зеркало из https://github.com/mozilla/gecko-dev.git
179 строки
5.4 KiB
C++
179 строки
5.4 KiB
C++
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* ***** BEGIN LICENSE BLOCK *****
|
|
* Version: MPL 1.1/GPL 2.0/LGPL 2.1
|
|
*
|
|
* The contents of this file are subject to the Mozilla Public License Version
|
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
* http://www.mozilla.org/MPL/
|
|
*
|
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
|
* for the specific language governing rights and limitations under the
|
|
* License.
|
|
*
|
|
* The Original Code is the Mozilla SMIL module.
|
|
*
|
|
* The Initial Developer of the Original Code is Brian Birtles.
|
|
* Portions created by the Initial Developer are Copyright (C) 2005
|
|
* the Initial Developer. All Rights Reserved.
|
|
*
|
|
* Contributor(s):
|
|
* Brian Birtles <birtles@gmail.com>
|
|
*
|
|
* Alternatively, the contents of this file may be used under the terms of
|
|
* either of the GNU General Public License Version 2 or later (the "GPL"),
|
|
* or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
|
|
* in which case the provisions of the GPL or the LGPL are applicable instead
|
|
* of those above. If you wish to allow use of your version of this file only
|
|
* under the terms of either the GPL or the LGPL, and not to allow others to
|
|
* use your version of this file under the terms of the MPL, indicate your
|
|
* decision by deleting the provisions above and replace them with the notice
|
|
* and other provisions required by the GPL or the LGPL. If you do not delete
|
|
* the provisions above, a recipient may use your version of this file under
|
|
* the terms of any one of the MPL, the GPL or the LGPL.
|
|
*
|
|
* ***** END LICENSE BLOCK ***** */
|
|
|
|
#include "nsSMILKeySpline.h"
|
|
#include "prtypes.h"
|
|
#include <math.h>
|
|
|
|
#define NEWTON_ITERATIONS 4
|
|
#define NEWTON_MIN_SLOPE 0.02
|
|
#define SUBDIVISION_PRECISION 0.0000001
|
|
#define SUBDIVISION_MAX_ITERATIONS 10
|
|
|
|
const double nsSMILKeySpline::kSampleStepSize =
|
|
1.0 / double(kSplineTableSize - 1);
|
|
|
|
void
|
|
nsSMILKeySpline::Init(double aX1,
|
|
double aY1,
|
|
double aX2,
|
|
double aY2)
|
|
{
|
|
mX1 = aX1;
|
|
mY1 = aY1;
|
|
mX2 = aX2;
|
|
mY2 = aY2;
|
|
|
|
if (mX1 != mY1 || mX2 != mY2)
|
|
CalcSampleValues();
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::GetSplineValue(double aX) const
|
|
{
|
|
if (mX1 == mY1 && mX2 == mY2)
|
|
return aX;
|
|
|
|
return CalcBezier(GetTForX(aX), mY1, mY2);
|
|
}
|
|
|
|
void
|
|
nsSMILKeySpline::GetSplineDerivativeValues(double aX, double& aDX, double& aDY) const
|
|
{
|
|
double t = GetTForX(aX);
|
|
aDX = GetSlope(t, mX1, mX2);
|
|
aDY = GetSlope(t, mY1, mY2);
|
|
}
|
|
|
|
void
|
|
nsSMILKeySpline::CalcSampleValues()
|
|
{
|
|
for (PRUint32 i = 0; i < kSplineTableSize; ++i) {
|
|
mSampleValues[i] = CalcBezier(double(i) * kSampleStepSize, mX1, mX2);
|
|
}
|
|
}
|
|
|
|
/*static*/ double
|
|
nsSMILKeySpline::CalcBezier(double aT,
|
|
double aA1,
|
|
double aA2)
|
|
{
|
|
// use Horner's scheme to evaluate the Bezier polynomial
|
|
return ((A(aA1, aA2)*aT + B(aA1, aA2))*aT + C(aA1))*aT;
|
|
}
|
|
|
|
/*static*/ double
|
|
nsSMILKeySpline::GetSlope(double aT,
|
|
double aA1,
|
|
double aA2)
|
|
{
|
|
return 3.0 * A(aA1, aA2)*aT*aT + 2.0 * B(aA1, aA2) * aT + C(aA1);
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::GetTForX(double aX) const
|
|
{
|
|
// Find interval where t lies
|
|
double intervalStart = 0.0;
|
|
const double* currentSample = &mSampleValues[1];
|
|
const double* const lastSample = &mSampleValues[kSplineTableSize - 1];
|
|
for (; currentSample != lastSample && *currentSample <= aX;
|
|
++currentSample) {
|
|
intervalStart += kSampleStepSize;
|
|
}
|
|
--currentSample; // t now lies between *currentSample and *currentSample+1
|
|
|
|
// Interpolate to provide an initial guess for t
|
|
double dist = (aX - *currentSample) /
|
|
(*(currentSample+1) - *currentSample);
|
|
double guessForT = intervalStart + dist * kSampleStepSize;
|
|
|
|
// Check the slope to see what strategy to use. If the slope is too small
|
|
// Newton-Raphson iteration won't converge on a root so we use bisection
|
|
// instead.
|
|
double initialSlope = GetSlope(guessForT, mX1, mX2);
|
|
if (initialSlope >= NEWTON_MIN_SLOPE) {
|
|
return NewtonRaphsonIterate(aX, guessForT);
|
|
} else if (initialSlope == 0.0) {
|
|
return guessForT;
|
|
} else {
|
|
return BinarySubdivide(aX, intervalStart, intervalStart + kSampleStepSize);
|
|
}
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::NewtonRaphsonIterate(double aX, double aGuessT) const
|
|
{
|
|
// Refine guess with Newton-Raphson iteration
|
|
for (PRUint32 i = 0; i < NEWTON_ITERATIONS; ++i) {
|
|
// We're trying to find where f(t) = aX,
|
|
// so we're actually looking for a root for: CalcBezier(t) - aX
|
|
double currentX = CalcBezier(aGuessT, mX1, mX2) - aX;
|
|
double currentSlope = GetSlope(aGuessT, mX1, mX2);
|
|
|
|
if (currentSlope == 0.0)
|
|
return aGuessT;
|
|
|
|
aGuessT -= currentX / currentSlope;
|
|
}
|
|
|
|
return aGuessT;
|
|
}
|
|
|
|
double
|
|
nsSMILKeySpline::BinarySubdivide(double aX, double aA, double aB) const
|
|
{
|
|
double currentX;
|
|
double currentT;
|
|
PRUint32 i = 0;
|
|
|
|
do
|
|
{
|
|
currentT = aA + (aB - aA) / 2.0;
|
|
currentX = CalcBezier(currentT, mX1, mX2) - aX;
|
|
|
|
if (currentX > 0.0) {
|
|
aB = currentT;
|
|
} else {
|
|
aA = currentT;
|
|
}
|
|
} while (fabs(currentX) > SUBDIVISION_PRECISION
|
|
&& ++i < SUBDIVISION_MAX_ITERATIONS);
|
|
|
|
return currentT;
|
|
}
|