void DrawTargetSkia::DrawSurface(SourceSurface* aSurface, const Rect& aDest,
const Rect& aSource,
const DrawSurfaceOptions& aSurfOptions,
const DrawOptions& aOptions) {
if (aSource.IsEmpty()) {
return;
}
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return;
}
SkRect destRect = RectToSkRect(aDest);
SkRect sourceRect = RectToSkRect(aSource);
bool forceGroup =
image->isAlphaOnly() && aOptions.mCompositionOp != CompositionOp::OP_OVER;
AutoPaintSetup paint(mCanvas, aOptions, &aDest, forceGroup);
if (aSurfOptions.mSamplingFilter == SamplingFilter::POINT) {
paint.mPaint.setFilterQuality(kNone_SkFilterQuality);
}
mCanvas->drawImageRect(image, sourceRect, destRect, &paint.mPaint);
}
DrawTargetType DrawTargetSkia::GetType() const {
#ifdef USE_SKIA_GPU
if (mGrContext) {
return DrawTargetType::HARDWARE_RASTER;
}
#endif
return DrawTargetType::SOFTWARE_RASTER;
}
void DrawTargetSkia::DrawFilter(FilterNode* aNode, const Rect& aSourceRect,
const Point& aDestPoint,
const DrawOptions& aOptions) {
FilterNodeSoftware* filter = static_cast<FilterNodeSoftware*>(aNode);
filter->Draw(this, aSourceRect, aDestPoint, aOptions);
}
void DrawTargetSkia::DrawSurfaceWithShadow(SourceSurface* aSurface,
const Point& aDest,
const Color& aColor,
const Point& aOffset, Float aSigma,
CompositionOp aOperator) {
if (aSurface->GetSize().IsEmpty()) {
return;
}
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return;
}
mCanvas->save();
mCanvas->resetMatrix();
SkPaint paint;
paint.setBlendMode(GfxOpToSkiaOp(aOperator));
// bug 1201272
// We can't use the SkDropShadowImageFilter here because it applies the xfer
// mode first to render the bitmap to a temporary layer, and then implicitly
// uses src-over to composite the resulting shadow.
// The canvas spec, however, states that the composite op must be used to
// composite the resulting shadow, so we must instead use a SkBlurImageFilter
// to blur the image ourselves.
SkPaint shadowPaint;
shadowPaint.setBlendMode(GfxOpToSkiaOp(aOperator));
auto shadowDest = IntPoint::Round(aDest + aOffset);
SkBitmap blurMask;
if (!UsingSkiaGPU() && ExtractAlphaBitmap(image, &blurMask)) {
// Prefer using our own box blur instead of Skia's when we're
// not using the GPU. It currently performs much better than
// SkBlurImageFilter or SkBlurMaskFilter on the CPU.
AlphaBoxBlur blur(Rect(0, 0, blurMask.width(), blurMask.height()),
int32_t(blurMask.rowBytes()), aSigma, aSigma);
blur.Blur(reinterpret_cast<uint8_t*>(blurMask.getPixels()));
blurMask.notifyPixelsChanged();
shadowPaint.setColor(ColorToSkColor(aColor, 1.0f));
mCanvas->drawBitmap(blurMask, shadowDest.x, shadowDest.y, &shadowPaint);
} else {
sk_sp<SkImageFilter> blurFilter(
SkBlurImageFilter::Make(aSigma, aSigma, nullptr));
sk_sp<SkColorFilter> colorFilter(SkColorFilter::MakeModeFilter(
ColorToSkColor(aColor, 1.0f), SkBlendMode::kSrcIn));
shadowPaint.setImageFilter(blurFilter);
shadowPaint.setColorFilter(colorFilter);
mCanvas->drawImage(image, shadowDest.x, shadowDest.y, &shadowPaint);
}
if (aSurface->GetFormat() != SurfaceFormat::A8) {
// Composite the original image after the shadow
auto dest = IntPoint::Round(aDest);
mCanvas->drawImage(image, dest.x, dest.y, &paint);
}
mCanvas->restore();
}
void DrawTargetSkia::FillRect(const Rect& aRect, const Pattern& aPattern,
const DrawOptions& aOptions) {
// The sprite blitting path in Skia can be faster than the shader blitter for
// operators other than source (or source-over with opaque surface). So, when
// possible/beneficial, route to DrawSurface which will use the sprite
// blitter.
if (aPattern.GetType() == PatternType::SURFACE &&
aOptions.mCompositionOp != CompositionOp::OP_SOURCE) {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
// Verify there is a valid surface and a pattern matrix without skew.
if (pat.mSurface &&
(aOptions.mCompositionOp != CompositionOp::OP_OVER ||
GfxFormatToSkiaAlphaType(pat.mSurface->GetFormat()) !=
kOpaque_SkAlphaType) &&
!pat.mMatrix.HasNonAxisAlignedTransform()) {
// Bound the sampling to smaller of the bounds or the sampling rect.
IntRect srcRect(IntPoint(0, 0), pat.mSurface->GetSize());
if (!pat.mSamplingRect.IsEmpty()) {
srcRect = srcRect.Intersect(pat.mSamplingRect);
}
// Transform the destination rectangle by the inverse of the pattern
// matrix so that it is in pattern space like the source rectangle.
Rect patRect = aRect - pat.mMatrix.GetTranslation();
patRect.Scale(1.0f / pat.mMatrix._11, 1.0f / pat.mMatrix._22);
// Verify the pattern rectangle will not tile or clamp.
if (!patRect.IsEmpty() && srcRect.Contains(RoundedOut(patRect))) {
// The pattern is a surface with an axis-aligned source rectangle
// fitting entirely in its bounds, so just treat it as a DrawSurface.
DrawSurface(pat.mSurface, aRect, patRect,
DrawSurfaceOptions(pat.mSamplingFilter), aOptions);
return;
}
}
}
MarkChanged();
SkRect rect = RectToSkRect(aRect);
AutoPaintSetup paint(mCanvas, aOptions, aPattern, &aRect, nullptr, &aRect);
mCanvas->drawRect(rect, paint.mPaint);
}
void DrawTargetSkia::Stroke(const Path* aPath, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
MarkChanged();
MOZ_ASSERT(aPath, "Null path");
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
static Double DashPeriodLength(const StrokeOptions& aStrokeOptions) {
Double length = 0;
for (size_t i = 0; i < aStrokeOptions.mDashLength; i++) {
length += aStrokeOptions.mDashPattern[i];
}
if (aStrokeOptions.mDashLength & 1) {
// "If an odd number of values is provided, then the list of values is
// repeated to yield an even number of values."
// Double the length.
length += length;
}
return length;
}
static inline Double RoundDownToMultiple(Double aValue, Double aFactor) {
return floor(aValue / aFactor) * aFactor;
}
static Rect UserSpaceStrokeClip(const IntRect& aDeviceClip,
const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
Matrix inverse = aTransform;
if (!inverse.Invert()) {
return Rect();
}
Rect deviceClip(aDeviceClip);
deviceClip.Inflate(MaxStrokeExtents(aStrokeOptions, aTransform));
return inverse.TransformBounds(deviceClip);
}
static Rect ShrinkClippedStrokedRect(const Rect& aStrokedRect,
const IntRect& aDeviceClip,
const Matrix& aTransform,
const StrokeOptions& aStrokeOptions) {
Rect userSpaceStrokeClip =
UserSpaceStrokeClip(aDeviceClip, aTransform, aStrokeOptions);
RectDouble strokedRectDouble(aStrokedRect.X(), aStrokedRect.Y(),
aStrokedRect.Width(), aStrokedRect.Height());
RectDouble intersection = strokedRectDouble.Intersect(
RectDouble(userSpaceStrokeClip.X(), userSpaceStrokeClip.Y(),
userSpaceStrokeClip.Width(), userSpaceStrokeClip.Height()));
Double dashPeriodLength = DashPeriodLength(aStrokeOptions);
if (intersection.IsEmpty() || dashPeriodLength == 0.0f) {
return Rect(intersection.X(), intersection.Y(), intersection.Width(),
intersection.Height());
}
// Reduce the rectangle side lengths in multiples of the dash period length
// so that the visible dashes stay in the same place.
MarginDouble insetBy = strokedRectDouble - intersection;
insetBy.top = RoundDownToMultiple(insetBy.top, dashPeriodLength);
insetBy.right = RoundDownToMultiple(insetBy.right, dashPeriodLength);
insetBy.bottom = RoundDownToMultiple(insetBy.bottom, dashPeriodLength);
insetBy.left = RoundDownToMultiple(insetBy.left, dashPeriodLength);
strokedRectDouble.Deflate(insetBy);
return Rect(strokedRectDouble.X(), strokedRectDouble.Y(),
strokedRectDouble.Width(), strokedRectDouble.Height());
}
void DrawTargetSkia::StrokeRect(const Rect& aRect, const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
// Stroking large rectangles with dashes is expensive with Skia (fixed
// overhead based on the number of dashes, regardless of whether the dashes
// are visible), so we try to reduce the size of the stroked rectangle as
// much as possible before passing it on to Skia.
Rect rect = aRect;
if (aStrokeOptions.mDashLength > 0 && !rect.IsEmpty()) {
IntRect deviceClip(IntPoint(0, 0), mSize);
SkIRect clipBounds;
if (mCanvas->getDeviceClipBounds(&clipBounds)) {
deviceClip = SkIRectToIntRect(clipBounds);
}
rect =
ShrinkClippedStrokedRect(rect, deviceClip, mTransform, aStrokeOptions);
if (rect.IsEmpty()) {
return;
}
}
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawRect(RectToSkRect(rect), paint.mPaint);
}
void DrawTargetSkia::StrokeLine(const Point& aStart, const Point& aEnd,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawLine(SkFloatToScalar(aStart.x), SkFloatToScalar(aStart.y),
SkFloatToScalar(aEnd.x), SkFloatToScalar(aEnd.y),
paint.mPaint);
}
void DrawTargetSkia::Fill(const Path* aPath, const Pattern& aPattern,
const DrawOptions& aOptions) {
MarkChanged();
if (!aPath || aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
bool DrawTargetSkia::ShouldLCDRenderText(FontType aFontType,
AntialiasMode aAntialiasMode) {
// Only allow subpixel AA if explicitly permitted.
if (!GetPermitSubpixelAA()) {
return false;
}
if (aAntialiasMode == AntialiasMode::DEFAULT) {
switch (aFontType) {
case FontType::MAC:
case FontType::GDI:
case FontType::DWRITE:
case FontType::FONTCONFIG:
return true;
case FontType::FREETYPE:
default:
// TODO: Figure out what to do for the other platforms.
return false;
}
}
return (aAntialiasMode == AntialiasMode::SUBPIXEL);
}
#ifdef MOZ_WIDGET_COCOA
static inline CGAffineTransform GfxMatrixToCGAffineTransform(const Matrix& m) {
CGAffineTransform t;
t.a = m._11;
t.b = m._12;
t.c = m._21;
t.d = m._22;
t.tx = m._31;
t.ty = m._32;
return t;
}
/***
* We have to do a lot of work to draw glyphs with CG because
* CG assumes that the origin of rects are in the bottom left
* while every other DrawTarget assumes the top left is the origin.
* This means we have to transform the CGContext to have rects
* actually be applied in top left fashion. We do this by:
*
* 1) Translating the context up by the height of the canvas
* 2) Flipping the context by the Y axis so it's upside down.
*
* These two transforms put the origin in the top left.
* Transforms are better understood thinking about them from right to left order
* (mathematically).
*
* Consider a point we want to draw at (0, 10) in normal cartesian planes with
* a box of (100, 100). in CG terms, this would be at (0, 10).
* Positive Y values point up.
* In our DrawTarget terms, positive Y values point down, so (0, 10) would be
* at (0, 90) in cartesian plane terms. That means our point at (0, 10) in
* DrawTarget terms should end up at (0, 90). How does this work with the
* current transforms?
*
* Going right to left with the transforms, a CGPoint of (0, 10) has cartesian
* coordinates of (0, 10). The first flip of the Y axis puts the point now at
* (0, -10); Next, we translate the context up by the size of the canvas
* (Positive Y values go up in CG coordinates but down in our draw target
* coordinates). Since our canvas size is (100, 100), the resulting coordinate
* becomes (0, 90), which is what we expect from our DrawTarget code. These two
* transforms put the CG context equal to what every other DrawTarget expects.
*
* Next, we need two more transforms for actual text. IF we left the transforms
* as is, the text would be drawn upside down, so we need another flip of the Y
* axis to draw the text right side up. However, with only the flip, the text
* would be drawn in the wrong place. Thus we also have to invert the Y position
* of the glyphs to get them in the right place.
*
* Thus we have the following transforms:
* 1) Translation of the context up
* 2) Flipping the context around the Y axis
* 3) Flipping the context around the Y axis
* 4) Inverting the Y position of each glyph
*
* We cannot cancel out (2) and (3) as we have to apply the clips and transforms
* of DrawTargetSkia between (2) and (3).
*
* Consider the example letter P, drawn at (0, 20) in CG coordinates in a
* (100, 100) rect.
* Again, going right to left of the transforms. We'd get:
*
* 1) The letter P drawn at (0, -20) due to the inversion of the Y axis
* 2) The letter P upside down (b) at (0, 20) due to the second flip
* 3) The letter P right side up at (0, -20) due to the first flip
* 4) The letter P right side up at (0, 80) due to the translation
*
* tl;dr - CGRects assume origin is bottom left, DrawTarget rects assume top
* left.
*/
static bool SetupCGContext(DrawTargetSkia* aDT, CGContextRef aCGContext,
SkCanvas* aCanvas, const IntPoint& aOrigin,
const IntSize& aSize, bool aClipped) {
// DrawTarget expects the origin to be at the top left, but CG
// expects it to be at the bottom left. Transform to set the origin to
// the top left. Have to set this before we do anything else.
// This is transform (1) up top
CGContextTranslateCTM(aCGContext, -aOrigin.x, aOrigin.y + aSize.height);
// Transform (2) from the comments.
CGContextScaleCTM(aCGContext, 1, -1);
// Want to apply clips BEFORE the transform since the transform
// will apply to the clips we apply.
if (aClipped) {
SkRegion clipRegion;
aCanvas->temporary_internal_getRgnClip(&clipRegion);
Vector<CGRect, 8> rects;
for (SkRegion::Iterator it(clipRegion); !it.done(); it.next()) {
const SkIRect& rect = it.rect();
if (!rects.append(
CGRectMake(rect.x(), rect.y(), rect.width(), rect.height()))) {
break;
}
}
if (rects.length()) {
CGContextClipToRects(aCGContext, rects.begin(), rects.length());
}
}
CGContextConcatCTM(aCGContext,
GfxMatrixToCGAffineTransform(aDT->GetTransform()));
return true;
}
static bool SetupCGGlyphs(CGContextRef aCGContext, const GlyphBuffer& aBuffer,
Vector<CGGlyph, 32>& aGlyphs,
Vector<CGPoint, 32>& aPositions) {
// Flip again so we draw text in right side up. Transform (3) from the top
CGContextScaleCTM(aCGContext, 1, -1);
if (!aGlyphs.resizeUninitialized(aBuffer.mNumGlyphs) ||
!aPositions.resizeUninitialized(aBuffer.mNumGlyphs)) {
gfxDevCrash(LogReason::GlyphAllocFailedCG)
<< "glyphs/positions allocation failed";
return false;
}
for (unsigned int i = 0; i < aBuffer.mNumGlyphs; i++) {
aGlyphs[i] = aBuffer.mGlyphs[i].mIndex;
// Flip the y coordinates so that text ends up in the right spot after the
// (3) flip Inversion from (4) in the comments.
aPositions[i] = CGPointMake(aBuffer.mGlyphs[i].mPosition.x,
-aBuffer.mGlyphs[i].mPosition.y);
}
return true;
}
// End long comment about transforms. SetupCGContext and SetupCGGlyphs should
// stay next to each other.
// The context returned from this method will have the origin
// in the top left and will have applied all the neccessary clips
// and transforms to the CGContext. See the comment above
// SetupCGContext.
CGContextRef DrawTargetSkia::BorrowCGContext(const DrawOptions& aOptions) {
// Since we can't replay Skia clips, we have to use a layer if we have a
// complex clip. After saving a layer, the SkCanvas queries for needing a
// layer change so save if we pushed a layer.
mNeedLayer = !mCanvas->isClipEmpty() && !mCanvas->isClipRect();
if (mNeedLayer) {
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
SkCanvas::SaveLayerRec rec(nullptr, &paint,
SkCanvas::kInitWithPrevious_SaveLayerFlag);
mCanvas->saveLayer(rec);
}
uint8_t* data = nullptr;
int32_t stride;
SurfaceFormat format;
IntSize size;
IntPoint origin;
if (!LockBits(&data, &size, &stride, &format, &origin)) {
NS_WARNING("Could not lock skia bits to wrap CG around");
return nullptr;
}
if (!mNeedLayer && (data == mCanvasData) && mCG && (mCGSize == size)) {
// If our canvas data still points to the same data,
// we can reuse the CG Context
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG,
aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas, origin, size, true);
return mCG;
}
if (!mColorSpace) {
mColorSpace = (format == SurfaceFormat::A8) ? CGColorSpaceCreateDeviceGray()
: CGColorSpaceCreateDeviceRGB();
}
if (mCG) {
// Release the old CG context since it's no longer valid.
CGContextRelease(mCG);
}
mCanvasData = data;
mCGSize = size;
uint32_t bitmapInfo =
(format == SurfaceFormat::A8)
? kCGImageAlphaOnly
: kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Host;
mCG = CGBitmapContextCreateWithData(
mCanvasData, mCGSize.width, mCGSize.height, 8, /* bits per component */
stride, mColorSpace, bitmapInfo, NULL, /* Callback when released */
NULL);
if (!mCG) {
if (mNeedLayer) {
mCanvas->restore();
}
ReleaseBits(mCanvasData);
NS_WARNING("Could not create bitmap around skia data\n");
return nullptr;
}
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG,
aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSetShouldSmoothFonts(mCG, true);
CGContextSetTextDrawingMode(mCG, kCGTextFill);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas, origin, size, !mNeedLayer);
return mCG;
}
void DrawTargetSkia::ReturnCGContext(CGContextRef aCGContext) {
MOZ_ASSERT(aCGContext == mCG);
ReleaseBits(mCanvasData);
CGContextRestoreGState(aCGContext);
if (mNeedLayer) {
// A layer was used for clipping and is about to be popped by the restore.
// Make sure the CG context referencing it is released first so the popped
// layer doesn't accidentally get used.
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
mCanvas->restore();
}
}
CGContextRef BorrowedCGContext::BorrowCGContextFromDrawTarget(DrawTarget* aDT) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
return skiaDT->BorrowCGContext(DrawOptions());
}
void BorrowedCGContext::ReturnCGContextToDrawTarget(DrawTarget* aDT,
CGContextRef cg) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
skiaDT->ReturnCGContext(cg);
return;
}
static void SetFontColor(CGContextRef aCGContext, CGColorSpaceRef aColorSpace,
const Pattern& aPattern) {
const Color& color = static_cast<const ColorPattern&>(aPattern).mColor;
CGColorRef textColor = ColorToCGColor(aColorSpace, color);
CGContextSetFillColorWithColor(aCGContext, textColor);
CGColorRelease(textColor);
}
/***
* We need this to support subpixel AA text on OS X in two cases:
* text in DrawTargets that are not opaque and text over vibrant backgrounds.
* Skia normally doesn't support subpixel AA text on transparent backgrounds.
* To get around this, we have to wrap the Skia bytes with a CGContext and ask
* CG to draw the text.
* In vibrancy cases, we have to use a private API,
* CGContextSetFontSmoothingBackgroundColor, which sets the expected
* background color the text will draw onto so that CG can render the text
* properly. After that, we have to go back and fixup the pixels
* such that their alpha values are correct.
*/
bool DrawTargetSkia::FillGlyphsWithCG(ScaledFont* aFont,
const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
MOZ_ASSERT(aFont->GetType() == FontType::MAC);
MOZ_ASSERT(aPattern.GetType() == PatternType::COLOR);
CGContextRef cgContext = BorrowCGContext(aOptions);
if (!cgContext) {
return false;
}
Vector<CGGlyph, 32> glyphs;
Vector<CGPoint, 32> positions;
if (!SetupCGGlyphs(cgContext, aBuffer, glyphs, positions)) {
ReturnCGContext(cgContext);
return false;
}
ScaledFontMac* macFont = static_cast<ScaledFontMac*>(aFont);
SetFontSmoothingBackgroundColor(cgContext, mColorSpace,
macFont->FontSmoothingBackgroundColor());
SetFontColor(cgContext, mColorSpace, aPattern);
if (ScaledFontMac::CTFontDrawGlyphsPtr != nullptr) {
ScaledFontMac::CTFontDrawGlyphsPtr(macFont->mCTFont, glyphs.begin(),
positions.begin(), aBuffer.mNumGlyphs,
cgContext);
} else {
CGContextSetFont(cgContext, macFont->mFont);
CGContextSetFontSize(cgContext, macFont->mSize);
CGContextShowGlyphsAtPositions(cgContext, glyphs.begin(), positions.begin(),
aBuffer.mNumGlyphs);
}
// Calculate the area of the text we just drew
auto* bboxes = new CGRect[aBuffer.mNumGlyphs];
CTFontGetBoundingRectsForGlyphs(macFont->mCTFont, kCTFontDefaultOrientation,
glyphs.begin(), bboxes, aBuffer.mNumGlyphs);
CGRect extents =
ComputeGlyphsExtents(bboxes, positions.begin(), aBuffer.mNumGlyphs, 1.0f);
delete[] bboxes;
CGAffineTransform cgTransform = CGContextGetCTM(cgContext);
extents = CGRectApplyAffineTransform(extents, cgTransform);
// Have to round it out to ensure we fully cover all pixels
Rect rect(extents.origin.x, extents.origin.y, extents.size.width,
extents.size.height);
rect.RoundOut();
extents = CGRectMake(rect.x, rect.y, rect.width, rect.height);
EnsureValidPremultipliedData(cgContext, extents);
ReturnCGContext(cgContext);
return true;
}
static bool HasFontSmoothingBackgroundColor(ScaledFont* aFont) {
// This should generally only be true if we have a popup context menu
if (aFont && aFont->GetType() == FontType::MAC) {
Color fontSmoothingBackgroundColor =
static_cast<ScaledFontMac*>(aFont)->FontSmoothingBackgroundColor();
return fontSmoothingBackgroundColor.a > 0;
}
return false;
}
static bool ShouldUseCGToFillGlyphs(ScaledFont* aFont,
const Pattern& aPattern) {
return HasFontSmoothingBackgroundColor(aFont) &&
aPattern.GetType() == PatternType::COLOR;
}
#endif
static bool CanDrawFont(ScaledFont* aFont) {
switch (aFont->GetType()) {
case FontType::FREETYPE:
case FontType::FONTCONFIG:
case FontType::MAC:
case FontType::GDI:
case FontType::DWRITE:
return true;
default:
return false;
}
}
void DrawTargetSkia::DrawGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions* aStrokeOptions,
const DrawOptions& aOptions) {
if (!CanDrawFont(aFont)) {
return;
}
MarkChanged();
#ifdef MOZ_WIDGET_COCOA
if (!aStrokeOptions && ShouldUseCGToFillGlyphs(aFont, aPattern)) {
if (FillGlyphsWithCG(aFont, aBuffer, aPattern, aOptions)) {
return;
}
}
#endif
ScaledFontBase* skiaFont = static_cast<ScaledFontBase*>(aFont);
SkTypeface* typeface = skiaFont->GetSkTypeface();
if (!typeface) {
return;
}
AutoPaintSetup paint(mCanvas, aOptions, aPattern);
if (aStrokeOptions && !StrokeOptionsToPaint(paint.mPaint, *aStrokeOptions)) {
return;
}
AntialiasMode aaMode = aFont->GetDefaultAAMode();
if (aOptions.mAntialiasMode != AntialiasMode::DEFAULT) {
aaMode = aOptions.mAntialiasMode;
}
bool aaEnabled = aaMode != AntialiasMode::NONE;
paint.mPaint.setAntiAlias(aaEnabled);
paint.mPaint.setTypeface(sk_ref_sp(typeface));
paint.mPaint.setTextSize(SkFloatToScalar(skiaFont->mSize));
paint.mPaint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
bool shouldLCDRenderText = ShouldLCDRenderText(aFont->GetType(), aaMode);
paint.mPaint.setLCDRenderText(shouldLCDRenderText);
bool useSubpixelText = true;
switch (aFont->GetType()) {
case FontType::FREETYPE:
case FontType::FONTCONFIG:
// SkFontHost_cairo does not support subpixel text positioning,
// so only enable it for other font hosts.
useSubpixelText = false;
break;
case FontType::MAC:
if (aaMode == AntialiasMode::GRAY) {
// Normally, Skia enables LCD FontSmoothing which creates thicker fonts
// and also enables subpixel AA. CoreGraphics without font smoothing
// explicitly creates thinner fonts and grayscale AA.
// CoreGraphics doesn't support a configuration that produces thicker
// fonts with grayscale AA as LCD Font Smoothing enables or disables
// both. However, Skia supports it by enabling font smoothing (producing
// subpixel AA) and converts it to grayscale AA. Since Skia doesn't
// support subpixel AA on transparent backgrounds, we still want font
// smoothing for the thicker fonts, even if it is grayscale AA.
//
// With explicit Grayscale AA (from -moz-osx-font-smoothing:grayscale),
// we want to have grayscale AA with no smoothing at all. This means
// disabling the LCD font smoothing behaviour.
// To accomplish this we have to explicitly disable hinting,
// and disable LCDRenderText.
paint.mPaint.setHinting(SkPaint::kNo_Hinting);
}
break;
#ifdef XP_WIN
case FontType::DWRITE: {
ScaledFontDWrite* dwriteFont = static_cast<ScaledFontDWrite*>(aFont);
paint.mPaint.setEmbeddedBitmapText(dwriteFont->UseEmbeddedBitmaps());
if (dwriteFont->ForceGDIMode()) {
paint.mPaint.setEmbeddedBitmapText(true);
useSubpixelText = false;
}
break;
}
#endif
default:
break;
}
paint.mPaint.setSubpixelText(useSubpixelText);
Vector<uint16_t, 64> indices;
Vector<SkPoint, 64> offsets;
if (!indices.resizeUninitialized(aBuffer.mNumGlyphs) ||
!offsets.resizeUninitialized(aBuffer.mNumGlyphs)) {
gfxDebug() << "Failed allocating Skia text buffers for GlyphBuffer";
return;
}
for (uint32_t i = 0; i < aBuffer.mNumGlyphs; i++) {
indices[i] = aBuffer.mGlyphs[i].mIndex;
offsets[i] = PointToSkPoint(aBuffer.mGlyphs[i].mPosition);
}
mCanvas->drawPosText(indices.begin(), indices.length() * sizeof(uint16_t),
offsets.begin(), paint.mPaint);
}
void DrawTargetSkia::FillGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const DrawOptions& aOptions) {
DrawGlyphs(aFont, aBuffer, aPattern, nullptr, aOptions);
}
void DrawTargetSkia::StrokeGlyphs(ScaledFont* aFont, const GlyphBuffer& aBuffer,
const Pattern& aPattern,
const StrokeOptions& aStrokeOptions,
const DrawOptions& aOptions) {
DrawGlyphs(aFont, aBuffer, aPattern, &aStrokeOptions, aOptions);
}
void DrawTargetSkia::Mask(const Pattern& aSource, const Pattern& aMask,
const DrawOptions& aOptions) {
SkIRect maskBounds;
if (!mCanvas->getDeviceClipBounds(&maskBounds)) {
return;
}
SkPoint maskOrigin;
maskOrigin.iset(maskBounds.fLeft, maskBounds.fTop);
SkMatrix maskMatrix = mCanvas->getTotalMatrix();
maskMatrix.postTranslate(-maskOrigin.fX, -maskOrigin.fY);
MarkChanged();
AutoPaintSetup paint(mCanvas, aOptions, aSource, nullptr, &maskMatrix);
SkPaint maskPaint;
SetPaintPattern(maskPaint, aMask);
SkBitmap maskBitmap;
if (!maskBitmap.tryAllocPixelsFlags(
SkImageInfo::MakeA8(maskBounds.width(), maskBounds.height()),
SkBitmap::kZeroPixels_AllocFlag)) {
return;
}
SkCanvas maskCanvas(maskBitmap);
maskCanvas.setMatrix(maskMatrix);
maskCanvas.drawPaint(maskPaint);
mCanvas->save();
mCanvas->resetMatrix();
mCanvas->drawBitmap(maskBitmap, maskOrigin.fX, maskOrigin.fY, &paint.mPaint);
mCanvas->restore();
}
void DrawTargetSkia::MaskSurface(const Pattern& aSource, SourceSurface* aMask,
Point aOffset, const DrawOptions& aOptions) {
MarkChanged();
SkMatrix invOffset = SkMatrix::MakeTrans(SkFloatToScalar(-aOffset.x),
SkFloatToScalar(-aOffset.y));
AutoPaintSetup paint(mCanvas, aOptions, aSource, nullptr, &invOffset);
sk_sp<SkImage> alphaMask = ExtractAlphaForSurface(aMask);
if (!alphaMask) {
gfxDebug() << *this << ": MaskSurface() failed to extract alpha for mask";
return;
}
mCanvas->drawImage(alphaMask, aOffset.x, aOffset.y, &paint.mPaint);
}
bool DrawTarget::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
// Composite the 3D transform with the DT's transform.
Matrix4x4 fullMat = aMatrix * Matrix4x4::From2D(mTransform);
if (fullMat.IsSingular()) {
return false;
}
// Transform the surface bounds and clip to this DT.
IntRect xformBounds = RoundedOut(fullMat.TransformAndClipBounds(
Rect(Point(0, 0), Size(aSurface->GetSize())),
Rect(Point(0, 0), Size(GetSize()))));
if (xformBounds.IsEmpty()) {
return true;
}
// Offset the matrix by the transformed origin.
fullMat.PostTranslate(-xformBounds.X(), -xformBounds.Y(), 0);
// Read in the source data.
sk_sp<SkImage> srcImage = GetSkImageForSurface(aSurface);
if (!srcImage) {
return true;
}
// Set up an intermediate destination surface only the size of the transformed
// bounds. Try to pass through the source's format unmodified in both the BGRA
// and ARGB cases.
RefPtr<DataSourceSurface> dstSurf = Factory::CreateDataSourceSurface(
xformBounds.Size(),
!srcImage->isOpaque() ? aSurface->GetFormat()
: SurfaceFormat::A8R8G8B8_UINT32,
true);
if (!dstSurf) {
return false;
}
DataSourceSurface::ScopedMap map(dstSurf, DataSourceSurface::READ_WRITE);
std::unique_ptr<SkCanvas> dstCanvas(SkCanvas::MakeRasterDirect(
SkImageInfo::Make(xformBounds.Width(), xformBounds.Height(),
GfxFormatToSkiaColorType(dstSurf->GetFormat()),
kPremul_SkAlphaType),
map.GetData(), map.GetStride()));
if (!dstCanvas) {
return false;
}
// Do the transform.
SkPaint paint;
paint.setAntiAlias(true);
paint.setFilterQuality(kLow_SkFilterQuality);
paint.setBlendMode(SkBlendMode::kSrc);
SkMatrix xform;
GfxMatrixToSkiaMatrix(fullMat, xform);
dstCanvas->setMatrix(xform);
dstCanvas->drawImage(srcImage, 0, 0, &paint);
dstCanvas->flush();
// Temporarily reset the DT's transform, since it has already been composed
// above.
Matrix origTransform = mTransform;
SetTransform(Matrix());
// Draw the transformed surface within the transformed bounds.
DrawSurface(dstSurf, Rect(xformBounds),
Rect(Point(0, 0), Size(xformBounds.Size())));
SetTransform(origTransform);
return true;
}
bool DrawTargetSkia::Draw3DTransformedSurface(SourceSurface* aSurface,
const Matrix4x4& aMatrix) {
if (aMatrix.IsSingular()) {
return false;
}
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return true;
}
mCanvas->save();
SkPaint paint;
paint.setAntiAlias(true);
paint.setFilterQuality(kLow_SkFilterQuality);
SkMatrix xform;
GfxMatrixToSkiaMatrix(aMatrix, xform);
mCanvas->concat(xform);
mCanvas->drawImage(image, 0, 0, &paint);
mCanvas->restore();
return true;
}
already_AddRefed<SourceSurface> DrawTargetSkia::CreateSourceSurfaceFromData(
unsigned char* aData, const IntSize& aSize, int32_t aStride,
SurfaceFormat aFormat) const {
RefPtr<SourceSurfaceSkia> newSurf = new SourceSurfaceSkia();
if (!newSurf->InitFromData(aData, aSize, aStride, aFormat)) {
gfxDebug() << *this
<< ": Failure to create source surface from data. Size: "
<< aSize;
return nullptr;
}
return newSurf.forget();
}
already_AddRefed<DrawTarget> DrawTargetSkia::CreateSimilarDrawTarget(
const IntSize& aSize, SurfaceFormat aFormat) const {
RefPtr<DrawTargetSkia> target = new DrawTargetSkia();
#ifdef USE_SKIA_GPU
if (UsingSkiaGPU()) {
// Try to create a GPU draw target first if we're currently using the GPU.
// Mark the DT as cached so that shadow DTs, extracted subrects, and similar
// can be reused.
if (target->InitWithGrContext(mGrContext.get(), aSize, aFormat, true)) {
return target.forget();
}
// Otherwise, just fall back to a software draw target.
}
#endif
#ifdef DEBUG
if (!IsBackedByPixels(mCanvas)) {
// If our canvas is backed by vector storage such as PDF then we want to
// create a new DrawTarget with similar storage to avoid losing fidelity
// (fidelity will be lost if the returned DT is Snapshot()'ed and drawn
// back onto us since a raster will be drawn instead of vector commands).
NS_WARNING("Not backed by pixels - we need to handle PDF backed SkCanvas");
}
#endif
if (!target->Init(aSize, aFormat)) {
return nullptr;
}
return target.forget();
}
bool DrawTargetSkia::CanCreateSimilarDrawTarget(const IntSize& aSize,
SurfaceFormat aFormat) const {
return size_t(std::max(aSize.width, aSize.height)) < GetMaxSurfaceSize();
}
bool DrawTargetSkia::UsingSkiaGPU() const {
#ifdef USE_SKIA_GPU
return !!mGrContext;
#else
return false;
#endif
}
#ifdef USE_SKIA_GPU
already_AddRefed<SourceSurface> DrawTargetSkia::OptimizeGPUSourceSurface(
SourceSurface* aSurface) const {
// Check if the underlying SkImage already has an associated GrTexture.
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image || image->isTextureBacked()) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
// Upload the SkImage to a GrTexture otherwise.
sk_sp<SkImage> texture = image->makeTextureImage(mGrContext.get(), nullptr);
if (texture) {
// Create a new SourceSurfaceSkia whose SkImage contains the GrTexture.
RefPtr<SourceSurfaceSkia> surface = new SourceSurfaceSkia();
if (surface->InitFromImage(texture, aSurface->GetFormat())) {
return surface.forget();
}
}
// The data was too big to fit in a GrTexture.
if (aSurface->GetType() == SurfaceType::SKIA) {
// It is already a Skia source surface, so just reuse it as-is.
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
// Wrap it in a Skia source surface so that can do tiled uploads on-demand.
RefPtr<SourceSurfaceSkia> surface = new SourceSurfaceSkia();
surface->InitFromImage(image);
return surface.forget();
}
#endif
already_AddRefed<SourceSurface>
DrawTargetSkia::OptimizeSourceSurfaceForUnknownAlpha(
SourceSurface* aSurface) const {
#ifdef USE_SKIA_GPU
if (UsingSkiaGPU()) {
return OptimizeGPUSourceSurface(aSurface);
}
#endif
if (aSurface->GetType() == SurfaceType::SKIA) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
DataSourceSurface::ScopedMap map(dataSurface, DataSourceSurface::READ_WRITE);
// For plugins, GDI can sometimes just write 0 to the alpha channel
// even for RGBX formats. In this case, we have to manually write
// the alpha channel to make Skia happy with RGBX and in case GDI
// writes some bad data. Luckily, this only happens on plugins.
WriteRGBXFormat(map.GetData(), dataSurface->GetSize(), map.GetStride(),
dataSurface->GetFormat());
return dataSurface.forget();
}
already_AddRefed<SourceSurface> DrawTargetSkia::OptimizeSourceSurface(
SourceSurface* aSurface) const {
#ifdef USE_SKIA_GPU
if (UsingSkiaGPU()) {
return OptimizeGPUSourceSurface(aSurface);
}
#endif
if (aSurface->GetType() == SurfaceType::SKIA) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
// If we're not using skia-gl then drawing doesn't require any
// uploading, so any data surface is fine. Call GetDataSurface
// to trigger any required readback so that it only happens
// once.
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
#ifdef DEBUG
DataSourceSurface::ScopedMap map(dataSurface, DataSourceSurface::READ);
MOZ_ASSERT(VerifyRGBXFormat(map.GetData(), dataSurface->GetSize(),
map.GetStride(), dataSurface->GetFormat()));
#endif
return dataSurface.forget();
}
#ifdef USE_SKIA_GPU
static inline GrGLenum GfxFormatToGrGLFormat(SurfaceFormat format) {
switch (format) {
case SurfaceFormat::B8G8R8A8:
return LOCAL_GL_BGRA8_EXT;
case SurfaceFormat::B8G8R8X8:
// We probably need to do something here.
return LOCAL_GL_BGRA8_EXT;
case SurfaceFormat::R5G6B5_UINT16:
return LOCAL_GL_RGB565;
case SurfaceFormat::A8:
return LOCAL_GL_ALPHA8;
default:
return LOCAL_GL_RGBA8;
}
}
#endif
already_AddRefed<SourceSurface>
DrawTargetSkia::CreateSourceSurfaceFromNativeSurface(
const NativeSurface& aSurface) const {
#ifdef USE_SKIA_GPU
if (aSurface.mType == NativeSurfaceType::OPENGL_TEXTURE && UsingSkiaGPU()) {
// Wrap the OpenGL texture id in a Skia texture handle.
GrGLTextureInfo texInfo;
texInfo.fTarget = LOCAL_GL_TEXTURE_2D;
texInfo.fID = (GrGLuint)(uintptr_t)aSurface.mSurface;
texInfo.fFormat = GfxFormatToGrGLFormat(aSurface.mFormat);
GrBackendTexture texDesc(aSurface.mSize.width, aSurface.mSize.height,
GrMipMapped::kNo, texInfo);
sk_sp<SkImage> texture = SkImage::MakeFromAdoptedTexture(
mGrContext.get(), texDesc, kTopLeft_GrSurfaceOrigin,
GfxFormatToSkiaColorType(aSurface.mFormat),
GfxFormatToSkiaAlphaType(aSurface.mFormat));
RefPtr<SourceSurfaceSkia> newSurf = new SourceSurfaceSkia();
if (texture && newSurf->InitFromImage(texture, aSurface.mFormat)) {
return newSurf.forget();
}
return nullptr;
}
#endif
return nullptr;
}
void DrawTargetSkia::CopySurface(SourceSurface* aSurface,
const IntRect& aSourceRect,
const IntPoint& aDestination) {
MarkChanged();
sk_sp<SkImage> image = GetSkImageForSurface(aSurface);
if (!image) {
return;
}
mCanvas->save();
mCanvas->setMatrix(SkMatrix::MakeTrans(SkIntToScalar(aDestination.x),
SkIntToScalar(aDestination.y)));
mCanvas->clipRect(SkRect::MakeIWH(aSourceRect.Width(), aSourceRect.Height()),
SkClipOp::kReplace_deprecated);
SkPaint paint;
if (!image->isOpaque()) {
// Keep the xfermode as SOURCE_OVER for opaque bitmaps
// http://code.google.com/p/skia/issues/detail?id=628
paint.setBlendMode(SkBlendMode::kSrc);
}
// drawImage with A8 images ends up doing a mask operation
// so we need to clear before
if (image->isAlphaOnly()) {
mCanvas->clear(SK_ColorTRANSPARENT);
}
mCanvas->drawImage(image, -SkIntToScalar(aSourceRect.X()),
-SkIntToScalar(aSourceRect.Y()), &paint);
mCanvas->restore();
}
bool DrawTargetSkia::Init(const IntSize& aSize, SurfaceFormat aFormat) {
if (size_t(std::max(aSize.width, aSize.height)) > GetMaxSurfaceSize()) {
return false;
}
// we need to have surfaces that have a stride aligned to 4 for interop with
// cairo
SkImageInfo info = MakeSkiaImageInfo(aSize, aFormat);
size_t stride = SkAlign4(info.minRowBytes());
mSurface = SkSurface::MakeRaster(info, stride, nullptr);
if (!mSurface) {
return false;
}
mSize = aSize;
mFormat = aFormat;
mCanvas = mSurface->getCanvas();
SetPermitSubpixelAA(IsOpaque(mFormat));
if (info.isOpaque()) {
mCanvas->clear(SK_ColorBLACK);
}
return true;
}
bool DrawTargetSkia::Init(SkCanvas* aCanvas) {
mCanvas = aCanvas;
SkImageInfo imageInfo = mCanvas->imageInfo();
// If the canvas is backed by pixels we clear it to be on the safe side. If
// it's not (for example, for PDF output) we don't.
if (IsBackedByPixels(mCanvas)) {
SkColor clearColor =
imageInfo.isOpaque() ? SK_ColorBLACK : SK_ColorTRANSPARENT;
mCanvas->clear(clearColor);
}
SkISize size = mCanvas->getBaseLayerSize();
mSize.width = size.width();
mSize.height = size.height();
mFormat =
SkiaColorTypeToGfxFormat(imageInfo.colorType(), imageInfo.alphaType());
SetPermitSubpixelAA(IsOpaque(mFormat));
return true;
}
#ifdef USE_SKIA_GPU
/** Indicating a DT should be cached means that space will be reserved in Skia's
* cache for the render target at creation time, with any unused resources
* exceeding the cache limits being purged. When the DT is freed, it will then
* be guaranteed to be kept around for subsequent allocations until it gets
* incidentally purged.
*
* If it is not marked as cached, no space will be purged to make room for the
* render target in the cache. When the DT is freed, If there is space within
* the resource limits it may be added to the cache, otherwise it will be freed
* immediately if the cache is already full.
*
* If you want to ensure that the resources will be kept around for reuse, it is
* better to mark them as cached. Such resources should be short-lived to ensure
* they don't permanently tie up cache resource limits. Long-lived resources
* should generally be left as uncached.
*
* In neither case will cache resource limits affect whether the resource
* allocation succeeds. The amount of in-use GPU resources is allowed to exceed
* the size of the cache. Thus, only hard GPU out-of-memory conditions will
* cause resource allocation to fail.
*/
bool DrawTargetSkia::InitWithGrContext(GrContext* aGrContext,
const IntSize& aSize,
SurfaceFormat aFormat, bool aCached) {
MOZ_ASSERT(aGrContext, "null GrContext");
if (size_t(std::max(aSize.width, aSize.height)) > GetMaxSurfaceSize()) {
return false;
}
// Create a GPU rendertarget/texture using the supplied GrContext.
// MakeRenderTarget also implicitly clears the underlying texture on creation.
mSurface = SkSurface::MakeRenderTarget(aGrContext, SkBudgeted(aCached),
MakeSkiaImageInfo(aSize, aFormat));
if (!mSurface) {
return false;
}
mGrContext = sk_ref_sp(aGrContext);
mSize = aSize;
mFormat = aFormat;
mCanvas = mSurface->getCanvas();
SetPermitSubpixelAA(IsOpaque(mFormat));
return true;
}
#endif
bool DrawTargetSkia::Init(unsigned char* aData, const IntSize& aSize,
int32_t aStride, SurfaceFormat aFormat,
bool aUninitialized) {
MOZ_ASSERT((aFormat != SurfaceFormat::B8G8R8X8) || aUninitialized ||
VerifyRGBXFormat(aData, aSize, aStride, aFormat));
mSurface = SkSurface::MakeRasterDirect(MakeSkiaImageInfo(aSize, aFormat),
aData, aStride);
if (!mSurface) {
return false;
}
mSize = aSize;
mFormat = aFormat;
mCanvas = mSurface->getCanvas();
SetPermitSubpixelAA(IsOpaque(mFormat));
return true;
}
void DrawTargetSkia::SetTransform(const Matrix& aTransform) {
SkMatrix mat;
GfxMatrixToSkiaMatrix(aTransform, mat);
mCanvas->setMatrix(mat);
mTransform = aTransform;
}
void* DrawTargetSkia::GetNativeSurface(NativeSurfaceType aType) {
#ifdef USE_SKIA_GPU
if (aType == NativeSurfaceType::OPENGL_TEXTURE && mSurface) {
GrBackendTexture tex =
mSurface->getBackendTexture(SkSurface::kFlushRead_BackendHandleAccess);
GrGLTextureInfo info;
if (tex.getGLTextureInfo(&info)) {
return (void*)(uintptr_t)info.fID;
}
}
#endif
return nullptr;
}
already_AddRefed<PathBuilder> DrawTargetSkia::CreatePathBuilder(
FillRule aFillRule) const {
return MakeAndAddRef<PathBuilderSkia>(aFillRule);
}
void DrawTargetSkia::ClearRect(const Rect& aRect) {
MarkChanged();
mCanvas->save();
mCanvas->clipRect(RectToSkRect(aRect), SkClipOp::kIntersect, true);
SkColor clearColor = (mFormat == SurfaceFormat::B8G8R8X8)
? SK_ColorBLACK
: SK_ColorTRANSPARENT;
mCanvas->clear(clearColor);
mCanvas->restore();
}
void DrawTargetSkia::PushClip(const Path* aPath) {
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia* skiaPath = static_cast<const PathSkia*>(aPath);
mCanvas->save();
mCanvas->clipPath(skiaPath->GetPath(), SkClipOp::kIntersect, true);
}
void DrawTargetSkia::PushDeviceSpaceClipRects(const IntRect* aRects,
uint32_t aCount) {
// Build a region by unioning all the rects together.
SkRegion region;
for (uint32_t i = 0; i < aCount; i++) {
region.op(IntRectToSkIRect(aRects[i]), SkRegion::kUnion_Op);
}
// Clip with the resulting region. clipRegion does not transform
// this region by the current transform, unlike the other SkCanvas
// clip methods, so it is just passed through in device-space.
mCanvas->save();
mCanvas->clipRegion(region, SkClipOp::kIntersect);
}
void DrawTargetSkia::PushClipRect(const Rect& aRect) {
SkRect rect = RectToSkRect(aRect);
mCanvas->save();
mCanvas->clipRect(rect, SkClipOp::kIntersect, true);
}
void DrawTargetSkia::PopClip() {
mCanvas->restore();
SetTransform(GetTransform());
}
void DrawTargetSkia::PushLayer(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds, bool aCopyBackground) {
PushLayerWithBlend(aOpaque, aOpacity, aMask, aMaskTransform, aBounds,
aCopyBackground, CompositionOp::OP_OVER);
}
void DrawTargetSkia::PushLayerWithBlend(bool aOpaque, Float aOpacity,
SourceSurface* aMask,
const Matrix& aMaskTransform,
const IntRect& aBounds,
bool aCopyBackground,
CompositionOp aCompositionOp) {
PushedLayer layer(GetPermitSubpixelAA(), aMask);
mPushedLayers.push_back(layer);
SkPaint paint;
paint.setAlpha(ColorFloatToByte(aOpacity));
paint.setBlendMode(GfxOpToSkiaOp(aCompositionOp));
// aBounds is supplied in device space, but SaveLayerRec wants local space.
SkRect bounds = IntRectToSkRect(aBounds);
if (!bounds.isEmpty()) {
SkMatrix inverseCTM;
if (mCanvas->getTotalMatrix().invert(&inverseCTM)) {
inverseCTM.mapRect(&bounds);
} else {
bounds.setEmpty();
}
}
sk_sp<SkImage> clipImage = aMask ? GetSkImageForSurface(aMask) : nullptr;
SkMatrix clipMatrix;
GfxMatrixToSkiaMatrix(aMaskTransform, clipMatrix);
if (aMask) {
clipMatrix.postTranslate(aMask->GetRect().X(), aMask->GetRect().Y());
}
SkCanvas::SaveLayerRec saveRec(
aBounds.IsEmpty() ? nullptr : &bounds, &paint, nullptr, clipImage.get(),
&clipMatrix,
SkCanvas::kPreserveLCDText_SaveLayerFlag |
(aCopyBackground ? SkCanvas::kInitWithPrevious_SaveLayerFlag : 0));
mCanvas->saveLayer(saveRec);
SetPermitSubpixelAA(aOpaque);
#ifdef MOZ_WIDGET_COCOA
CGContextRelease(mCG);
mCG = nullptr;
#endif
}
void DrawTargetSkia::PopLayer() {
MarkChanged();
MOZ_ASSERT(mPushedLayers.size());
const PushedLayer& layer = mPushedLayers.back();
mCanvas->restore();
SetTransform(GetTransform());
SetPermitSubpixelAA(layer.mOldPermitSubpixelAA);
mPushedLayers.pop_back();
#ifdef MOZ_WIDGET_COCOA
CGContextRelease(mCG);
mCG = nullptr;
#endif
}
already_AddRefed<GradientStops> DrawTargetSkia::CreateGradientStops(
GradientStop* aStops, uint32_t aNumStops, ExtendMode aExtendMode) const {
std::vector<GradientStop> stops;
stops.resize(aNumStops);
for (uint32_t i = 0; i < aNumStops; i++) {
stops[i] = aStops[i];
}
std::stable_sort(stops.begin(), stops.end());
return MakeAndAddRef<GradientStopsSkia>(stops, aNumStops, aExtendMode);
}
already_AddRefed<FilterNode> DrawTargetSkia::CreateFilter(FilterType aType) {
return FilterNodeSoftware::Create(aType);
}
void DrawTargetSkia::MarkChanged() {
// I'm not entirely certain whether this lock is needed, as multiple threads
// should never modify the DrawTarget at the same time anyway, but this seems
// like the safest.
MutexAutoLock lock(mSnapshotLock);
if (mSnapshot) {
if (mSnapshot->hasOneRef()) {
// No owners outside of this DrawTarget's own reference. Just dump it.
mSnapshot = nullptr;
return;
}
mSnapshot->DrawTargetWillChange();
mSnapshot = nullptr;
// Handle copying of any image snapshots bound to the surface.
if (mSurface) {
mSurface->notifyContentWillChange(SkSurface::kRetain_ContentChangeMode);
}
}
}
} // namespace gfx
} // namespace mozilla