gecko-dev/gfx/2d/Types.h

604 строки
17 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef MOZILLA_GFX_TYPES_H_
#define MOZILLA_GFX_TYPES_H_
#include "mozilla/EndianUtils.h"
#include "mozilla/MacroArgs.h" // for MOZ_CONCAT
#include <stddef.h>
#include <stdint.h>
namespace mozilla {
namespace gfx {
typedef float Float;
typedef double Double;
enum class SurfaceType : int8_t {
DATA, /* Data surface - bitmap in memory */
D2D1_BITMAP, /* Surface wrapping a ID2D1Bitmap */
D2D1_DRAWTARGET, /* Surface made from a D2D draw target */
CAIRO, /* Surface wrapping a cairo surface */
CAIRO_IMAGE, /* Data surface wrapping a cairo image surface */
COREGRAPHICS_IMAGE, /* Surface wrapping a CoreGraphics Image */
COREGRAPHICS_CGCONTEXT, /* Surface wrapping a CG context */
SKIA, /* Surface wrapping a Skia bitmap */
DUAL_DT, /* Snapshot of a dual drawtarget */
D2D1_1_IMAGE, /* A D2D 1.1 ID2D1Image SourceSurface */
RECORDING, /* Surface used for recording */
TILED, /* Surface from a tiled DrawTarget */
DATA_SHARED, /* Data surface using shared memory */
CAPTURE, /* Data from a DrawTargetCapture */
DATA_RECYCLING_SHARED, /* Data surface using shared memory */
OFFSET, /* Offset */
};
enum class SurfaceFormat : int8_t {
// The following values are named to reflect layout of colors in memory, from
// lowest byte to highest byte. The 32-bit value layout depends on machine
// endianness.
// in-memory 32-bit LE value 32-bit BE value
B8G8R8A8, // [BB, GG, RR, AA] 0xAARRGGBB 0xBBGGRRAA
B8G8R8X8, // [BB, GG, RR, 00] 0x00RRGGBB 0xBBGGRR00
R8G8B8A8, // [RR, GG, BB, AA] 0xAABBGGRR 0xRRGGBBAA
R8G8B8X8, // [RR, GG, BB, 00] 0x00BBGGRR 0xRRGGBB00
A8R8G8B8, // [AA, RR, GG, BB] 0xBBGGRRAA 0xAARRGGBB
X8R8G8B8, // [00, RR, GG, BB] 0xBBGGRR00 0x00RRGGBB
R8G8B8,
B8G8R8,
// The _UINT16 suffix here indicates that the name reflects the layout when
// viewed as a uint16_t value. In memory these values are stored using native
// endianness.
R5G6B5_UINT16, // 0bRRRRRGGGGGGBBBBB
// This one is a single-byte, so endianness isn't an issue.
A8,
A16,
R8G8,
R16G16,
// These ones are their own special cases.
YUV,
NV12, // YUV 4:2:0 image with a plane of 8 bit Y samples followed by
// an interleaved U/V plane containing 8 bit 2x2 subsampled
// colour difference samples.
P016, // Similar to NV12, but with 16 bits plane values
P010, // Identical to P016 but the 6 least significant bits are 0.
// With DXGI in theory entirely compatible, however practice has
// shown that it's not the case.
YUV422,
HSV,
Lab,
Depth,
// This represents the unknown format.
UNKNOWN,
// The following values are endian-independent synonyms. The _UINT32 suffix
// indicates that the name reflects the layout when viewed as a uint32_t
// value.
#if MOZ_LITTLE_ENDIAN
A8R8G8B8_UINT32 = B8G8R8A8, // 0xAARRGGBB
X8R8G8B8_UINT32 = B8G8R8X8 // 0x00RRGGBB
#elif MOZ_BIG_ENDIAN
A8R8G8B8_UINT32 = A8R8G8B8, // 0xAARRGGBB
X8R8G8B8_UINT32 = X8R8G8B8 // 0x00RRGGBB
#else
# error "bad endianness"
#endif
};
static inline int BytesPerPixel(SurfaceFormat aFormat) {
switch (aFormat) {
case SurfaceFormat::A8:
return 1;
case SurfaceFormat::R5G6B5_UINT16:
case SurfaceFormat::A16:
return 2;
case SurfaceFormat::R8G8B8:
case SurfaceFormat::B8G8R8:
return 3;
case SurfaceFormat::HSV:
case SurfaceFormat::Lab:
return 3 * sizeof(float);
case SurfaceFormat::Depth:
return sizeof(uint16_t);
default:
return 4;
}
}
inline bool IsOpaque(SurfaceFormat aFormat) {
switch (aFormat) {
case SurfaceFormat::B8G8R8X8:
case SurfaceFormat::R8G8B8X8:
case SurfaceFormat::X8R8G8B8:
case SurfaceFormat::R5G6B5_UINT16:
case SurfaceFormat::R8G8B8:
case SurfaceFormat::B8G8R8:
case SurfaceFormat::R8G8:
case SurfaceFormat::HSV:
case SurfaceFormat::Lab:
case SurfaceFormat::Depth:
case SurfaceFormat::YUV:
case SurfaceFormat::NV12:
case SurfaceFormat::P010:
case SurfaceFormat::P016:
case SurfaceFormat::YUV422:
return true;
default:
return false;
}
}
enum class YUVColorSpace : uint8_t {
BT601,
BT709,
BT2020,
// This represents the unknown format and is a valid value.
UNKNOWN,
_NUM_COLORSPACE
};
enum class ColorDepth : uint8_t {
COLOR_8,
COLOR_10,
COLOR_12,
COLOR_16,
UNKNOWN
};
enum class ColorRange : uint8_t { LIMITED, FULL, UNKNOWN };
static inline SurfaceFormat SurfaceFormatForColorDepth(ColorDepth aColorDepth) {
SurfaceFormat format = SurfaceFormat::A8;
switch (aColorDepth) {
case ColorDepth::COLOR_8:
break;
case ColorDepth::COLOR_10:
case ColorDepth::COLOR_12:
case ColorDepth::COLOR_16:
format = SurfaceFormat::A16;
break;
case ColorDepth::UNKNOWN:
MOZ_ASSERT_UNREACHABLE("invalid color depth value");
}
return format;
}
static inline uint32_t BitDepthForColorDepth(ColorDepth aColorDepth) {
uint32_t depth = 8;
switch (aColorDepth) {
case ColorDepth::COLOR_8:
break;
case ColorDepth::COLOR_10:
depth = 10;
break;
case ColorDepth::COLOR_12:
depth = 12;
break;
case ColorDepth::COLOR_16:
depth = 16;
break;
case ColorDepth::UNKNOWN:
MOZ_ASSERT_UNREACHABLE("invalid color depth value");
}
return depth;
}
static inline ColorDepth ColorDepthForBitDepth(uint8_t aBitDepth) {
ColorDepth depth = ColorDepth::COLOR_8;
switch (aBitDepth) {
case 8:
break;
case 10:
depth = ColorDepth::COLOR_10;
break;
case 12:
depth = ColorDepth::COLOR_12;
break;
case 16:
depth = ColorDepth::COLOR_16;
break;
default:
MOZ_ASSERT_UNREACHABLE("invalid color depth value");
}
return depth;
}
// 10 and 12 bits color depth image are using 16 bits integers for storage
// As such we need to rescale the value from 10 or 12 bits to 16.
static inline uint32_t RescalingFactorForColorDepth(ColorDepth aColorDepth) {
uint32_t factor = 1;
switch (aColorDepth) {
case ColorDepth::COLOR_8:
break;
case ColorDepth::COLOR_10:
factor = 64;
break;
case ColorDepth::COLOR_12:
factor = 16;
break;
case ColorDepth::COLOR_16:
break;
case ColorDepth::UNKNOWN:
MOZ_ASSERT_UNREACHABLE("invalid color depth value");
}
return factor;
}
enum class FilterType : int8_t {
BLEND = 0,
TRANSFORM,
MORPHOLOGY,
COLOR_MATRIX,
FLOOD,
TILE,
TABLE_TRANSFER,
DISCRETE_TRANSFER,
LINEAR_TRANSFER,
GAMMA_TRANSFER,
CONVOLVE_MATRIX,
DISPLACEMENT_MAP,
TURBULENCE,
ARITHMETIC_COMBINE,
COMPOSITE,
DIRECTIONAL_BLUR,
GAUSSIAN_BLUR,
POINT_DIFFUSE,
POINT_SPECULAR,
SPOT_DIFFUSE,
SPOT_SPECULAR,
DISTANT_DIFFUSE,
DISTANT_SPECULAR,
CROP,
PREMULTIPLY,
UNPREMULTIPLY,
OPACITY
};
enum class DrawTargetType : int8_t {
SOFTWARE_RASTER = 0,
HARDWARE_RASTER,
VECTOR
};
enum class BackendType : int8_t {
NONE = 0,
DIRECT2D, // Used for version independent D2D objects.
CAIRO,
SKIA,
RECORDING,
DIRECT2D1_1,
WEBRENDER_TEXT,
CAPTURE, // Used for paths
// Add new entries above this line.
BACKEND_LAST
};
enum class FontType : int8_t {
DWRITE,
GDI,
MAC,
FONTCONFIG,
FREETYPE,
UNKNOWN
};
enum class NativeSurfaceType : int8_t {
D3D10_TEXTURE,
CAIRO_CONTEXT,
CGCONTEXT,
CGCONTEXT_ACCELERATED,
OPENGL_TEXTURE
};
enum class NativeFontType : int8_t {
GDI_LOGFONT,
FREETYPE_FACE,
FONTCONFIG_PATTERN,
};
enum class FontStyle : int8_t { NORMAL, ITALIC, BOLD, BOLD_ITALIC };
enum class FontHinting : int8_t { NONE, LIGHT, NORMAL, FULL };
enum class CompositionOp : int8_t {
OP_OVER,
OP_ADD,
OP_ATOP,
OP_OUT,
OP_IN,
OP_SOURCE,
OP_DEST_IN,
OP_DEST_OUT,
OP_DEST_OVER,
OP_DEST_ATOP,
OP_XOR,
OP_MULTIPLY,
OP_SCREEN,
OP_OVERLAY,
OP_DARKEN,
OP_LIGHTEN,
OP_COLOR_DODGE,
OP_COLOR_BURN,
OP_HARD_LIGHT,
OP_SOFT_LIGHT,
OP_DIFFERENCE,
OP_EXCLUSION,
OP_HUE,
OP_SATURATION,
OP_COLOR,
OP_LUMINOSITY,
OP_COUNT
};
enum class Axis : int8_t { X_AXIS, Y_AXIS, BOTH };
enum class ExtendMode : int8_t {
CLAMP, // Do not repeat
REPEAT, // Repeat in both axis
REPEAT_X, // Only X axis
REPEAT_Y, // Only Y axis
REFLECT // Mirror the image
};
enum class FillRule : int8_t { FILL_WINDING, FILL_EVEN_ODD };
enum class AntialiasMode : int8_t { NONE, GRAY, SUBPIXEL, DEFAULT };
// See https://en.wikipedia.org/wiki/Texture_filtering
enum class SamplingFilter : int8_t {
GOOD,
LINEAR,
POINT,
SENTINEL // one past the last valid value
};
enum class PatternType : int8_t {
COLOR,
SURFACE,
LINEAR_GRADIENT,
RADIAL_GRADIENT
};
enum class JoinStyle : int8_t {
BEVEL,
ROUND,
MITER, //!< Mitered if within the miter limit, else, if the backed supports
//!< it (D2D), the miter is clamped. If the backend does not support
//!< miter clamping the behavior is as for MITER_OR_BEVEL.
MITER_OR_BEVEL //!< Mitered if within the miter limit, else beveled.
};
enum class CapStyle : int8_t { BUTT, ROUND, SQUARE };
enum class SamplingBounds : int8_t { UNBOUNDED, BOUNDED };
// Moz2d version for SVG mask types
enum class LuminanceType : int8_t {
LUMINANCE,
LINEARRGB,
};
/* Color is stored in non-premultiplied form */
struct Color {
public:
Color() : r(0.0f), g(0.0f), b(0.0f), a(0.0f) {}
Color(Float aR, Float aG, Float aB, Float aA) : r(aR), g(aG), b(aB), a(aA) {}
Color(Float aR, Float aG, Float aB) : r(aR), g(aG), b(aB), a(1.0f) {}
static Color FromABGR(uint32_t aColor) {
Color newColor(((aColor >> 0) & 0xff) * (1.0f / 255.0f),
((aColor >> 8) & 0xff) * (1.0f / 255.0f),
((aColor >> 16) & 0xff) * (1.0f / 255.0f),
((aColor >> 24) & 0xff) * (1.0f / 255.0f));
return newColor;
}
// The "Unusual" prefix is to avoid unintentionally using this function when
// FromABGR(), which is much more common, is needed.
static Color UnusualFromARGB(uint32_t aColor) {
Color newColor(((aColor >> 16) & 0xff) * (1.0f / 255.0f),
((aColor >> 8) & 0xff) * (1.0f / 255.0f),
((aColor >> 0) & 0xff) * (1.0f / 255.0f),
((aColor >> 24) & 0xff) * (1.0f / 255.0f));
return newColor;
}
uint32_t ToABGR() const {
return uint32_t(r * 255.0f) | uint32_t(g * 255.0f) << 8 |
uint32_t(b * 255.0f) << 16 | uint32_t(a * 255.0f) << 24;
}
// The "Unusual" prefix is to avoid unintentionally using this function when
// ToABGR(), which is much more common, is needed.
uint32_t UnusualToARGB() const {
return uint32_t(b * 255.0f) | uint32_t(g * 255.0f) << 8 |
uint32_t(r * 255.0f) << 16 | uint32_t(a * 255.0f) << 24;
}
bool operator==(const Color& aColor) const {
return r == aColor.r && g == aColor.g && b == aColor.b && a == aColor.a;
}
bool operator!=(const Color& aColor) const { return !(*this == aColor); }
Float r, g, b, a;
};
struct GradientStop {
bool operator<(const GradientStop& aOther) const {
return offset < aOther.offset;
}
Float offset;
Color color;
};
enum class JobStatus { Complete, Wait, Yield, Error };
} // namespace gfx
} // namespace mozilla
// XXX: temporary
typedef mozilla::gfx::SurfaceFormat gfxImageFormat;
#if defined(XP_WIN) && defined(MOZ_GFX)
# ifdef GFX2D_INTERNAL
# define GFX2D_API __declspec(dllexport)
# else
# define GFX2D_API __declspec(dllimport)
# endif
#else
# define GFX2D_API
#endif
namespace mozilla {
// Side constants for use in various places.
enum Side { eSideTop, eSideRight, eSideBottom, eSideLeft };
enum SideBits {
eSideBitsNone = 0,
eSideBitsTop = 1 << eSideTop,
eSideBitsRight = 1 << eSideRight,
eSideBitsBottom = 1 << eSideBottom,
eSideBitsLeft = 1 << eSideLeft,
eSideBitsTopBottom = eSideBitsTop | eSideBitsBottom,
eSideBitsLeftRight = eSideBitsLeft | eSideBitsRight,
eSideBitsAll = eSideBitsTopBottom | eSideBitsLeftRight
};
// Creates a for loop that walks over the four mozilla::Side values.
// We use an int32_t helper variable (instead of a Side) for our loop counter,
// to avoid triggering undefined behavior just before we exit the loop (at
// which point the counter is incremented beyond the largest valid Side value).
#define NS_FOR_CSS_SIDES(var_) \
int32_t MOZ_CONCAT(var_, __LINE__) = mozilla::eSideTop; \
for (mozilla::Side var_; \
MOZ_CONCAT(var_, __LINE__) <= mozilla::eSideLeft && \
(static_cast<void>(var_ = mozilla::Side(MOZ_CONCAT(var_, __LINE__))), \
true); \
++MOZ_CONCAT(var_, __LINE__))
static inline Side& operator++(Side& side) {
MOZ_ASSERT(side >= eSideTop && side <= eSideLeft, "Out of range side");
side = Side(side + 1);
return side;
}
enum Corner {
// This order is important!
eCornerTopLeft = 0,
eCornerTopRight = 1,
eCornerBottomRight = 2,
eCornerBottomLeft = 3
};
// RectCornerRadii::radii depends on this value. It is not being added to
// Corner because we want to lift the responsibility to handle it in the
// switch-case.
constexpr int eCornerCount = 4;
// Creates a for loop that walks over the four mozilla::Corner values. This
// implementation uses the same technique as NS_FOR_CSS_SIDES.
#define NS_FOR_CSS_FULL_CORNERS(var_) \
int32_t MOZ_CONCAT(var_, __LINE__) = mozilla::eCornerTopLeft; \
for (mozilla::Corner var_; \
MOZ_CONCAT(var_, __LINE__) <= mozilla::eCornerBottomLeft && \
(static_cast<void>(var_ = mozilla::Corner(MOZ_CONCAT(var_, __LINE__))), \
true); \
++MOZ_CONCAT(var_, __LINE__))
static inline Corner operator++(Corner& aCorner) {
MOZ_ASSERT(aCorner >= eCornerTopLeft && aCorner <= eCornerBottomLeft,
"Out of range corner!");
aCorner = Corner(aCorner + 1);
return aCorner;
}
// Indices into "half corner" arrays (nsStyleCorners e.g.)
enum HalfCorner : uint8_t {
// This order is important!
eCornerTopLeftX = 0,
eCornerTopLeftY = 1,
eCornerTopRightX = 2,
eCornerTopRightY = 3,
eCornerBottomRightX = 4,
eCornerBottomRightY = 5,
eCornerBottomLeftX = 6,
eCornerBottomLeftY = 7
};
// Creates a for loop that walks over the eight mozilla::HalfCorner values.
// This implementation uses the same technique as NS_FOR_CSS_SIDES.
#define NS_FOR_CSS_HALF_CORNERS(var_) \
int32_t MOZ_CONCAT(var_, __LINE__) = mozilla::eCornerTopLeftX; \
for (mozilla::HalfCorner var_; \
MOZ_CONCAT(var_, __LINE__) <= mozilla::eCornerBottomLeftY && \
(static_cast<void>( \
var_ = mozilla::HalfCorner(MOZ_CONCAT(var_, __LINE__))), \
true); \
++MOZ_CONCAT(var_, __LINE__))
static inline HalfCorner operator++(HalfCorner& aHalfCorner) {
MOZ_ASSERT(
aHalfCorner >= eCornerTopLeftX && aHalfCorner <= eCornerBottomLeftY,
"Out of range half corner!");
aHalfCorner = HalfCorner(aHalfCorner + 1);
return aHalfCorner;
}
// The result of these conversion functions are exhaustively checked in
// nsFrame.cpp, which also serves as usage examples.
constexpr bool HalfCornerIsX(HalfCorner aHalfCorner) {
return !(aHalfCorner % 2);
}
constexpr Corner HalfToFullCorner(HalfCorner aHalfCorner) {
return Corner(aHalfCorner / 2);
}
constexpr HalfCorner FullToHalfCorner(Corner aCorner, bool aIsVertical) {
return HalfCorner(aCorner * 2 + aIsVertical);
}
constexpr bool SideIsVertical(Side aSide) { return aSide % 2; }
// @param aIsSecond when true, return the clockwise second of the two
// corners associated with aSide. For example, with aSide = eSideBottom the
// result is eCornerBottomRight when aIsSecond is false, and
// eCornerBottomLeft when aIsSecond is true.
constexpr Corner SideToFullCorner(Side aSide, bool aIsSecond) {
return Corner((aSide + aIsSecond) % 4);
}
// @param aIsSecond see SideToFullCorner.
// @param aIsParallel return the half-corner that is parallel with aSide
// when aIsParallel is true. For example with aSide=eSideTop, aIsSecond=true
// the result is eCornerTopRightX when aIsParallel is true, and
// eCornerTopRightY when aIsParallel is false (because "X" is parallel with
// eSideTop/eSideBottom, similarly "Y" is parallel with
// eSideLeft/eSideRight)
constexpr HalfCorner SideToHalfCorner(Side aSide, bool aIsSecond,
bool aIsParallel) {
return HalfCorner(((aSide + aIsSecond) * 2 + (aSide + !aIsParallel) % 2) % 8);
}
} // namespace mozilla
#endif /* MOZILLA_GFX_TYPES_H_ */