gecko-dev/media/mtransport/transportlayerdtls.cpp

1604 строки
47 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
// Original author: ekr@rtfm.com
#include "transportlayerdtls.h"
#include <algorithm>
#include <queue>
#include <sstream>
#include "dtlsidentity.h"
#include "keyhi.h"
#include "logging.h"
#include "mozilla/Telemetry.h"
#include "mozilla/UniquePtr.h"
#include "mozilla/Unused.h"
#include "nsCOMPtr.h"
#include "nsComponentManagerUtils.h"
#include "nsComponentManagerUtils.h"
#include "nsIEventTarget.h"
#include "nsNetCID.h"
#include "nsServiceManagerUtils.h"
#include "sslexp.h"
#include "sslproto.h"
#include "transportflow.h"
namespace mozilla {
MOZ_MTLOG_MODULE("mtransport")
static PRDescIdentity transport_layer_identity = PR_INVALID_IO_LAYER;
// TODO: Implement a mode for this where
// the channel is not ready until confirmed externally
// (e.g., after cert check).
#define UNIMPLEMENTED \
MOZ_MTLOG(ML_ERROR, "Call to unimplemented function " << __FUNCTION__); \
MOZ_ASSERT(false); \
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0)
#define MAX_ALPN_LENGTH 255
// We need to adapt the NSPR/libssl model to the TransportFlow model.
// The former wants pull semantics and TransportFlow wants push.
//
// - A TransportLayerDtls assumes it is sitting on top of another
// TransportLayer, which means that events come in asynchronously.
// - NSS (libssl) wants to sit on top of a PRFileDesc and poll.
// - The TransportLayerNSPRAdapter is a PRFileDesc containing a
// FIFO.
// - When TransportLayerDtls.PacketReceived() is called, we insert
// the packets in the FIFO and then do a PR_Recv() on the NSS
// PRFileDesc, which eventually reads off the FIFO.
//
// All of this stuff is assumed to happen solely in a single thread
// (generally the SocketTransportService thread)
void TransportLayerNSPRAdapter::PacketReceived(MediaPacket& packet) {
if (enabled_) {
input_.push(new MediaPacket(std::move(packet)));
}
}
int32_t TransportLayerNSPRAdapter::Recv(void* buf, int32_t buflen) {
if (input_.empty()) {
PR_SetError(PR_WOULD_BLOCK_ERROR, 0);
return -1;
}
MediaPacket* front = input_.front();
int32_t count = static_cast<int32_t>(front->len());
if (buflen < count) {
MOZ_ASSERT(false, "Not enough buffer space to receive into");
PR_SetError(PR_BUFFER_OVERFLOW_ERROR, 0);
return -1;
}
memcpy(buf, front->data(), count);
input_.pop();
delete front;
return count;
}
int32_t TransportLayerNSPRAdapter::Write(const void* buf, int32_t length) {
if (!enabled_) {
MOZ_MTLOG(ML_WARNING, "Writing to disabled transport layer");
return -1;
}
MediaPacket packet;
// Copies. Oh well.
packet.Copy(static_cast<const uint8_t*>(buf), static_cast<size_t>(length));
packet.SetType(MediaPacket::DTLS);
TransportResult r = output_->SendPacket(packet);
if (r >= 0) {
return r;
}
if (r == TE_WOULDBLOCK) {
PR_SetError(PR_WOULD_BLOCK_ERROR, 0);
} else {
PR_SetError(PR_IO_ERROR, 0);
}
return -1;
}
// Implementation of NSPR methods
static PRStatus TransportLayerClose(PRFileDesc* f) {
f->dtor(f);
return PR_SUCCESS;
}
static int32_t TransportLayerRead(PRFileDesc* f, void* buf, int32_t length) {
UNIMPLEMENTED;
return -1;
}
static int32_t TransportLayerWrite(PRFileDesc* f, const void* buf,
int32_t length) {
TransportLayerNSPRAdapter* io =
reinterpret_cast<TransportLayerNSPRAdapter*>(f->secret);
return io->Write(buf, length);
}
static int32_t TransportLayerAvailable(PRFileDesc* f) {
UNIMPLEMENTED;
return -1;
}
int64_t TransportLayerAvailable64(PRFileDesc* f) {
UNIMPLEMENTED;
return -1;
}
static PRStatus TransportLayerSync(PRFileDesc* f) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static int32_t TransportLayerSeek(PRFileDesc* f, int32_t offset,
PRSeekWhence how) {
UNIMPLEMENTED;
return -1;
}
static int64_t TransportLayerSeek64(PRFileDesc* f, int64_t offset,
PRSeekWhence how) {
UNIMPLEMENTED;
return -1;
}
static PRStatus TransportLayerFileInfo(PRFileDesc* f, PRFileInfo* info) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static PRStatus TransportLayerFileInfo64(PRFileDesc* f, PRFileInfo64* info) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static int32_t TransportLayerWritev(PRFileDesc* f, const PRIOVec* iov,
int32_t iov_size, PRIntervalTime to) {
UNIMPLEMENTED;
return -1;
}
static PRStatus TransportLayerConnect(PRFileDesc* f, const PRNetAddr* addr,
PRIntervalTime to) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static PRFileDesc* TransportLayerAccept(PRFileDesc* sd, PRNetAddr* addr,
PRIntervalTime to) {
UNIMPLEMENTED;
return nullptr;
}
static PRStatus TransportLayerBind(PRFileDesc* f, const PRNetAddr* addr) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static PRStatus TransportLayerListen(PRFileDesc* f, int32_t depth) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static PRStatus TransportLayerShutdown(PRFileDesc* f, int32_t how) {
// This is only called from NSS when we are the server and the client refuses
// to provide a certificate. In this case, the handshake is destined for
// failure, so we will just let this pass.
TransportLayerNSPRAdapter* io =
reinterpret_cast<TransportLayerNSPRAdapter*>(f->secret);
io->SetEnabled(false);
return PR_SUCCESS;
}
// This function does not support peek, or waiting until `to`
static int32_t TransportLayerRecv(PRFileDesc* f, void* buf, int32_t buflen,
int32_t flags, PRIntervalTime to) {
MOZ_ASSERT(flags == 0);
if (flags != 0) {
PR_SetError(PR_NOT_IMPLEMENTED_ERROR, 0);
return -1;
}
TransportLayerNSPRAdapter* io =
reinterpret_cast<TransportLayerNSPRAdapter*>(f->secret);
return io->Recv(buf, buflen);
}
// Note: this is always nonblocking and assumes a zero timeout.
static int32_t TransportLayerSend(PRFileDesc* f, const void* buf,
int32_t amount, int32_t flags,
PRIntervalTime to) {
int32_t written = TransportLayerWrite(f, buf, amount);
return written;
}
static int32_t TransportLayerRecvfrom(PRFileDesc* f, void* buf, int32_t amount,
int32_t flags, PRNetAddr* addr,
PRIntervalTime to) {
UNIMPLEMENTED;
return -1;
}
static int32_t TransportLayerSendto(PRFileDesc* f, const void* buf,
int32_t amount, int32_t flags,
const PRNetAddr* addr, PRIntervalTime to) {
UNIMPLEMENTED;
return -1;
}
static int16_t TransportLayerPoll(PRFileDesc* f, int16_t in_flags,
int16_t* out_flags) {
UNIMPLEMENTED;
return -1;
}
static int32_t TransportLayerAcceptRead(PRFileDesc* sd, PRFileDesc** nd,
PRNetAddr** raddr, void* buf,
int32_t amount, PRIntervalTime t) {
UNIMPLEMENTED;
return -1;
}
static int32_t TransportLayerTransmitFile(PRFileDesc* sd, PRFileDesc* f,
const void* headers, int32_t hlen,
PRTransmitFileFlags flags,
PRIntervalTime t) {
UNIMPLEMENTED;
return -1;
}
static PRStatus TransportLayerGetpeername(PRFileDesc* f, PRNetAddr* addr) {
// TODO: Modify to return unique names for each channel
// somehow, as opposed to always the same static address. The current
// implementation messes up the session cache, which is why it's off
// elsewhere
addr->inet.family = PR_AF_INET;
addr->inet.port = 0;
addr->inet.ip = 0;
return PR_SUCCESS;
}
static PRStatus TransportLayerGetsockname(PRFileDesc* f, PRNetAddr* addr) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static PRStatus TransportLayerGetsockoption(PRFileDesc* f,
PRSocketOptionData* opt) {
switch (opt->option) {
case PR_SockOpt_Nonblocking:
opt->value.non_blocking = PR_TRUE;
return PR_SUCCESS;
default:
UNIMPLEMENTED;
break;
}
return PR_FAILURE;
}
// Imitate setting socket options. These are mostly noops.
static PRStatus TransportLayerSetsockoption(PRFileDesc* f,
const PRSocketOptionData* opt) {
switch (opt->option) {
case PR_SockOpt_Nonblocking:
return PR_SUCCESS;
case PR_SockOpt_NoDelay:
return PR_SUCCESS;
default:
UNIMPLEMENTED;
break;
}
return PR_FAILURE;
}
static int32_t TransportLayerSendfile(PRFileDesc* out, PRSendFileData* in,
PRTransmitFileFlags flags,
PRIntervalTime to) {
UNIMPLEMENTED;
return -1;
}
static PRStatus TransportLayerConnectContinue(PRFileDesc* f, int16_t flags) {
UNIMPLEMENTED;
return PR_FAILURE;
}
static int32_t TransportLayerReserved(PRFileDesc* f) {
UNIMPLEMENTED;
return -1;
}
static const struct PRIOMethods TransportLayerMethods = {
PR_DESC_LAYERED,
TransportLayerClose,
TransportLayerRead,
TransportLayerWrite,
TransportLayerAvailable,
TransportLayerAvailable64,
TransportLayerSync,
TransportLayerSeek,
TransportLayerSeek64,
TransportLayerFileInfo,
TransportLayerFileInfo64,
TransportLayerWritev,
TransportLayerConnect,
TransportLayerAccept,
TransportLayerBind,
TransportLayerListen,
TransportLayerShutdown,
TransportLayerRecv,
TransportLayerSend,
TransportLayerRecvfrom,
TransportLayerSendto,
TransportLayerPoll,
TransportLayerAcceptRead,
TransportLayerTransmitFile,
TransportLayerGetsockname,
TransportLayerGetpeername,
TransportLayerReserved,
TransportLayerReserved,
TransportLayerGetsockoption,
TransportLayerSetsockoption,
TransportLayerSendfile,
TransportLayerConnectContinue,
TransportLayerReserved,
TransportLayerReserved,
TransportLayerReserved,
TransportLayerReserved};
TransportLayerDtls::~TransportLayerDtls() {
// Destroy the NSS instance first so it can still send out an alert before
// we disable the nspr_io_adapter_.
ssl_fd_ = nullptr;
nspr_io_adapter_->SetEnabled(false);
if (timer_) {
timer_->Cancel();
}
}
nsresult TransportLayerDtls::InitInternal() {
// Get the transport service as an event target
nsresult rv;
target_ = do_GetService(NS_SOCKETTRANSPORTSERVICE_CONTRACTID, &rv);
if (NS_FAILED(rv)) {
MOZ_MTLOG(ML_ERROR, "Couldn't get socket transport service");
return rv;
}
timer_ = NS_NewTimer();
if (!timer_) {
MOZ_MTLOG(ML_ERROR, "Couldn't get timer");
return rv;
}
return NS_OK;
}
void TransportLayerDtls::WasInserted() {
// Connect to the lower layers
if (!Setup()) {
TL_SET_STATE(TS_ERROR);
}
}
// Set the permitted and default ALPN identifiers.
// The default is here to allow for peers that don't want to negotiate ALPN
// in that case, the default string will be reported from GetNegotiatedAlpn().
// Setting the default to the empty string causes the transport layer to fail
// if ALPN is not negotiated.
// Note: we only support Unicode strings here, which are encoded into UTF-8,
// even though ALPN ostensibly allows arbitrary octet sequences.
nsresult TransportLayerDtls::SetAlpn(const std::set<std::string>& alpn_allowed,
const std::string& alpn_default) {
alpn_allowed_ = alpn_allowed;
alpn_default_ = alpn_default;
return NS_OK;
}
nsresult TransportLayerDtls::SetVerificationAllowAll() {
// Defensive programming
if (verification_mode_ != VERIFY_UNSET) return NS_ERROR_ALREADY_INITIALIZED;
verification_mode_ = VERIFY_ALLOW_ALL;
return NS_OK;
}
nsresult TransportLayerDtls::SetVerificationDigest(const DtlsDigest& digest) {
// Defensive programming
if (verification_mode_ != VERIFY_UNSET &&
verification_mode_ != VERIFY_DIGEST) {
return NS_ERROR_ALREADY_INITIALIZED;
}
digests_.push_back(digest);
verification_mode_ = VERIFY_DIGEST;
return NS_OK;
}
// These are the named groups that we will allow.
static const SSLNamedGroup NamedGroupPreferences[] = {
ssl_grp_ec_curve25519, ssl_grp_ec_secp256r1, ssl_grp_ec_secp384r1,
ssl_grp_ffdhe_2048, ssl_grp_ffdhe_3072};
// TODO: make sure this is called from STS. Otherwise
// we have thread safety issues
bool TransportLayerDtls::Setup() {
CheckThread();
SECStatus rv;
if (!downward_) {
MOZ_MTLOG(ML_ERROR, "DTLS layer with nothing below. This is useless");
return false;
}
nspr_io_adapter_ = MakeUnique<TransportLayerNSPRAdapter>(downward_);
if (!identity_) {
MOZ_MTLOG(ML_ERROR, "Can't start DTLS without an identity");
return false;
}
if (verification_mode_ == VERIFY_UNSET) {
MOZ_MTLOG(ML_ERROR,
"Can't start DTLS without specifying a verification mode");
return false;
}
if (transport_layer_identity == PR_INVALID_IO_LAYER) {
transport_layer_identity = PR_GetUniqueIdentity("nssstreamadapter");
}
UniquePRFileDesc pr_fd(
PR_CreateIOLayerStub(transport_layer_identity, &TransportLayerMethods));
MOZ_ASSERT(pr_fd != nullptr);
if (!pr_fd) return false;
pr_fd->secret = reinterpret_cast<PRFilePrivate*>(nspr_io_adapter_.get());
UniquePRFileDesc ssl_fd(DTLS_ImportFD(nullptr, pr_fd.get()));
MOZ_ASSERT(ssl_fd != nullptr); // This should never happen
if (!ssl_fd) {
return false;
}
Unused << pr_fd.release(); // ownership transfered to ssl_fd;
if (role_ == CLIENT) {
MOZ_MTLOG(ML_INFO, "Setting up DTLS as client");
rv = SSL_GetClientAuthDataHook(ssl_fd.get(), GetClientAuthDataHook, this);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't set identity");
return false;
}
} else {
MOZ_MTLOG(ML_INFO, "Setting up DTLS as server");
// Server side
rv = SSL_ConfigSecureServer(ssl_fd.get(), identity_->cert().get(),
identity_->privkey().get(),
identity_->auth_type());
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't set identity");
return false;
}
UniqueCERTCertList zero_certs(CERT_NewCertList());
rv = SSL_SetTrustAnchors(ssl_fd.get(), zero_certs.get());
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't set trust anchors");
return false;
}
// Insist on a certificate from the client
rv = SSL_OptionSet(ssl_fd.get(), SSL_REQUEST_CERTIFICATE, PR_TRUE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't request certificate");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_REQUIRE_CERTIFICATE, PR_TRUE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't require certificate");
return false;
}
}
// Require TLS 1.1 or 1.2. Perhaps some day in the future we will allow TLS
// 1.0 for stream modes.
SSLVersionRange version_range = {SSL_LIBRARY_VERSION_TLS_1_1,
SSL_LIBRARY_VERSION_TLS_1_2};
rv = SSL_VersionRangeSet(ssl_fd.get(), &version_range);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Can't disable SSLv3");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_ENABLE_SESSION_TICKETS, PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable session tickets");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_NO_CACHE, PR_TRUE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable session caching");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_ENABLE_DEFLATE, PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable deflate");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_ENABLE_RENEGOTIATION,
SSL_RENEGOTIATE_NEVER);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable renegotiation");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_ENABLE_FALSE_START, PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable false start");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_NO_LOCKS, PR_TRUE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable locks");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_REUSE_SERVER_ECDHE_KEY, PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable ECDHE key reuse");
return false;
}
if (!SetupCipherSuites(ssl_fd)) {
return false;
}
rv = SSL_NamedGroupConfig(ssl_fd.get(), NamedGroupPreferences,
mozilla::ArrayLength(NamedGroupPreferences));
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't set named groups");
return false;
}
// Certificate validation
rv = SSL_AuthCertificateHook(ssl_fd.get(), AuthCertificateHook,
reinterpret_cast<void*>(this));
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't set certificate validation hook");
return false;
}
if (!SetupAlpn(ssl_fd)) {
return false;
}
// Now start the handshake
rv = SSL_ResetHandshake(ssl_fd.get(), role_ == SERVER ? PR_TRUE : PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't reset handshake");
return false;
}
ssl_fd_ = std::move(ssl_fd);
// Finally, get ready to receive data
downward_->SignalStateChange.connect(this, &TransportLayerDtls::StateChange);
downward_->SignalPacketReceived.connect(this,
&TransportLayerDtls::PacketReceived);
if (downward_->state() == TS_OPEN) {
TL_SET_STATE(TS_CONNECTING);
Handshake();
}
return true;
}
bool TransportLayerDtls::SetupAlpn(UniquePRFileDesc& ssl_fd) const {
if (alpn_allowed_.empty()) {
return true;
}
SECStatus rv = SSL_OptionSet(ssl_fd.get(), SSL_ENABLE_NPN, PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't disable NPN");
return false;
}
rv = SSL_OptionSet(ssl_fd.get(), SSL_ENABLE_ALPN, PR_TRUE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't enable ALPN");
return false;
}
unsigned char buf[MAX_ALPN_LENGTH];
size_t offset = 0;
for (const auto& tag : alpn_allowed_) {
if ((offset + 1 + tag.length()) >= sizeof(buf)) {
MOZ_MTLOG(ML_ERROR, "ALPN too long");
return false;
}
buf[offset++] = tag.length();
memcpy(buf + offset, tag.c_str(), tag.length());
offset += tag.length();
}
rv = SSL_SetNextProtoNego(ssl_fd.get(), buf, offset);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't set ALPN string");
return false;
}
return true;
}
// Ciphers we need to enable. These are on by default in standard firefox
// builds, but can be disabled with prefs and they aren't on in our unit tests
// since that uses NSS default configuration.
//
// Only override prefs to comply with MUST statements in the security-arch doc.
// Anything outside this list is governed by the usual combination of policy
// and user preferences.
static const uint32_t EnabledCiphers[] = {
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA};
// Disable all NSS suites modes without PFS or with old and rusty ciphersuites.
// Anything outside this list is governed by the usual combination of policy
// and user preferences.
static const uint32_t DisabledCiphers[] = {
// Bug 1310061: disable all SHA384 ciphers until fixed
TLS_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384,
TLS_DHE_DSS_WITH_AES_256_GCM_SHA384,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA,
TLS_ECDHE_RSA_WITH_RC4_128_SHA,
TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA,
TLS_DHE_DSS_WITH_RC4_128_SHA,
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA,
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA,
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_ECDH_ECDSA_WITH_RC4_128_SHA,
TLS_ECDH_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_AES_128_GCM_SHA256,
TLS_RSA_WITH_AES_256_GCM_SHA384,
TLS_RSA_WITH_AES_128_CBC_SHA,
TLS_RSA_WITH_AES_128_CBC_SHA256,
TLS_RSA_WITH_CAMELLIA_128_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA,
TLS_RSA_WITH_AES_256_CBC_SHA256,
TLS_RSA_WITH_CAMELLIA_256_CBC_SHA,
TLS_RSA_WITH_SEED_CBC_SHA,
TLS_RSA_WITH_3DES_EDE_CBC_SHA,
TLS_RSA_WITH_RC4_128_SHA,
TLS_RSA_WITH_RC4_128_MD5,
TLS_DHE_RSA_WITH_DES_CBC_SHA,
TLS_DHE_DSS_WITH_DES_CBC_SHA,
TLS_RSA_WITH_DES_CBC_SHA,
TLS_ECDHE_ECDSA_WITH_NULL_SHA,
TLS_ECDHE_RSA_WITH_NULL_SHA,
TLS_ECDH_ECDSA_WITH_NULL_SHA,
TLS_ECDH_RSA_WITH_NULL_SHA,
TLS_RSA_WITH_NULL_SHA,
TLS_RSA_WITH_NULL_SHA256,
TLS_RSA_WITH_NULL_MD5,
};
bool TransportLayerDtls::SetupCipherSuites(UniquePRFileDesc& ssl_fd) {
SECStatus rv;
// Set the SRTP ciphers
if (!enabled_srtp_ciphers_.empty()) {
rv = SSL_InstallExtensionHooks(ssl_fd.get(), ssl_use_srtp_xtn,
TransportLayerDtls::WriteSrtpXtn, this,
TransportLayerDtls::HandleSrtpXtn, this);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "unable to set SRTP extension handler");
return false;
}
}
for (const auto& cipher : EnabledCiphers) {
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "Enabling: " << cipher);
rv = SSL_CipherPrefSet(ssl_fd.get(), cipher, PR_TRUE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "Unable to enable suite: " << cipher);
return false;
}
}
for (const auto& cipher : DisabledCiphers) {
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "Disabling: " << cipher);
PRBool enabled = false;
rv = SSL_CipherPrefGet(ssl_fd.get(), cipher, &enabled);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "Unable to check if suite is enabled: "
<< cipher);
return false;
}
if (enabled) {
rv = SSL_CipherPrefSet(ssl_fd.get(), cipher, PR_FALSE);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_NOTICE,
LAYER_INFO << "Unable to disable suite: " << cipher);
return false;
}
}
}
return true;
}
nsresult TransportLayerDtls::GetCipherSuite(uint16_t* cipherSuite) const {
CheckThread();
if (!cipherSuite) {
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "GetCipherSuite passed a nullptr");
return NS_ERROR_NULL_POINTER;
}
if (state_ != TS_OPEN) {
return NS_ERROR_NOT_AVAILABLE;
}
SSLChannelInfo info;
SECStatus rv = SSL_GetChannelInfo(ssl_fd_.get(), &info, sizeof(info));
if (rv != SECSuccess) {
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "GetCipherSuite can't get channel info");
return NS_ERROR_FAILURE;
}
*cipherSuite = info.cipherSuite;
return NS_OK;
}
std::vector<uint16_t> TransportLayerDtls::GetDefaultSrtpCiphers() {
std::vector<uint16_t> ciphers;
ciphers.push_back(kDtlsSrtpAeadAes128Gcm);
// Since we don't support DTLS 1.3 or SHA384 ciphers (see bug 1312976)
// we don't really enough entropy to prefer this over 128 bit
ciphers.push_back(kDtlsSrtpAeadAes256Gcm);
ciphers.push_back(kDtlsSrtpAes128CmHmacSha1_80);
#ifndef NIGHTLY_BUILD
// To support bug 1491583 lets try to find out if we get bug reports if we no
// longer offer this in Nightly builds.
ciphers.push_back(kDtlsSrtpAes128CmHmacSha1_32);
#endif
return ciphers;
}
void TransportLayerDtls::StateChange(TransportLayer* layer, State state) {
switch (state) {
case TS_NONE:
MOZ_ASSERT(false); // Can't happen
break;
case TS_INIT:
MOZ_MTLOG(ML_ERROR,
LAYER_INFO << "State change of lower layer to INIT forbidden");
TL_SET_STATE(TS_ERROR);
break;
case TS_CONNECTING:
MOZ_MTLOG(ML_INFO, LAYER_INFO << "Lower layer is connecting.");
break;
case TS_OPEN:
if (timer_) {
MOZ_MTLOG(ML_INFO,
LAYER_INFO << "Lower layer is now open; starting TLS");
timer_->Cancel();
timer_->SetTarget(target_);
// Async, since the ICE layer might need to send a STUN response, and we
// don't want the handshake to start until that is sent.
timer_->InitWithNamedFuncCallback(TimerCallback, this, 0,
nsITimer::TYPE_ONE_SHOT,
"TransportLayerDtls::TimerCallback");
TL_SET_STATE(TS_CONNECTING);
} else {
// We have already completed DTLS. Can happen if the ICE layer failed
// due to a loss of network, and then recovered.
TL_SET_STATE(TS_OPEN);
}
break;
case TS_CLOSED:
MOZ_MTLOG(ML_INFO, LAYER_INFO << "Lower layer is now closed");
TL_SET_STATE(TS_CLOSED);
break;
case TS_ERROR:
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "Lower layer experienced an error");
TL_SET_STATE(TS_ERROR);
break;
}
}
void TransportLayerDtls::Handshake() {
if (!timer_) {
// We are done with DTLS, regardless of the state changes of lower layers
return;
}
// Clear the retransmit timer
timer_->Cancel();
MOZ_ASSERT(state_ == TS_CONNECTING);
SECStatus rv = SSL_ForceHandshake(ssl_fd_.get());
if (rv == SECSuccess) {
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "****** SSL handshake completed ******");
if (!cert_ok_) {
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "Certificate check never occurred");
TL_SET_STATE(TS_ERROR);
return;
}
if (!CheckAlpn()) {
// Despite connecting, the connection doesn't have a valid ALPN label.
// Forcibly close the connection so that the peer isn't left hanging
// (assuming the close_notify isn't dropped).
ssl_fd_ = nullptr;
TL_SET_STATE(TS_ERROR);
return;
}
TL_SET_STATE(TS_OPEN);
RecordTlsTelemetry();
timer_ = nullptr;
} else {
int32_t err = PR_GetError();
switch (err) {
case SSL_ERROR_RX_MALFORMED_HANDSHAKE:
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "Malformed DTLS message; ignoring");
// If this were TLS (and not DTLS), this would be fatal, but
// here we're required to ignore bad messages, so fall through
MOZ_FALLTHROUGH;
case PR_WOULD_BLOCK_ERROR:
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "Handshake would have blocked");
PRIntervalTime timeout;
rv = DTLS_GetHandshakeTimeout(ssl_fd_.get(), &timeout);
if (rv == SECSuccess) {
uint32_t timeout_ms = PR_IntervalToMilliseconds(timeout);
MOZ_MTLOG(ML_DEBUG,
LAYER_INFO << "Setting DTLS timeout to " << timeout_ms);
timer_->SetTarget(target_);
timer_->InitWithNamedFuncCallback(
TimerCallback, this, timeout_ms, nsITimer::TYPE_ONE_SHOT,
"TransportLayerDtls::TimerCallback");
}
break;
default:
const char* err_msg = PR_ErrorToName(err);
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "DTLS handshake error " << err << " ("
<< err_msg << ")");
TL_SET_STATE(TS_ERROR);
break;
}
}
}
// Checks if ALPN was negotiated correctly and returns false if it wasn't.
// After this returns successfully, alpn_ will be set to the negotiated
// protocol.
bool TransportLayerDtls::CheckAlpn() {
if (alpn_allowed_.empty()) {
return true;
}
SSLNextProtoState alpnState;
char chosenAlpn[MAX_ALPN_LENGTH];
unsigned int chosenAlpnLen;
SECStatus rv = SSL_GetNextProto(ssl_fd_.get(), &alpnState,
reinterpret_cast<unsigned char*>(chosenAlpn),
&chosenAlpnLen, sizeof(chosenAlpn));
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "ALPN error");
return false;
}
switch (alpnState) {
case SSL_NEXT_PROTO_SELECTED:
case SSL_NEXT_PROTO_NEGOTIATED:
break; // OK
case SSL_NEXT_PROTO_NO_SUPPORT:
MOZ_MTLOG(ML_NOTICE,
LAYER_INFO << "ALPN not negotiated, "
<< (alpn_default_.empty() ? "failing"
: "selecting default"));
alpn_ = alpn_default_;
return !alpn_.empty();
case SSL_NEXT_PROTO_NO_OVERLAP:
// This only happens if there is a custom NPN/ALPN callback installed and
// that callback doesn't properly handle ALPN.
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "error in ALPN selection callback");
return false;
case SSL_NEXT_PROTO_EARLY_VALUE:
MOZ_CRASH("Unexpected 0-RTT ALPN value");
return false;
}
// Warning: NSS won't null terminate the ALPN string for us.
std::string chosen(chosenAlpn, chosenAlpnLen);
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "Selected ALPN string: " << chosen);
if (alpn_allowed_.find(chosen) == alpn_allowed_.end()) {
// Maybe our peer chose a protocol we didn't offer (when we are client), or
// something is seriously wrong.
std::ostringstream ss;
for (auto i = alpn_allowed_.begin(); i != alpn_allowed_.end(); ++i) {
ss << (i == alpn_allowed_.begin() ? " '" : ", '") << *i << "'";
}
MOZ_MTLOG(ML_ERROR, LAYER_INFO << "Bad ALPN string: '" << chosen
<< "'; permitted:" << ss.str());
return false;
}
alpn_ = chosen;
return true;
}
void TransportLayerDtls::PacketReceived(TransportLayer* layer,
MediaPacket& packet) {
CheckThread();
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "PacketReceived(" << packet.len() << ")");
if (state_ != TS_CONNECTING && state_ != TS_OPEN) {
MOZ_MTLOG(ML_DEBUG,
LAYER_INFO << "Discarding packet in inappropriate state");
return;
}
if (!packet.data()) {
// Something ate this, probably the SRTP layer
return;
}
if (packet.type() != MediaPacket::DTLS) {
return;
}
nspr_io_adapter_->PacketReceived(packet);
GetDecryptedPackets();
}
void TransportLayerDtls::GetDecryptedPackets() {
// If we're still connecting, try to handshake
if (state_ == TS_CONNECTING) {
Handshake();
}
// Now try a recv if we're open, since there might be data left
if (state_ == TS_OPEN) {
int32_t rv;
// One packet might contain several DTLS packets
do {
// nICEr uses a 9216 bytes buffer to allow support for jumbo frames
// Can we peek to get a better idea of the actual size?
static const size_t kBufferSize = 9216;
auto buffer = MakeUnique<uint8_t[]>(kBufferSize);
rv = PR_Recv(ssl_fd_.get(), buffer.get(), kBufferSize, 0,
PR_INTERVAL_NO_WAIT);
if (rv > 0) {
// We have data
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "Read " << rv << " bytes from NSS");
MediaPacket packet;
packet.SetType(MediaPacket::SCTP);
packet.Take(std::move(buffer), static_cast<size_t>(rv));
SignalPacketReceived(this, packet);
} else if (rv == 0) {
TL_SET_STATE(TS_CLOSED);
} else {
int32_t err = PR_GetError();
if (err == PR_WOULD_BLOCK_ERROR) {
// This gets ignored
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "Receive would have blocked");
} else {
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "NSS Error " << err);
TL_SET_STATE(TS_ERROR);
}
}
} while (rv > 0);
}
}
void TransportLayerDtls::SetState(State state, const char* file,
unsigned line) {
if (timer_) {
switch (state) {
case TS_NONE:
case TS_INIT:
MOZ_ASSERT(false);
break;
case TS_CONNECTING:
handshake_started_ = TimeStamp::Now();
break;
case TS_OPEN:
case TS_CLOSED:
case TS_ERROR:
timer_->Cancel();
if (state_ == TS_CONNECTING) {
RecordHandshakeCompletionTelemetry(state);
}
break;
}
}
TransportLayer::SetState(state, file, line);
}
TransportResult TransportLayerDtls::SendPacket(MediaPacket& packet) {
CheckThread();
if (state_ != TS_OPEN) {
MOZ_MTLOG(ML_ERROR,
LAYER_INFO << "Can't call SendPacket() in state " << state_);
return TE_ERROR;
}
int32_t rv = PR_Send(ssl_fd_.get(), packet.data(), packet.len(), 0,
PR_INTERVAL_NO_WAIT);
if (rv > 0) {
// We have data
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "Wrote " << rv << " bytes to SSL Layer");
return rv;
}
if (rv == 0) {
TL_SET_STATE(TS_CLOSED);
return 0;
}
int32_t err = PR_GetError();
if (err == PR_WOULD_BLOCK_ERROR) {
// This gets ignored
MOZ_MTLOG(ML_DEBUG, LAYER_INFO << "Send would have blocked");
return TE_WOULDBLOCK;
}
MOZ_MTLOG(ML_NOTICE, LAYER_INFO << "NSS Error " << err);
TL_SET_STATE(TS_ERROR);
return TE_ERROR;
}
SECStatus TransportLayerDtls::GetClientAuthDataHook(
void* arg, PRFileDesc* fd, CERTDistNames* caNames,
CERTCertificate** pRetCert, SECKEYPrivateKey** pRetKey) {
MOZ_MTLOG(ML_DEBUG, "Server requested client auth");
TransportLayerDtls* stream = reinterpret_cast<TransportLayerDtls*>(arg);
stream->CheckThread();
if (!stream->identity_) {
MOZ_MTLOG(ML_ERROR, "No identity available");
PR_SetError(SSL_ERROR_NO_CERTIFICATE, 0);
return SECFailure;
}
*pRetCert = CERT_DupCertificate(stream->identity_->cert().get());
if (!*pRetCert) {
PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0);
return SECFailure;
}
*pRetKey = SECKEY_CopyPrivateKey(stream->identity_->privkey().get());
if (!*pRetKey) {
CERT_DestroyCertificate(*pRetCert);
*pRetCert = nullptr;
PR_SetError(PR_OUT_OF_MEMORY_ERROR, 0);
return SECFailure;
}
return SECSuccess;
}
nsresult TransportLayerDtls::SetSrtpCiphers(
const std::vector<uint16_t>& ciphers) {
enabled_srtp_ciphers_ = std::move(ciphers);
return NS_OK;
}
nsresult TransportLayerDtls::GetSrtpCipher(uint16_t* cipher) const {
CheckThread();
if (srtp_cipher_ == 0) {
return NS_ERROR_NOT_AVAILABLE;
}
*cipher = srtp_cipher_;
return NS_OK;
}
static uint8_t* WriteUint16(uint8_t* cursor, uint16_t v) {
*cursor++ = v >> 8;
*cursor++ = v & 0xff;
return cursor;
}
static SSLHandshakeType SrtpXtnServerMessage(PRFileDesc* fd) {
SSLPreliminaryChannelInfo preinfo;
SECStatus rv = SSL_GetPreliminaryChannelInfo(fd, &preinfo, sizeof(preinfo));
if (rv != SECSuccess) {
MOZ_ASSERT(false, "Can't get version info");
return ssl_hs_client_hello;
}
return (preinfo.protocolVersion >= SSL_LIBRARY_VERSION_TLS_1_3)
? ssl_hs_encrypted_extensions
: ssl_hs_server_hello;
}
/* static */
PRBool TransportLayerDtls::WriteSrtpXtn(PRFileDesc* fd,
SSLHandshakeType message, uint8_t* data,
unsigned int* len, unsigned int max_len,
void* arg) {
auto self = reinterpret_cast<TransportLayerDtls*>(arg);
// ClientHello: send all supported versions.
if (message == ssl_hs_client_hello) {
MOZ_ASSERT(self->role_ == CLIENT);
MOZ_ASSERT(self->enabled_srtp_ciphers_.size(), "Haven't enabled SRTP");
// We will take 2 octets for each cipher, plus a 2 octet length and 1 octet
// for the length of the empty MKI.
if (max_len < self->enabled_srtp_ciphers_.size() * 2 + 3) {
MOZ_ASSERT(false, "Not enough space to send SRTP extension");
return false;
}
uint8_t* cursor = WriteUint16(data, self->enabled_srtp_ciphers_.size() * 2);
for (auto cs : self->enabled_srtp_ciphers_) {
cursor = WriteUint16(cursor, cs);
}
*cursor++ = 0; // MKI is empty
*len = cursor - data;
return true;
}
if (message == SrtpXtnServerMessage(fd)) {
MOZ_ASSERT(self->role_ == SERVER);
if (!self->srtp_cipher_) {
// Not negotiated. Definitely bad, but the connection can fail later.
return false;
}
if (max_len < 5) {
MOZ_ASSERT(false, "Not enough space to send SRTP extension");
return false;
}
uint8_t* cursor = WriteUint16(data, 2); // Length = 2.
cursor = WriteUint16(cursor, self->srtp_cipher_);
*cursor++ = 0; // No MKI
*len = cursor - data;
return true;
}
return false;
}
class TlsParser {
public:
TlsParser(const uint8_t* data, size_t len) : cursor_(data), remaining_(len) {}
bool error() const { return error_; }
size_t remaining() const { return remaining_; }
template <typename T,
class = typename std::enable_if<std::is_unsigned<T>::value>::type>
void Read(T* v, size_t sz = sizeof(T)) {
MOZ_ASSERT(sz <= sizeof(T),
"Type is too small to hold the value requested");
if (remaining_ < sz) {
error_ = true;
return;
}
T result = 0;
for (size_t i = 0; i < sz; ++i) {
result = (result << 8) | *cursor_++;
remaining_--;
}
*v = result;
}
template <typename T,
class = typename std::enable_if<std::is_unsigned<T>::value>::type>
void ReadVector(std::vector<T>* v, size_t w) {
MOZ_ASSERT(v->empty(), "vector needs to be empty");
uint32_t len;
Read(&len, w);
if (error_ || len % sizeof(T) != 0 || len > remaining_) {
error_ = true;
return;
}
size_t count = len / sizeof(T);
v->reserve(count);
for (T i = 0; !error_ && i < count; ++i) {
T item;
Read(&item);
if (!error_) {
v->push_back(item);
}
}
}
void Skip(size_t n) {
if (remaining_ < n) {
error_ = true;
} else {
cursor_ += n;
remaining_ -= n;
}
}
size_t SkipVector(size_t w) {
uint32_t len = 0;
Read(&len, w);
Skip(len);
return len;
}
private:
const uint8_t* cursor_;
size_t remaining_;
bool error_ = false;
};
/* static */
SECStatus TransportLayerDtls::HandleSrtpXtn(
PRFileDesc* fd, SSLHandshakeType message, const uint8_t* data,
unsigned int len, SSLAlertDescription* alert, void* arg) {
static const uint8_t kTlsAlertHandshakeFailure = 40;
static const uint8_t kTlsAlertIllegalParameter = 47;
static const uint8_t kTlsAlertDecodeError = 50;
static const uint8_t kTlsAlertUnsupportedExtension = 110;
auto self = reinterpret_cast<TransportLayerDtls*>(arg);
// Parse the extension.
TlsParser parser(data, len);
std::vector<uint16_t> advertised;
parser.ReadVector(&advertised, 2);
size_t mki_len = parser.SkipVector(1);
if (parser.error() || parser.remaining() > 0) {
*alert = kTlsAlertDecodeError;
return SECFailure;
}
if (message == ssl_hs_client_hello) {
MOZ_ASSERT(self->role_ == SERVER);
if (self->enabled_srtp_ciphers_.empty()) {
// We don't have SRTP enabled, which is probably bad, but no sense in
// having the handshake fail at this point, let the client decide if this
// is a problem.
return SECSuccess;
}
for (auto supported : self->enabled_srtp_ciphers_) {
auto it = std::find(advertised.begin(), advertised.end(), supported);
if (it != advertised.end()) {
self->srtp_cipher_ = supported;
return SECSuccess;
}
}
// No common cipher.
*alert = kTlsAlertHandshakeFailure;
return SECFailure;
}
if (message == SrtpXtnServerMessage(fd)) {
MOZ_ASSERT(self->role_ == CLIENT);
if (advertised.size() != 1 || mki_len > 0) {
*alert = kTlsAlertIllegalParameter;
return SECFailure;
}
self->srtp_cipher_ = advertised[0];
return SECSuccess;
}
*alert = kTlsAlertUnsupportedExtension;
return SECFailure;
}
nsresult TransportLayerDtls::ExportKeyingMaterial(const std::string& label,
bool use_context,
const std::string& context,
unsigned char* out,
unsigned int outlen) {
CheckThread();
if (state_ != TS_OPEN) {
MOZ_ASSERT(false, "Transport must be open for ExportKeyingMaterial");
return NS_ERROR_NOT_AVAILABLE;
}
SECStatus rv = SSL_ExportKeyingMaterial(
ssl_fd_.get(), label.c_str(), label.size(), use_context,
reinterpret_cast<const unsigned char*>(context.c_str()), context.size(),
out, outlen);
if (rv != SECSuccess) {
MOZ_MTLOG(ML_ERROR, "Couldn't export SSL keying material");
return NS_ERROR_FAILURE;
}
return NS_OK;
}
SECStatus TransportLayerDtls::AuthCertificateHook(void* arg, PRFileDesc* fd,
PRBool checksig,
PRBool isServer) {
TransportLayerDtls* stream = reinterpret_cast<TransportLayerDtls*>(arg);
stream->CheckThread();
return stream->AuthCertificateHook(fd, checksig, isServer);
}
SECStatus TransportLayerDtls::CheckDigest(
const DtlsDigest& digest, UniqueCERTCertificate& peer_cert) const {
DtlsDigest computed_digest(digest.algorithm_);
MOZ_MTLOG(ML_DEBUG,
LAYER_INFO << "Checking digest, algorithm=" << digest.algorithm_);
nsresult res = DtlsIdentity::ComputeFingerprint(peer_cert, &computed_digest);
if (NS_FAILED(res)) {
MOZ_MTLOG(ML_ERROR, "Could not compute peer fingerprint for digest "
<< digest.algorithm_);
// Go to end
PR_SetError(SSL_ERROR_BAD_CERTIFICATE, 0);
return SECFailure;
}
if (computed_digest != digest) {
MOZ_MTLOG(ML_ERROR, "Digest does not match");
PR_SetError(SSL_ERROR_BAD_CERTIFICATE, 0);
return SECFailure;
}
return SECSuccess;
}
SECStatus TransportLayerDtls::AuthCertificateHook(PRFileDesc* fd,
PRBool checksig,
PRBool isServer) {
CheckThread();
UniqueCERTCertificate peer_cert(SSL_PeerCertificate(fd));
// We are not set up to take this being called multiple
// times. Change this if we ever add renegotiation.
MOZ_ASSERT(!auth_hook_called_);
if (auth_hook_called_) {
PR_SetError(PR_UNKNOWN_ERROR, 0);
return SECFailure;
}
auth_hook_called_ = true;
MOZ_ASSERT(verification_mode_ != VERIFY_UNSET);
switch (verification_mode_) {
case VERIFY_UNSET:
// Break out to error exit
PR_SetError(PR_UNKNOWN_ERROR, 0);
break;
case VERIFY_ALLOW_ALL:
cert_ok_ = true;
return SECSuccess;
case VERIFY_DIGEST: {
MOZ_ASSERT(digests_.size() != 0);
// Check all the provided digests
// Checking functions call PR_SetError()
SECStatus rv = SECFailure;
for (auto digest : digests_) {
rv = CheckDigest(digest, peer_cert);
// Matches a digest, we are good to go
if (rv == SECSuccess) {
cert_ok_ = true;
return SECSuccess;
}
}
} break;
default:
MOZ_CRASH(); // Can't happen
}
return SECFailure;
}
void TransportLayerDtls::TimerCallback(nsITimer* timer, void* arg) {
TransportLayerDtls* dtls = reinterpret_cast<TransportLayerDtls*>(arg);
MOZ_MTLOG(ML_DEBUG, "DTLS timer expired");
dtls->Handshake();
}
void TransportLayerDtls::RecordHandshakeCompletionTelemetry(
TransportLayer::State endState) {
int32_t delta = (TimeStamp::Now() - handshake_started_).ToMilliseconds();
switch (endState) {
case TransportLayer::State::TS_OPEN:
if (role_ == TransportLayerDtls::CLIENT) {
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_CLIENT_SUCCESS_TIME,
delta);
} else {
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_SERVER_SUCCESS_TIME,
delta);
}
return;
case TransportLayer::State::TS_ERROR:
if (role_ == TransportLayerDtls::CLIENT) {
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_CLIENT_FAILURE_TIME,
delta);
} else {
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_SERVER_FAILURE_TIME,
delta);
}
return;
case TransportLayer::State::TS_CLOSED:
if (role_ == TransportLayerDtls::CLIENT) {
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_CLIENT_ABORT_TIME, delta);
} else {
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_SERVER_ABORT_TIME, delta);
}
return;
default:
MOZ_ASSERT(false);
}
}
void TransportLayerDtls::RecordTlsTelemetry() {
MOZ_ASSERT(state_ == TS_OPEN);
SSLChannelInfo info;
SECStatus ss = SSL_GetChannelInfo(ssl_fd_.get(), &info, sizeof(info));
if (ss != SECSuccess) {
MOZ_MTLOG(ML_NOTICE,
LAYER_INFO << "RecordTlsTelemetry failed to get channel info");
return;
}
auto protocol_label =
mozilla::Telemetry::LABELS_WEBRTC_DTLS_PROTOCOL_VERSION::Unknown;
switch (info.protocolVersion) {
case SSL_LIBRARY_VERSION_TLS_1_1:
protocol_label =
Telemetry::LABELS_WEBRTC_DTLS_PROTOCOL_VERSION::Dtls_version_1_0;
break;
case SSL_LIBRARY_VERSION_TLS_1_2:
protocol_label =
Telemetry::LABELS_WEBRTC_DTLS_PROTOCOL_VERSION::Dtls_version_1_2;
break;
case SSL_LIBRARY_VERSION_TLS_1_3:
protocol_label =
Telemetry::LABELS_WEBRTC_DTLS_PROTOCOL_VERSION::Dtls_version_1_3;
break;
}
Telemetry::AccumulateCategorical(protocol_label);
uint16_t telemetry_cipher = 0;
switch (info.cipherSuite) {
/* Old DHE ciphers: candidates for removal, see bug 1227519 */
case TLS_DHE_RSA_WITH_AES_128_CBC_SHA:
telemetry_cipher = 1;
break;
case TLS_DHE_RSA_WITH_AES_256_CBC_SHA:
telemetry_cipher = 2;
break;
/* Current ciphers */
case TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA:
telemetry_cipher = 3;
break;
case TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA:
telemetry_cipher = 4;
break;
case TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA:
telemetry_cipher = 5;
break;
case TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA:
telemetry_cipher = 6;
break;
case TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:
telemetry_cipher = 7;
break;
case TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:
telemetry_cipher = 8;
break;
case TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256:
telemetry_cipher = 9;
break;
case TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256:
telemetry_cipher = 10;
break;
/* TLS 1.3 ciphers */
case TLS_AES_128_GCM_SHA256:
telemetry_cipher = 11;
break;
case TLS_CHACHA20_POLY1305_SHA256:
telemetry_cipher = 12;
break;
case TLS_AES_256_GCM_SHA384:
telemetry_cipher = 13;
break;
}
Telemetry::Accumulate(Telemetry::WEBRTC_DTLS_CIPHER, telemetry_cipher);
uint16_t cipher;
nsresult rv = GetSrtpCipher(&cipher);
if (NS_FAILED(rv)) {
MOZ_MTLOG(ML_DEBUG, "No SRTP cipher suite");
return;
}
auto cipher_label = mozilla::Telemetry::LABELS_WEBRTC_SRTP_CIPHER::Unknown;
switch (cipher) {
case kDtlsSrtpAes128CmHmacSha1_80:
cipher_label = Telemetry::LABELS_WEBRTC_SRTP_CIPHER::Aes128CmHmacSha1_80;
break;
case kDtlsSrtpAes128CmHmacSha1_32:
cipher_label = Telemetry::LABELS_WEBRTC_SRTP_CIPHER::Aes128CmHmacSha1_32;
break;
case kDtlsSrtpAeadAes128Gcm:
cipher_label = Telemetry::LABELS_WEBRTC_SRTP_CIPHER::AeadAes128Gcm;
break;
case kDtlsSrtpAeadAes256Gcm:
cipher_label = Telemetry::LABELS_WEBRTC_SRTP_CIPHER::AeadAes256Gcm;
break;
}
Telemetry::AccumulateCategorical(cipher_label);
}
} // namespace mozilla