gecko-dev/third_party/aom/test/fdct8x8_test.cc

739 строки
26 KiB
C++

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/entropy.h"
#include "av1/common/scan.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
using libaom_test::ACMRandom;
namespace {
const int kNumCoeffs = 64;
const double kPi = 3.141592653589793238462643383279502884;
const int kSignBiasMaxDiff255 = 1500;
const int kSignBiasMaxDiff15 = 10000;
typedef void (*FdctFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*IdctFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef void (*FhtFunc)(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param);
typedef void (*IhtFunc)(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param);
typedef std::tr1::tuple<FdctFunc, IdctFunc, TX_TYPE, aom_bit_depth_t>
Dct8x8Param;
typedef std::tr1::tuple<FhtFunc, IhtFunc, TX_TYPE, aom_bit_depth_t> Ht8x8Param;
typedef std::tr1::tuple<IdctFunc, IdctFunc, int, aom_bit_depth_t> Idct8x8Param;
void reference_8x8_dct_1d(const double in[8], double out[8]) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 8; k++) {
out[k] = 0.0;
for (int n = 0; n < 8; n++)
out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 16.0);
if (k == 0) out[k] = out[k] * kInvSqrt2;
}
}
void reference_8x8_dct_2d(const int16_t input[kNumCoeffs],
double output[kNumCoeffs]) {
// First transform columns
for (int i = 0; i < 8; ++i) {
double temp_in[8], temp_out[8];
for (int j = 0; j < 8; ++j) temp_in[j] = input[j * 8 + i];
reference_8x8_dct_1d(temp_in, temp_out);
for (int j = 0; j < 8; ++j) output[j * 8 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 8; ++i) {
double temp_in[8], temp_out[8];
for (int j = 0; j < 8; ++j) temp_in[j] = output[j + i * 8];
reference_8x8_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 8; ++j) output[j + i * 8] = temp_out[j] * 2;
}
}
void fdct8x8_ref(const int16_t *in, tran_low_t *out, int stride,
TxfmParam * /*txfm_param*/) {
aom_fdct8x8_c(in, out, stride);
}
void fht8x8_ref(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fht8x8_c(in, out, stride, txfm_param);
}
#if CONFIG_HIGHBITDEPTH
void fht8x8_10(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fwd_txfm2d_8x8_c(in, out, stride, txfm_param->tx_type, 10);
}
void fht8x8_12(const int16_t *in, tran_low_t *out, int stride,
TxfmParam *txfm_param) {
av1_fwd_txfm2d_8x8_c(in, out, stride, txfm_param->tx_type, 12);
}
void iht8x8_10(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param) {
av1_inv_txfm2d_add_8x8_c(in, CONVERT_TO_SHORTPTR(out), stride,
txfm_param->tx_type, 10);
}
void iht8x8_12(const tran_low_t *in, uint8_t *out, int stride,
const TxfmParam *txfm_param) {
av1_inv_txfm2d_add_8x8_c(in, CONVERT_TO_SHORTPTR(out), stride,
txfm_param->tx_type, 12);
}
#endif // CONFIG_HIGHBITDEPTH
class FwdTrans8x8TestBase {
public:
virtual ~FwdTrans8x8TestBase() {}
protected:
virtual void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) = 0;
virtual void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) = 0;
void RunSignBiasCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED(16, int16_t, test_input_block[64]);
DECLARE_ALIGNED(16, tran_low_t, test_output_block[64]);
int count_sign_block[64][2];
const int count_test_block = 100000;
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = ((rnd.Rand16() >> (16 - bit_depth_)) & mask_) -
((rnd.Rand16() >> (16 - bit_depth_)) & mask_);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = kSignBiasMaxDiff255;
EXPECT_LT(diff, max_diff << (bit_depth_ - 8))
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-255, 255] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1] << " diff: " << diff;
}
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_ / 16, mask_ / 16].
for (int j = 0; j < 64; ++j)
test_input_block[j] =
((rnd.Rand16() & mask_) >> 4) - ((rnd.Rand16() & mask_) >> 4);
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_output_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = kSignBiasMaxDiff15;
EXPECT_LT(diff, max_diff << (bit_depth_ - 8))
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-15, 15] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1] << " diff: " << diff;
}
}
void RunRoundTripErrorCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
const int count_test_block = 100000;
DECLARE_ALIGNED(16, int16_t, test_input_block[64]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]);
DECLARE_ALIGNED(16, uint8_t, dst[64]);
DECLARE_ALIGNED(16, uint8_t, src[64]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[64]);
DECLARE_ALIGNED(16, uint16_t, src16[64]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < 64; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
for (int j = 0; j < 64; ++j) {
if (test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < 64; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const int error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual"
<< " roundtrip error > 1";
EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip "
<< "error > 1/5 per block";
}
void RunExtremalCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
int total_error = 0;
int total_coeff_error = 0;
const int count_test_block = 100000;
DECLARE_ALIGNED(16, int16_t, test_input_block[64]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[64]);
DECLARE_ALIGNED(16, tran_low_t, ref_temp_block[64]);
DECLARE_ALIGNED(16, uint8_t, dst[64]);
DECLARE_ALIGNED(16, uint8_t, src[64]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[64]);
DECLARE_ALIGNED(16, uint16_t, src16[64]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < 64; ++j) {
if (bit_depth_ == AOM_BITS_8) {
if (i == 0) {
src[j] = 255;
dst[j] = 0;
} else if (i == 1) {
src[j] = 0;
dst[j] = 255;
} else {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = rnd.Rand8() % 2 ? 255 : 0;
}
test_input_block[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
if (i == 0) {
src16[j] = mask_;
dst16[j] = 0;
} else if (i == 1) {
src16[j] = 0;
dst16[j] = mask_;
} else {
src16[j] = rnd.Rand8() % 2 ? mask_ : 0;
dst16[j] = rnd.Rand8() % 2 ? mask_ : 0;
}
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(
RunFwdTxfm(test_input_block, test_temp_block, pitch_));
ASM_REGISTER_STATE_CHECK(
fwd_txfm_ref(test_input_block, ref_temp_block, pitch_, &txfm_param_));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(test_temp_block, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(test_temp_block, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < 64; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const int error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
const int coeff_diff = test_temp_block[j] - ref_temp_block[j];
total_coeff_error += abs(coeff_diff);
}
EXPECT_GE(1 << 2 * (bit_depth_ - 8), max_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has"
<< "an individual roundtrip error > 1";
EXPECT_GE((count_test_block << 2 * (bit_depth_ - 8)) / 5, total_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average"
<< " roundtrip error > 1/5 per block";
EXPECT_EQ(0, total_coeff_error)
<< "Error: Extremal 8x8 FDCT/FHT has"
<< "overflow issues in the intermediate steps > 1";
}
}
void RunInvAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = src[j] > 0 ? 0 : 255;
in[j] = src[j] - dst[j];
#if CONFIG_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand8() % 2 ? mask_ : 0;
dst16[j] = src16[j] > 0 ? 0 : mask_;
in[j] = src16[j] - dst16[j];
#endif
}
}
reference_8x8_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
EXPECT_GE(1u << 2 * (bit_depth_ - 8), error)
<< "Error: 8x8 IDCT has error " << error << " at index " << j;
}
}
}
void RunFwdAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff_r[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j)
in[j] = rnd.Rand8() % 2 == 0 ? mask_ : -mask_;
RunFwdTxfm(in, coeff, pitch_);
reference_8x8_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff_r[j] = static_cast<tran_low_t>(round(out_r[j]));
for (int j = 0; j < kNumCoeffs; ++j) {
const int32_t diff = coeff[j] - coeff_r[j];
const uint32_t error = diff * diff;
EXPECT_GE(9u << 2 * (bit_depth_ - 8), error)
<< "Error: 8x8 DCT has error " << error << " at index " << j;
}
}
}
void CompareInvReference(IdctFunc ref_txfm, int thresh) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 10000;
const int eob = 12;
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, ref[kNumCoeffs]);
#if CONFIG_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, ref16[kNumCoeffs]);
#endif
const int16_t *scan = av1_default_scan_orders[TX_8X8].scan;
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j) {
if (j < eob) {
// Random values less than the threshold, either positive or negative
coeff[scan[j]] = rnd(thresh) * (1 - 2 * (i % 2));
} else {
coeff[scan[j]] = 0;
}
if (bit_depth_ == AOM_BITS_8) {
dst[j] = 0;
ref[j] = 0;
#if CONFIG_HIGHBITDEPTH
} else {
dst16[j] = 0;
ref16[j] = 0;
#endif
}
}
if (bit_depth_ == AOM_BITS_8) {
ref_txfm(coeff, ref, pitch_);
ASM_REGISTER_STATE_CHECK(RunInvTxfm(coeff, dst, pitch_));
#if CONFIG_HIGHBITDEPTH
} else {
ref_txfm(coeff, CONVERT_TO_BYTEPTR(ref16), pitch_);
ASM_REGISTER_STATE_CHECK(
RunInvTxfm(coeff, CONVERT_TO_BYTEPTR(dst16), pitch_));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - ref[j] : dst16[j] - ref16[j];
#else
const int diff = dst[j] - ref[j];
#endif
const uint32_t error = diff * diff;
EXPECT_EQ(0u, error)
<< "Error: 8x8 IDCT has error " << error << " at index " << j;
}
}
}
int pitch_;
FhtFunc fwd_txfm_ref;
aom_bit_depth_t bit_depth_;
int mask_;
TxfmParam txfm_param_;
};
class FwdTrans8x8DCT : public FwdTrans8x8TestBase,
public ::testing::TestWithParam<Dct8x8Param> {
public:
virtual ~FwdTrans8x8DCT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
pitch_ = 8;
fwd_txfm_ref = fdct8x8_ref;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
txfm_param_.tx_type = GET_PARAM(2);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
FdctFunc fwd_txfm_;
IdctFunc inv_txfm_;
};
TEST_P(FwdTrans8x8DCT, SignBiasCheck) { RunSignBiasCheck(); }
TEST_P(FwdTrans8x8DCT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); }
TEST_P(FwdTrans8x8DCT, ExtremalCheck) { RunExtremalCheck(); }
TEST_P(FwdTrans8x8DCT, FwdAccuracyCheck) { RunFwdAccuracyCheck(); }
TEST_P(FwdTrans8x8DCT, InvAccuracyCheck) { RunInvAccuracyCheck(); }
class FwdTrans8x8HT : public FwdTrans8x8TestBase,
public ::testing::TestWithParam<Ht8x8Param> {
public:
virtual ~FwdTrans8x8HT() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
pitch_ = 8;
fwd_txfm_ref = fht8x8_ref;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
txfm_param_.tx_type = GET_PARAM(2);
#if CONFIG_HIGHBITDEPTH
switch (bit_depth_) {
case AOM_BITS_10: fwd_txfm_ref = fht8x8_10; break;
case AOM_BITS_12: fwd_txfm_ref = fht8x8_12; break;
default: fwd_txfm_ref = fht8x8_ref; break;
}
#endif
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunFwdTxfm(int16_t *in, tran_low_t *out, int stride) {
fwd_txfm_(in, out, stride, &txfm_param_);
}
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride, &txfm_param_);
}
FhtFunc fwd_txfm_;
IhtFunc inv_txfm_;
};
TEST_P(FwdTrans8x8HT, SignBiasCheck) { RunSignBiasCheck(); }
TEST_P(FwdTrans8x8HT, RoundTripErrorCheck) { RunRoundTripErrorCheck(); }
TEST_P(FwdTrans8x8HT, ExtremalCheck) { RunExtremalCheck(); }
class InvTrans8x8DCT : public FwdTrans8x8TestBase,
public ::testing::TestWithParam<Idct8x8Param> {
public:
virtual ~InvTrans8x8DCT() {}
virtual void SetUp() {
ref_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
thresh_ = GET_PARAM(2);
pitch_ = 8;
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
void RunInvTxfm(tran_low_t *out, uint8_t *dst, int stride) {
inv_txfm_(out, dst, stride);
}
void RunFwdTxfm(int16_t * /*out*/, tran_low_t * /*dst*/, int /*stride*/) {}
IdctFunc ref_txfm_;
IdctFunc inv_txfm_;
int thresh_;
};
TEST_P(InvTrans8x8DCT, CompareReference) {
CompareInvReference(ref_txfm_, thresh_);
}
using std::tr1::make_tuple;
#if CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(C, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_c,
&aom_idct8x8_64_add_c,
DCT_DCT, AOM_BITS_8)));
#else
INSTANTIATE_TEST_CASE_P(C, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_c,
&aom_idct8x8_64_add_c,
DCT_DCT, AOM_BITS_8)));
#endif // CONFIG_HIGHBITDEPTH
#if CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8HT,
::testing::Values(
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, DCT_DCT, AOM_BITS_8),
make_tuple(&fht8x8_10, &iht8x8_10, DCT_DCT, AOM_BITS_10),
make_tuple(&fht8x8_10, &iht8x8_10, ADST_DCT, AOM_BITS_10),
make_tuple(&fht8x8_10, &iht8x8_10, DCT_ADST, AOM_BITS_10),
make_tuple(&fht8x8_10, &iht8x8_10, ADST_ADST, AOM_BITS_10),
make_tuple(&fht8x8_12, &iht8x8_12, DCT_DCT, AOM_BITS_12),
make_tuple(&fht8x8_12, &iht8x8_12, ADST_DCT, AOM_BITS_12),
make_tuple(&fht8x8_12, &iht8x8_12, DCT_ADST, AOM_BITS_12),
make_tuple(&fht8x8_12, &iht8x8_12, ADST_ADST, AOM_BITS_12),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, ADST_ADST,
AOM_BITS_8)));
#else
INSTANTIATE_TEST_CASE_P(
C, FwdTrans8x8HT,
::testing::Values(
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_c, ADST_ADST,
AOM_BITS_8)));
#endif // CONFIG_HIGHBITDEPTH
#if HAVE_NEON_ASM && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(NEON, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_neon,
&aom_idct8x8_64_add_neon,
DCT_DCT, AOM_BITS_8)));
#endif // HAVE_NEON_ASM && !CONFIG_HIGHBITDEPTH
#if HAVE_NEON && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
NEON, FwdTrans8x8HT,
::testing::Values(make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht8x8_c, &av1_iht8x8_64_add_neon,
ADST_ADST, AOM_BITS_8)));
#endif // HAVE_NEON && !CONFIG_HIGHBITDEPTH
#if HAVE_SSE2 && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(SSE2, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_sse2,
&aom_idct8x8_64_add_sse2,
DCT_DCT, AOM_BITS_8)));
#if !CONFIG_DAALA_DCT8
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8HT,
::testing::Values(make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_sse2,
ADST_ADST, AOM_BITS_8)));
#endif // !CONFIG_DAALA_DCT8
#endif // HAVE_SSE2 && !CONFIG_HIGHBITDEPTH
#if HAVE_SSE2 && CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(SSE2, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_sse2,
&aom_idct8x8_64_add_c,
DCT_DCT, AOM_BITS_8)));
#if !CONFIG_DAALA_DCT8
INSTANTIATE_TEST_CASE_P(
SSE2, FwdTrans8x8HT,
::testing::Values(make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht8x8_sse2, &av1_iht8x8_64_add_c,
ADST_ADST, AOM_BITS_8)));
#endif // !CONFIG_DAALA_DCT8
#endif // HAVE_SSE2 && CONFIG_HIGHBITDEPTH
#if HAVE_SSSE3 && ARCH_X86_64
INSTANTIATE_TEST_CASE_P(SSSE3, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_ssse3,
&aom_idct8x8_64_add_ssse3,
DCT_DCT, AOM_BITS_8)));
#endif
#if HAVE_MSA && !CONFIG_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(MSA, FwdTrans8x8DCT,
::testing::Values(make_tuple(&aom_fdct8x8_msa,
&aom_idct8x8_64_add_msa,
DCT_DCT, AOM_BITS_8)));
#if !CONFIG_EXT_TX && !CONFIG_DAALA_DCT8
INSTANTIATE_TEST_CASE_P(
MSA, FwdTrans8x8HT,
::testing::Values(make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa,
DCT_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa,
ADST_DCT, AOM_BITS_8),
make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa,
DCT_ADST, AOM_BITS_8),
make_tuple(&av1_fht8x8_msa, &av1_iht8x8_64_add_msa,
ADST_ADST, AOM_BITS_8)));
#endif // !CONFIG_EXT_TX && !CONFIG_DAALA_DCT8
#endif // HAVE_MSA && !CONFIG_HIGHBITDEPTH
} // namespace