gecko-dev/xpcom/threads/PrioritizedEventQueue.h

141 строка
5.4 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef mozilla_PrioritizedEventQueue_h
#define mozilla_PrioritizedEventQueue_h
#include "mozilla/AbstractEventQueue.h"
#include "mozilla/EventQueue.h"
#include "mozilla/IdlePeriodState.h"
#include "mozilla/TimeStamp.h"
#include "mozilla/UniquePtr.h"
#include "nsCOMPtr.h"
class nsIIdlePeriod;
class nsIRunnable;
namespace mozilla {
namespace ipc {
class IdleSchedulerChild;
}
// This AbstractEventQueue implementation has one queue for each
// EventQueuePriority. The type of queue used for each priority is determined by
// the template parameter.
//
// When an event is pushed, its priority is determined by QIing the runnable to
// nsIRunnablePriority, or by falling back to the aPriority parameter if the QI
// fails.
//
// When an event is popped, a queue is selected based on heuristics that
// optimize for performance. Roughly, events are selected from the highest
// priority queue that is non-empty. However, there are a few exceptions:
// - We try to avoid processing too many high-priority events in a row so
// that the normal priority queue is not starved. When there are high-
// and normal-priority events available, we interleave popping from the
// normal and high queues.
// - We do not select events from the idle queue if the current idle period
// is almost over.
class PrioritizedEventQueue final : public AbstractEventQueue {
public:
static const bool SupportsPrioritization = true;
explicit PrioritizedEventQueue(already_AddRefed<nsIIdlePeriod>&& aIdlePeriod);
virtual ~PrioritizedEventQueue();
void PutEvent(already_AddRefed<nsIRunnable>&& aEvent,
EventQueuePriority aPriority, const MutexAutoLock& aProofOfLock,
mozilla::TimeDuration* aDelay = nullptr) final;
// See PrioritizedEventQueue.cpp for explanation of
// aHypotheticalInputEventDelay
already_AddRefed<nsIRunnable> GetEvent(
EventQueuePriority* aPriority, const MutexAutoLock& aProofOfLock,
TimeDuration* aHypotheticalInputEventDelay = nullptr) final;
// *aIsIdleEvent will be set to true when we are returning a non-null runnable
// which came from one of our idle queues, and will be false otherwise.
already_AddRefed<nsIRunnable> GetEvent(
EventQueuePriority* aPriority, const MutexAutoLock& aProofOfLock,
TimeDuration* aHypotheticalInputEventDelay, bool* aIsIdleEvent);
void DidRunEvent(const MutexAutoLock& aProofOfLock);
bool IsEmpty(const MutexAutoLock& aProofOfLock) final;
size_t Count(const MutexAutoLock& aProofOfLock) const final;
bool HasReadyEvent(const MutexAutoLock& aProofOfLock) final;
bool HasPendingHighPriorityEvents(const MutexAutoLock& aProofOfLock) final;
// When checking the idle deadline, we need to drop whatever mutex protects
// this queue. This method allows that mutex to be stored so that we can drop
// it and reacquire it when checking the idle deadline. The mutex must live at
// least as long as the queue.
void SetMutexRef(Mutex& aMutex) { mMutex = &aMutex; }
void EnableInputEventPrioritization(const MutexAutoLock& aProofOfLock) final;
void FlushInputEventPrioritization(const MutexAutoLock& aProofOfLock) final;
void SuspendInputEventPrioritization(const MutexAutoLock& aProofOfLock) final;
void ResumeInputEventPrioritization(const MutexAutoLock& aProofOfLock) final;
IdlePeriodState* GetIdlePeriodState() { return &mIdlePeriodState; }
bool HasIdleRunnables(const MutexAutoLock& aProofOfLock) const;
size_t SizeOfExcludingThis(
mozilla::MallocSizeOf aMallocSizeOf) const override {
size_t n = 0;
n += mHighQueue->SizeOfIncludingThis(aMallocSizeOf);
n += mInputQueue->SizeOfIncludingThis(aMallocSizeOf);
n += mMediumHighQueue->SizeOfIncludingThis(aMallocSizeOf);
n += mNormalQueue->SizeOfIncludingThis(aMallocSizeOf);
n += mDeferredTimersQueue->SizeOfIncludingThis(aMallocSizeOf);
n += mIdleQueue->SizeOfIncludingThis(aMallocSizeOf);
n += mIdlePeriodState.SizeOfExcludingThis(aMallocSizeOf);
return n;
}
private:
EventQueuePriority SelectQueue(bool aUpdateState,
const MutexAutoLock& aProofOfLock);
void IndirectlyQueueRunnable(already_AddRefed<nsIRunnable>&& aEvent,
EventQueuePriority aPriority,
const MutexAutoLock& aProofOfLock,
mozilla::TimeDuration* aDelay);
UniquePtr<EventQueue> mHighQueue;
UniquePtr<EventQueueSized<32>> mInputQueue;
UniquePtr<EventQueue> mMediumHighQueue;
UniquePtr<EventQueueSized<64>> mNormalQueue;
UniquePtr<EventQueue> mDeferredTimersQueue;
UniquePtr<EventQueue> mIdleQueue;
// We need to drop the queue mutex when checking the idle deadline, so we keep
// a pointer to it here.
Mutex* mMutex = nullptr;
TimeDuration mLastEventDelay;
TimeStamp mLastEventStart;
TimeStamp mInputHandlingStartTime;
enum InputEventQueueState {
STATE_DISABLED,
STATE_FLUSHING,
STATE_SUSPEND,
STATE_ENABLED
};
InputEventQueueState mInputQueueState = STATE_DISABLED;
// Tracking of our idle state of various sorts.
IdlePeriodState mIdlePeriodState;
};
} // namespace mozilla
#endif // mozilla_PrioritizedEventQueue_h