gecko-dev/gfx/2d/DrawTargetSkia.cpp

1928 строки
60 KiB
C++

/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "DrawTargetSkia.h"
#include "SourceSurfaceSkia.h"
#include "ScaledFontBase.h"
#include "ScaledFontCairo.h"
#include "skia/include/core/SkBitmapDevice.h"
#include "FilterNodeSoftware.h"
#include "HelpersSkia.h"
#include "skia/include/core/SkSurface.h"
#include "skia/include/core/SkTypeface.h"
#include "skia/include/effects/SkGradientShader.h"
#include "skia/include/core/SkColorFilter.h"
#include "skia/include/effects/SkBlurImageFilter.h"
#include "skia/include/effects/SkLayerRasterizer.h"
#include "Blur.h"
#include "Logging.h"
#include "Tools.h"
#include "DataSurfaceHelpers.h"
#include <algorithm>
#ifdef USE_SKIA_GPU
#include "GLDefs.h"
#include "skia/include/gpu/SkGr.h"
#include "skia/include/gpu/GrContext.h"
#include "skia/include/gpu/gl/GrGLInterface.h"
#endif
#ifdef MOZ_WIDGET_COCOA
#include "BorrowedContext.h"
#include <ApplicationServices/ApplicationServices.h>
#include "mozilla/Vector.h"
#include "ScaledFontMac.h"
#include "DrawTargetCG.h"
#include "CGTextDrawing.h"
#endif
namespace mozilla {
namespace gfx {
class GradientStopsSkia : public GradientStops
{
public:
MOZ_DECLARE_REFCOUNTED_VIRTUAL_TYPENAME(GradientStopsSkia)
GradientStopsSkia(const std::vector<GradientStop>& aStops, uint32_t aNumStops, ExtendMode aExtendMode)
: mCount(aNumStops)
, mExtendMode(aExtendMode)
{
if (mCount == 0) {
return;
}
// Skia gradients always require a stop at 0.0 and 1.0, insert these if
// we don't have them.
uint32_t shift = 0;
if (aStops[0].offset != 0) {
mCount++;
shift = 1;
}
if (aStops[aNumStops-1].offset != 1) {
mCount++;
}
mColors.resize(mCount);
mPositions.resize(mCount);
if (aStops[0].offset != 0) {
mColors[0] = ColorToSkColor(aStops[0].color, 1.0);
mPositions[0] = 0;
}
for (uint32_t i = 0; i < aNumStops; i++) {
mColors[i + shift] = ColorToSkColor(aStops[i].color, 1.0);
mPositions[i + shift] = SkFloatToScalar(aStops[i].offset);
}
if (aStops[aNumStops-1].offset != 1) {
mColors[mCount-1] = ColorToSkColor(aStops[aNumStops-1].color, 1.0);
mPositions[mCount-1] = SK_Scalar1;
}
}
BackendType GetBackendType() const { return BackendType::SKIA; }
std::vector<SkColor> mColors;
std::vector<SkScalar> mPositions;
int mCount;
ExtendMode mExtendMode;
};
/**
* When constructing a temporary SkBitmap via GetBitmapForSurface, we may also
* have to construct a temporary DataSourceSurface, which must live as long as
* the SkBitmap. We attach this temporary surface to the bitmap's pixelref, so
* that it can be released once the pixelref is freed.
*/
static void
ReleaseTemporarySurface(void* aPixels, void* aContext)
{
DataSourceSurface* surf = static_cast<DataSourceSurface*>(aContext);
if (surf) {
surf->Release();
}
}
static void
WriteRGBXFormat(uint8_t* aData, const IntSize &aSize,
const int32_t aStride, SurfaceFormat aFormat)
{
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return;
}
int height = aSize.height;
int width = aSize.width * 4;
for (int row = 0; row < height; ++row) {
for (int column = 0; column < width; column += 4) {
#ifdef IS_BIG_ENDIAN
aData[column] = 0xFF;
#else
aData[column + 3] = 0xFF;
#endif
}
aData += aStride;
}
return;
}
#ifdef DEBUG
static bool
VerifyRGBXFormat(uint8_t* aData, const IntSize &aSize, const int32_t aStride, SurfaceFormat aFormat)
{
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
// We should've initialized the data to be opaque already
// On debug builds, verify that this is actually true.
int height = aSize.height;
int width = aSize.width * 4;
for (int row = 0; row < height; ++row) {
for (int column = 0; column < width; column += 4) {
#ifdef IS_BIG_ENDIAN
MOZ_ASSERT(aData[column] == 0xFF);
#else
MOZ_ASSERT(aData[column + 3] == 0xFF);
#endif
}
aData += aStride;
}
return true;
}
// Since checking every pixel is expensive, this only checks the four corners and center
// of a surface that their alpha value is 0xFF.
static bool
VerifyRGBXCorners(uint8_t* aData, const IntSize &aSize, const int32_t aStride, SurfaceFormat aFormat)
{
if (aFormat != SurfaceFormat::B8G8R8X8 || aSize.IsEmpty()) {
return true;
}
int height = aSize.height;
int width = aSize.width;
const int pixelSize = 4;
const int strideDiff = aStride - (width * pixelSize);
MOZ_ASSERT(width * pixelSize <= aStride);
#ifdef IS_BIG_ENDIAN
const int alphaOffset = 0;
#else
const int alphaOffset = 3;
#endif
const int topLeft = alphaOffset;
const int topRight = width * pixelSize + alphaOffset - pixelSize;
const int bottomRight = aStride * height - strideDiff + alphaOffset - pixelSize;
const int bottomLeft = aStride * height - aStride + alphaOffset;
// Lastly the center pixel
int middleRowHeight = height / 2;
int middleRowWidth = (width / 2) * pixelSize;
const int middle = aStride * middleRowHeight + middleRowWidth + alphaOffset;
MOZ_ASSERT(aData[topLeft] == 0xFF);
MOZ_ASSERT(aData[topRight] == 0xFF);
MOZ_ASSERT(aData[bottomRight] == 0xFF);
MOZ_ASSERT(aData[bottomLeft] == 0xFF);
MOZ_ASSERT(aData[middle] == 0xFF);
return true;
}
#endif
static SkBitmap
GetBitmapForSurface(SourceSurface* aSurface)
{
SkBitmap bitmap;
if (!aSurface) {
gfxDebug() << "Creating empty Skia bitmap from null SourceSurface";
return bitmap;
}
if (aSurface->GetType() == SurfaceType::SKIA) {
bitmap = static_cast<SourceSurfaceSkia*>(aSurface)->GetBitmap();
return bitmap;
}
DataSourceSurface* surf = aSurface->GetDataSurface().take();
if (!surf) {
gfxDevCrash(LogReason::SourceSurfaceIncompatible) << "Non-Skia SourceSurfaces need to be DataSourceSurfaces";
return bitmap;
}
if (!bitmap.installPixels(MakeSkiaImageInfo(surf->GetSize(), surf->GetFormat()),
surf->GetData(), surf->Stride(), nullptr,
ReleaseTemporarySurface, surf)) {
gfxDebug() << "Failed installing pixels on Skia bitmap for temporary surface";
}
// Skia doesn't support RGBX surfaces so ensure that the alpha value is opaque white.
MOZ_ASSERT(VerifyRGBXCorners(surf->GetData(), surf->GetSize(),
surf->Stride(), surf->GetFormat()));
return bitmap;
}
DrawTargetSkia::DrawTargetSkia()
: mSnapshot(nullptr)
#ifdef MOZ_WIDGET_COCOA
, mCG(nullptr)
, mColorSpace(nullptr)
, mCanvasData(nullptr)
, mCGSize(0, 0)
#endif
{
}
DrawTargetSkia::~DrawTargetSkia()
{
#ifdef MOZ_WIDGET_COCOA
if (mCG) {
CGContextRelease(mCG);
mCG = nullptr;
}
if (mColorSpace) {
CGColorSpaceRelease(mColorSpace);
mColorSpace = nullptr;
}
#endif
}
already_AddRefed<SourceSurface>
DrawTargetSkia::Snapshot()
{
RefPtr<SourceSurfaceSkia> snapshot = mSnapshot;
if (!snapshot) {
snapshot = new SourceSurfaceSkia();
mSnapshot = snapshot;
if (!snapshot->InitFromCanvas(mCanvas.get(), mFormat, this))
return nullptr;
}
return snapshot.forget();
}
bool
DrawTargetSkia::LockBits(uint8_t** aData, IntSize* aSize,
int32_t* aStride, SurfaceFormat* aFormat,
IntPoint* aOrigin)
{
// Ensure the layer is at the origin if required.
SkIPoint origin = mCanvas->getTopDevice()->getOrigin();
if (!aOrigin && !origin.isZero()) {
return false;
}
/* Test if the canvas' device has accessible pixels first, as actually
* accessing the pixels may trigger side-effects, even if it fails.
*/
if (!mCanvas->peekPixels(nullptr)) {
return false;
}
SkImageInfo info;
size_t rowBytes;
void* pixels = mCanvas->accessTopLayerPixels(&info, &rowBytes);
if (!pixels) {
return false;
}
MarkChanged();
*aData = reinterpret_cast<uint8_t*>(pixels);
*aSize = IntSize(info.width(), info.height());
*aStride = int32_t(rowBytes);
*aFormat = SkiaColorTypeToGfxFormat(info.colorType(), info.alphaType());
if (aOrigin) {
*aOrigin = IntPoint(origin.x(), origin.y());
}
return true;
}
void
DrawTargetSkia::ReleaseBits(uint8_t* aData)
{
}
static void
SetPaintPattern(SkPaint& aPaint, const Pattern& aPattern, Float aAlpha = 1.0)
{
switch (aPattern.GetType()) {
case PatternType::COLOR: {
Color color = static_cast<const ColorPattern&>(aPattern).mColor;
aPaint.setColor(ColorToSkColor(color, aAlpha));
break;
}
case PatternType::LINEAR_GRADIENT: {
const LinearGradientPattern& pat = static_cast<const LinearGradientPattern&>(aPattern);
GradientStopsSkia *stops = static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 ||
!pat.mBegin.IsFinite() || !pat.mEnd.IsFinite()) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkShader::TileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mBegin.x), SkFloatToScalar(pat.mBegin.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mEnd.x), SkFloatToScalar(pat.mEnd.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
sk_sp<SkShader> shader = SkGradientShader::MakeLinear(points,
&stops->mColors.front(),
&stops->mPositions.front(),
stops->mCount,
mode, 0, &mat);
aPaint.setShader(shader);
}
break;
}
case PatternType::RADIAL_GRADIENT: {
const RadialGradientPattern& pat = static_cast<const RadialGradientPattern&>(aPattern);
GradientStopsSkia *stops = static_cast<GradientStopsSkia*>(pat.mStops.get());
if (!stops || stops->mCount < 2 ||
!pat.mCenter1.IsFinite() || !IsFinite(pat.mRadius1) ||
!pat.mCenter2.IsFinite() || !IsFinite(pat.mRadius2)) {
aPaint.setColor(SK_ColorTRANSPARENT);
} else {
SkShader::TileMode mode = ExtendModeToTileMode(stops->mExtendMode, Axis::BOTH);
SkPoint points[2];
points[0] = SkPoint::Make(SkFloatToScalar(pat.mCenter1.x), SkFloatToScalar(pat.mCenter1.y));
points[1] = SkPoint::Make(SkFloatToScalar(pat.mCenter2.x), SkFloatToScalar(pat.mCenter2.y));
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
sk_sp<SkShader> shader = SkGradientShader::MakeTwoPointConical(points[0],
SkFloatToScalar(pat.mRadius1),
points[1],
SkFloatToScalar(pat.mRadius2),
&stops->mColors.front(),
&stops->mPositions.front(),
stops->mCount,
mode, 0, &mat);
aPaint.setShader(shader);
}
break;
}
case PatternType::SURFACE: {
const SurfacePattern& pat = static_cast<const SurfacePattern&>(aPattern);
SkBitmap bitmap = GetBitmapForSurface(pat.mSurface);
SkMatrix mat;
GfxMatrixToSkiaMatrix(pat.mMatrix, mat);
if (!pat.mSamplingRect.IsEmpty()) {
SkIRect rect = IntRectToSkIRect(pat.mSamplingRect);
bitmap.extractSubset(&bitmap, rect);
mat.preTranslate(rect.x(), rect.y());
}
SkShader::TileMode xTileMode = ExtendModeToTileMode(pat.mExtendMode, Axis::X_AXIS);
SkShader::TileMode yTileMode = ExtendModeToTileMode(pat.mExtendMode, Axis::Y_AXIS);
sk_sp<SkShader> shader = SkShader::MakeBitmapShader(bitmap, xTileMode, yTileMode, &mat);
aPaint.setShader(shader);
if (pat.mSamplingFilter == SamplingFilter::POINT) {
aPaint.setFilterQuality(kNone_SkFilterQuality);
}
break;
}
}
}
static inline Rect
GetClipBounds(SkCanvas *aCanvas)
{
SkRect clipBounds;
if (!aCanvas->getClipBounds(&clipBounds)) {
return Rect();
}
return SkRectToRect(clipBounds);
}
struct AutoPaintSetup {
AutoPaintSetup(SkCanvas *aCanvas, const DrawOptions& aOptions, const Pattern& aPattern, const Rect* aMaskBounds = nullptr)
: mNeedsRestore(false), mAlpha(1.0)
{
Init(aCanvas, aOptions, aMaskBounds);
SetPaintPattern(mPaint, aPattern, mAlpha);
}
AutoPaintSetup(SkCanvas *aCanvas, const DrawOptions& aOptions, const Rect* aMaskBounds = nullptr)
: mNeedsRestore(false), mAlpha(1.0)
{
Init(aCanvas, aOptions, aMaskBounds);
}
~AutoPaintSetup()
{
if (mNeedsRestore) {
mCanvas->restore();
}
}
void Init(SkCanvas *aCanvas, const DrawOptions& aOptions, const Rect* aMaskBounds)
{
mPaint.setXfermodeMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
mCanvas = aCanvas;
//TODO: Can we set greyscale somehow?
if (aOptions.mAntialiasMode != AntialiasMode::NONE) {
mPaint.setAntiAlias(true);
} else {
mPaint.setAntiAlias(false);
}
bool needsGroup = !IsOperatorBoundByMask(aOptions.mCompositionOp) &&
(!aMaskBounds || !aMaskBounds->Contains(GetClipBounds(aCanvas)));
// TODO: We could skip the temporary for operator_source and just
// clear the clip rect. The other operators would be harder
// but could be worth it to skip pushing a group.
if (needsGroup) {
mPaint.setXfermodeMode(SkXfermode::kSrcOver_Mode);
SkPaint temp;
temp.setXfermodeMode(GfxOpToSkiaOp(aOptions.mCompositionOp));
temp.setAlpha(ColorFloatToByte(aOptions.mAlpha));
//TODO: Get a rect here
mCanvas->saveLayer(nullptr, &temp);
mNeedsRestore = true;
} else {
mPaint.setAlpha(ColorFloatToByte(aOptions.mAlpha));
mAlpha = aOptions.mAlpha;
}
mPaint.setFilterQuality(kLow_SkFilterQuality);
}
// TODO: Maybe add an operator overload to access this easier?
SkPaint mPaint;
bool mNeedsRestore;
SkCanvas* mCanvas;
Float mAlpha;
};
void
DrawTargetSkia::Flush()
{
mCanvas->flush();
}
void
DrawTargetSkia::DrawSurface(SourceSurface *aSurface,
const Rect &aDest,
const Rect &aSource,
const DrawSurfaceOptions &aSurfOptions,
const DrawOptions &aOptions)
{
RefPtr<SourceSurface> dataSurface;
if (!(aSurface->GetType() == SurfaceType::SKIA || aSurface->GetType() == SurfaceType::DATA)) {
dataSurface = aSurface->GetDataSurface();
if (!dataSurface) {
gfxDebug() << *this << ": DrawSurface() can't draw surface";
return;
}
aSurface = dataSurface.get();
}
if (aSource.IsEmpty()) {
return;
}
MarkChanged();
SkRect destRect = RectToSkRect(aDest);
SkRect sourceRect = RectToSkRect(aSource);
SkBitmap bitmap = GetBitmapForSurface(aSurface);
AutoPaintSetup paint(mCanvas.get(), aOptions, &aDest);
if (aSurfOptions.mSamplingFilter == SamplingFilter::POINT) {
paint.mPaint.setFilterQuality(kNone_SkFilterQuality);
}
mCanvas->drawBitmapRect(bitmap, sourceRect, destRect, &paint.mPaint);
}
DrawTargetType
DrawTargetSkia::GetType() const
{
#ifdef USE_SKIA_GPU
if (mGrContext) {
return DrawTargetType::HARDWARE_RASTER;
}
#endif
return DrawTargetType::SOFTWARE_RASTER;
}
void
DrawTargetSkia::DrawFilter(FilterNode *aNode,
const Rect &aSourceRect,
const Point &aDestPoint,
const DrawOptions &aOptions)
{
FilterNodeSoftware* filter = static_cast<FilterNodeSoftware*>(aNode);
filter->Draw(this, aSourceRect, aDestPoint, aOptions);
}
void
DrawTargetSkia::DrawSurfaceWithShadow(SourceSurface *aSurface,
const Point &aDest,
const Color &aColor,
const Point &aOffset,
Float aSigma,
CompositionOp aOperator)
{
if (!(aSurface->GetType() == SurfaceType::SKIA || aSurface->GetType() == SurfaceType::DATA) ||
aSurface->GetSize().IsEmpty()) {
return;
}
MarkChanged();
mCanvas->save();
mCanvas->resetMatrix();
SkBitmap bitmap = GetBitmapForSurface(aSurface);
SkPaint paint;
paint.setXfermodeMode(GfxOpToSkiaOp(aOperator));
// bug 1201272
// We can't use the SkDropShadowImageFilter here because it applies the xfer
// mode first to render the bitmap to a temporary layer, and then implicitly
// uses src-over to composite the resulting shadow.
// The canvas spec, however, states that the composite op must be used to
// composite the resulting shadow, so we must instead use a SkBlurImageFilter
// to blur the image ourselves.
SkPaint shadowPaint;
shadowPaint.setXfermodeMode(GfxOpToSkiaOp(aOperator));
auto shadowDest = IntPoint::Round(aDest + aOffset);
SkBitmap blurMask;
if (!UsingSkiaGPU() &&
bitmap.extractAlpha(&blurMask)) {
// Prefer using our own box blur instead of Skia's when we're
// not using the GPU. It currently performs much better than
// SkBlurImageFilter or SkBlurMaskFilter on the CPU.
AlphaBoxBlur blur(Rect(0, 0, blurMask.width(), blurMask.height()),
int32_t(blurMask.rowBytes()),
aSigma, aSigma);
blurMask.lockPixels();
blur.Blur(reinterpret_cast<uint8_t*>(blurMask.getPixels()));
blurMask.unlockPixels();
blurMask.notifyPixelsChanged();
shadowPaint.setColor(ColorToSkColor(aColor, 1.0f));
mCanvas->drawBitmap(blurMask, shadowDest.x, shadowDest.y, &shadowPaint);
} else {
sk_sp<SkImageFilter> blurFilter(SkBlurImageFilter::Make(aSigma, aSigma, nullptr));
sk_sp<SkColorFilter> colorFilter(
SkColorFilter::MakeModeFilter(ColorToSkColor(aColor, 1.0f), SkXfermode::kSrcIn_Mode));
shadowPaint.setImageFilter(blurFilter);
shadowPaint.setColorFilter(colorFilter);
mCanvas->drawBitmap(bitmap, shadowDest.x, shadowDest.y, &shadowPaint);
}
// Composite the original image after the shadow
auto dest = IntPoint::Round(aDest);
mCanvas->drawBitmap(bitmap, dest.x, dest.y, &paint);
mCanvas->restore();
}
void
DrawTargetSkia::FillRect(const Rect &aRect,
const Pattern &aPattern,
const DrawOptions &aOptions)
{
MarkChanged();
SkRect rect = RectToSkRect(aRect);
AutoPaintSetup paint(mCanvas.get(), aOptions, aPattern, &aRect);
mCanvas->drawRect(rect, paint.mPaint);
}
void
DrawTargetSkia::Stroke(const Path *aPath,
const Pattern &aPattern,
const StrokeOptions &aStrokeOptions,
const DrawOptions &aOptions)
{
MarkChanged();
MOZ_ASSERT(aPath, "Null path");
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia *skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas.get(), aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
void
DrawTargetSkia::StrokeRect(const Rect &aRect,
const Pattern &aPattern,
const StrokeOptions &aStrokeOptions,
const DrawOptions &aOptions)
{
MarkChanged();
AutoPaintSetup paint(mCanvas.get(), aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawRect(RectToSkRect(aRect), paint.mPaint);
}
void
DrawTargetSkia::StrokeLine(const Point &aStart,
const Point &aEnd,
const Pattern &aPattern,
const StrokeOptions &aStrokeOptions,
const DrawOptions &aOptions)
{
MarkChanged();
AutoPaintSetup paint(mCanvas.get(), aOptions, aPattern);
if (!StrokeOptionsToPaint(paint.mPaint, aStrokeOptions)) {
return;
}
mCanvas->drawLine(SkFloatToScalar(aStart.x), SkFloatToScalar(aStart.y),
SkFloatToScalar(aEnd.x), SkFloatToScalar(aEnd.y),
paint.mPaint);
}
void
DrawTargetSkia::Fill(const Path *aPath,
const Pattern &aPattern,
const DrawOptions &aOptions)
{
MarkChanged();
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia *skiaPath = static_cast<const PathSkia*>(aPath);
AutoPaintSetup paint(mCanvas.get(), aOptions, aPattern);
if (!skiaPath->GetPath().isFinite()) {
return;
}
mCanvas->drawPath(skiaPath->GetPath(), paint.mPaint);
}
bool
DrawTargetSkia::ShouldLCDRenderText(FontType aFontType, AntialiasMode aAntialiasMode)
{
// For non-opaque surfaces, only allow subpixel AA if explicitly permitted.
if (!IsOpaque(mFormat) && !mPermitSubpixelAA) {
return false;
}
if (aAntialiasMode == AntialiasMode::DEFAULT) {
switch (aFontType) {
case FontType::MAC:
case FontType::GDI:
case FontType::DWRITE:
case FontType::FONTCONFIG:
return true;
default:
// TODO: Figure out what to do for the other platforms.
return false;
}
}
return (aAntialiasMode == AntialiasMode::SUBPIXEL);
}
#ifdef MOZ_WIDGET_COCOA
class CGClipApply : public SkCanvas::ClipVisitor {
public:
explicit CGClipApply(CGContextRef aCGContext)
: mCG(aCGContext) {}
void clipRect(const SkRect& aRect, SkRegion::Op op, bool antialias) override {
CGRect rect = CGRectMake(aRect.x(), aRect.y(), aRect.width(), aRect.height());
CGContextClipToRect(mCG, rect);
}
void clipRRect(const SkRRect& rrect, SkRegion::Op op, bool antialias) override {
SkPath path;
path.addRRect(rrect);
clipPath(path, op, antialias);
}
void clipPath(const SkPath& aPath, SkRegion::Op, bool antialias) override {
SkPath::Iter iter(aPath, true);
SkPoint source[4];
SkPath::Verb verb;
RefPtr<PathBuilderCG> pathBuilder =
new PathBuilderCG(GetFillRule(aPath.getFillType()));
while ((verb = iter.next(source)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
{
SkPoint dest = source[0];
pathBuilder->MoveTo(Point(dest.fX, dest.fY));
break;
}
case SkPath::kLine_Verb:
{
// The first point should be the end point of whatever
// verb we got to get here.
SkPoint second = source[1];
pathBuilder->LineTo(Point(second.fX, second.fY));
break;
}
case SkPath::kQuad_Verb:
{
SkPoint second = source[1];
SkPoint third = source[2];
pathBuilder->QuadraticBezierTo(Point(second.fX, second.fY),
Point(third.fX, third.fY));
break;
}
case SkPath::kCubic_Verb:
{
SkPoint second = source[1];
SkPoint third = source[2];
SkPoint fourth = source[2];
pathBuilder->BezierTo(Point(second.fX, second.fY),
Point(third.fX, third.fY),
Point(fourth.fX, fourth.fY));
break;
}
case SkPath::kClose_Verb:
{
pathBuilder->Close();
break;
}
default:
{
SkDEBUGFAIL("unknown verb");
break;
}
} // end switch
} // end while
RefPtr<Path> path = pathBuilder->Finish();
PathCG* cgPath = static_cast<PathCG*>(path.get());
// Weirdly, CoreGraphics clips empty paths as all shown
// but empty rects as all clipped. We detect this situation and
// workaround it appropriately
if (CGPathIsEmpty(cgPath->GetPath())) {
CGContextClipToRect(mCG, CGRectZero);
return;
}
CGContextBeginPath(mCG);
CGContextAddPath(mCG, cgPath->GetPath());
if (cgPath->GetFillRule() == FillRule::FILL_EVEN_ODD) {
CGContextEOClip(mCG);
} else {
CGContextClip(mCG);
}
}
private:
CGContextRef mCG;
};
/***
* We have to do a lot of work to draw glyphs with CG because
* CG assumes that the origin of rects are in the bottom left
* while every other DrawTarget assumes the top left is the origin.
* This means we have to transform the CGContext to have rects
* actually be applied in top left fashion. We do this by:
*
* 1) Translating the context up by the height of the canvas
* 2) Flipping the context by the Y axis so it's upside down.
*
* These two transforms put the origin in the top left.
* Transforms are better understood thinking about them from right to left order (mathematically).
*
* Consider a point we want to draw at (0, 10) in normal cartesian planes with
* a box of (100, 100). in CG terms, this would be at (0, 10).
* Positive Y values point up.
* In our DrawTarget terms, positive Y values point down, so (0, 10) would be
* at (0, 90) in cartesian plane terms. That means our point at (0, 10) in DrawTarget
* terms should end up at (0, 90). How does this work with the current transforms?
*
* Going right to left with the transforms, a CGPoint of (0, 10) has cartesian coordinates
* of (0, 10). The first flip of the Y axis puts the point now at (0, -10);
* Next, we translate the context up by the size of the canvas (Positive Y values go up in CG
* coordinates but down in our draw target coordinates). Since our canvas size is (100, 100),
* the resulting coordinate becomes (0, 90), which is what we expect from our DrawTarget code.
* These two transforms put the CG context equal to what every other DrawTarget expects.
*
* Next, we need two more transforms for actual text. IF we left the transforms as is,
* the text would be drawn upside down, so we need another flip of the Y axis
* to draw the text right side up. However, with only the flip, the text would be drawn
* in the wrong place. Thus we also have to invert the Y position of the glyphs to get them
* in the right place.
*
* Thus we have the following transforms:
* 1) Translation of the context up
* 2) Flipping the context around the Y axis
* 3) Flipping the context around the Y axis
* 4) Inverting the Y position of each glyph
*
* We cannot cancel out (2) and (3) as we have to apply the clips and transforms
* of DrawTargetSkia between (2) and (3).
*
* Consider the example letter P, drawn at (0, 20) in CG coordinates in a (100, 100) rect.
* Again, going right to left of the transforms. We'd get:
*
* 1) The letter P drawn at (0, -20) due to the inversion of the Y axis
* 2) The letter P upside down (b) at (0, 20) due to the second flip
* 3) The letter P right side up at (0, -20) due to the first flip
* 4) The letter P right side up at (0, 80) due to the translation
*
* tl;dr - CGRects assume origin is bottom left, DrawTarget rects assume top left.
*/
static bool
SetupCGContext(DrawTargetSkia* aDT,
CGContextRef aCGContext,
RefPtrSkia<SkCanvas> aCanvas)
{
// DrawTarget expects the origin to be at the top left, but CG
// expects it to be at the bottom left. Transform to set the origin to
// the top left. Have to set this before we do anything else.
// This is transform (1) up top
CGContextTranslateCTM(aCGContext, 0, aDT->GetSize().height);
// Transform (2) from the comments.
CGContextScaleCTM(aCGContext, 1, -1);
// Want to apply clips BEFORE the transform since the transform
// will apply to the clips we apply.
// CGClipApply applies clips in device space, so it would be a mistake
// to transform these clips.
CGClipApply clipApply(aCGContext);
aCanvas->replayClips(&clipApply);
CGContextConcatCTM(aCGContext, GfxMatrixToCGAffineTransform(aDT->GetTransform()));
return true;
}
static bool
SetupCGGlyphs(CGContextRef aCGContext,
const GlyphBuffer& aBuffer,
Vector<CGGlyph,32>& aGlyphs,
Vector<CGPoint,32>& aPositions)
{
// Flip again so we draw text in right side up. Transform (3) from the top
CGContextScaleCTM(aCGContext, 1, -1);
if (!aGlyphs.resizeUninitialized(aBuffer.mNumGlyphs) ||
!aPositions.resizeUninitialized(aBuffer.mNumGlyphs)) {
gfxDevCrash(LogReason::GlyphAllocFailedCG) << "glyphs/positions allocation failed";
return false;
}
for (unsigned int i = 0; i < aBuffer.mNumGlyphs; i++) {
aGlyphs[i] = aBuffer.mGlyphs[i].mIndex;
// Flip the y coordinates so that text ends up in the right spot after the (3) flip
// Inversion from (4) in the comments.
aPositions[i] = CGPointMake(aBuffer.mGlyphs[i].mPosition.x,
-aBuffer.mGlyphs[i].mPosition.y);
}
return true;
}
// End long comment about transforms. SetupCGContext and SetupCGGlyphs should stay
// next to each other.
// The context returned from this method will have the origin
// in the top left and will hvae applied all the neccessary clips
// and transforms to the CGContext. See the comment above
// SetupCGContext.
CGContextRef
DrawTargetSkia::BorrowCGContext(const DrawOptions &aOptions)
{
int32_t stride;
SurfaceFormat format;
IntSize size;
uint8_t* aSurfaceData = nullptr;
if (!LockBits(&aSurfaceData, &size, &stride, &format)) {
NS_WARNING("Could not lock skia bits to wrap CG around");
return nullptr;
}
if ((aSurfaceData == mCanvasData) && mCG && (mCGSize == size)) {
// If our canvas data still points to the same data,
// we can reuse the CG Context
CGContextSaveGState(mCG);
CGContextSetAlpha(mCG, aOptions.mAlpha);
SetupCGContext(this, mCG, mCanvas);
return mCG;
}
if (!mColorSpace) {
mColorSpace = (format == SurfaceFormat::A8) ?
CGColorSpaceCreateDeviceGray() : CGColorSpaceCreateDeviceRGB();
}
if (mCG) {
// Release the old CG context since it's no longer valid.
CGContextRelease(mCG);
}
mCanvasData = aSurfaceData;
mCGSize = size;
uint32_t bitmapInfo = (format == SurfaceFormat::A8) ?
kCGImageAlphaOnly :
kCGImageAlphaPremultipliedFirst | kCGBitmapByteOrder32Host;
mCG = CGBitmapContextCreateWithData(mCanvasData,
mCGSize.width,
mCGSize.height,
8, /* bits per component */
stride,
mColorSpace,
bitmapInfo,
NULL, /* Callback when released */
NULL);
if (!mCG) {
ReleaseBits(mCanvasData);
NS_WARNING("Could not create bitmap around skia data\n");
return nullptr;
}
CGContextSetAlpha(mCG, aOptions.mAlpha);
CGContextSetShouldAntialias(mCG, aOptions.mAntialiasMode != AntialiasMode::NONE);
CGContextSetShouldSmoothFonts(mCG, true);
CGContextSetTextDrawingMode(mCG, kCGTextFill);
CGContextSaveGState(mCG);
SetupCGContext(this, mCG, mCanvas);
return mCG;
}
void
DrawTargetSkia::ReturnCGContext(CGContextRef aCGContext)
{
MOZ_ASSERT(aCGContext == mCG);
ReleaseBits(mCanvasData);
CGContextRestoreGState(aCGContext);
}
CGContextRef
BorrowedCGContext::BorrowCGContextFromDrawTarget(DrawTarget *aDT)
{
if (aDT->GetBackendType() == BackendType::SKIA) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
return skiaDT->BorrowCGContext(DrawOptions());
} else if (aDT->GetBackendType() == BackendType::COREGRAPHICS) {
DrawTargetCG* cgDT = static_cast<DrawTargetCG*>(aDT);
cgDT->Flush();
cgDT->MarkChanged();
// swap out the context
CGContextRef cg = cgDT->mCg;
if (MOZ2D_ERROR_IF(!cg)) {
return nullptr;
}
cgDT->mCg = nullptr;
// save the state to make it easier for callers to avoid mucking with things
CGContextSaveGState(cg);
return cg;
}
MOZ_ASSERT(false);
return nullptr;
}
void
BorrowedCGContext::ReturnCGContextToDrawTarget(DrawTarget *aDT, CGContextRef cg)
{
if (aDT->GetBackendType() == BackendType::SKIA) {
DrawTargetSkia* skiaDT = static_cast<DrawTargetSkia*>(aDT);
skiaDT->ReturnCGContext(cg);
return;
} else if (aDT->GetBackendType() == BackendType::COREGRAPHICS) {
DrawTargetCG* cgDT = static_cast<DrawTargetCG*>(aDT);
CGContextRestoreGState(cg);
cgDT->mCg = cg;
return;
}
MOZ_ASSERT(false);
}
static void
SetFontColor(CGContextRef aCGContext, CGColorSpaceRef aColorSpace, const Pattern& aPattern)
{
const Color& color = static_cast<const ColorPattern&>(aPattern).mColor;
CGColorRef textColor = ColorToCGColor(aColorSpace, color);
CGContextSetFillColorWithColor(aCGContext, textColor);
CGColorRelease(textColor);
}
/***
* We need this to support subpixel AA text on OS X in two cases:
* text in DrawTargets that are not opaque and text over vibrant backgrounds.
* Skia normally doesn't support subpixel AA text on transparent backgrounds.
* To get around this, we have to wrap the Skia bytes with a CGContext and ask
* CG to draw the text.
* In vibrancy cases, we have to use a private API,
* CGContextSetFontSmoothingBackgroundColor, which sets the expected
* background color the text will draw onto so that CG can render the text
* properly. After that, we have to go back and fixup the pixels
* such that their alpha values are correct.
*/
bool
DrawTargetSkia::FillGlyphsWithCG(ScaledFont *aFont,
const GlyphBuffer &aBuffer,
const Pattern &aPattern,
const DrawOptions &aOptions,
const GlyphRenderingOptions *aRenderingOptions)
{
MOZ_ASSERT(aFont->GetType() == FontType::MAC);
MOZ_ASSERT(aPattern.GetType() == PatternType::COLOR);
CGContextRef cgContext = BorrowCGContext(aOptions);
if (!cgContext) {
return false;
}
Vector<CGGlyph,32> glyphs;
Vector<CGPoint,32> positions;
if (!SetupCGGlyphs(cgContext, aBuffer, glyphs, positions)) {
ReturnCGContext(cgContext);
return false;
}
SetFontSmoothingBackgroundColor(cgContext, mColorSpace, aRenderingOptions);
SetFontColor(cgContext, mColorSpace, aPattern);
ScaledFontMac* macFont = static_cast<ScaledFontMac*>(aFont);
if (ScaledFontMac::CTFontDrawGlyphsPtr != nullptr) {
ScaledFontMac::CTFontDrawGlyphsPtr(macFont->mCTFont, glyphs.begin(),
positions.begin(),
aBuffer.mNumGlyphs, cgContext);
} else {
CGContextSetFont(cgContext, macFont->mFont);
CGContextSetFontSize(cgContext, macFont->mSize);
CGContextShowGlyphsAtPositions(cgContext, glyphs.begin(), positions.begin(),
aBuffer.mNumGlyphs);
}
// Calculate the area of the text we just drew
CGRect *bboxes = new CGRect[aBuffer.mNumGlyphs];
CTFontGetBoundingRectsForGlyphs(macFont->mCTFont, kCTFontDefaultOrientation,
glyphs.begin(), bboxes, aBuffer.mNumGlyphs);
CGRect extents = ComputeGlyphsExtents(bboxes, positions.begin(), aBuffer.mNumGlyphs, 1.0f);
delete[] bboxes;
CGAffineTransform cgTransform = CGContextGetCTM(cgContext);
extents = CGRectApplyAffineTransform(extents, cgTransform);
// Have to round it out to ensure we fully cover all pixels
Rect rect(extents.origin.x, extents.origin.y, extents.size.width, extents.size.height);
rect.RoundOut();
extents = CGRectMake(rect.x, rect.y, rect.width, rect.height);
EnsureValidPremultipliedData(cgContext, extents);
ReturnCGContext(cgContext);
return true;
}
static bool
HasFontSmoothingBackgroundColor(const GlyphRenderingOptions* aRenderingOptions)
{
// This should generally only be true if we have a popup context menu
if (aRenderingOptions && aRenderingOptions->GetType() == FontType::MAC) {
Color fontSmoothingBackgroundColor =
static_cast<const GlyphRenderingOptionsCG*>(aRenderingOptions)->FontSmoothingBackgroundColor();
return fontSmoothingBackgroundColor.a > 0;
}
return false;
}
static bool
ShouldUseCGToFillGlyphs(const GlyphRenderingOptions* aOptions, const Pattern& aPattern)
{
return HasFontSmoothingBackgroundColor(aOptions) &&
aPattern.GetType() == PatternType::COLOR;
}
#endif
void
DrawTargetSkia::FillGlyphs(ScaledFont *aFont,
const GlyphBuffer &aBuffer,
const Pattern &aPattern,
const DrawOptions &aOptions,
const GlyphRenderingOptions *aRenderingOptions)
{
switch (aFont->GetType()) {
case FontType::SKIA:
case FontType::CAIRO:
case FontType::FONTCONFIG:
case FontType::MAC:
case FontType::GDI:
case FontType::DWRITE:
break;
default:
return;
}
MarkChanged();
#ifdef MOZ_WIDGET_COCOA
if (ShouldUseCGToFillGlyphs(aRenderingOptions, aPattern)) {
if (FillGlyphsWithCG(aFont, aBuffer, aPattern, aOptions, aRenderingOptions)) {
return;
}
}
#endif
ScaledFontBase* skiaFont = static_cast<ScaledFontBase*>(aFont);
SkTypeface* typeface = skiaFont->GetSkTypeface();
if (!typeface) {
return;
}
AutoPaintSetup paint(mCanvas.get(), aOptions, aPattern);
paint.mPaint.setTypeface(typeface);
paint.mPaint.setTextSize(SkFloatToScalar(skiaFont->mSize));
paint.mPaint.setTextEncoding(SkPaint::kGlyphID_TextEncoding);
bool shouldLCDRenderText = ShouldLCDRenderText(aFont->GetType(), aOptions.mAntialiasMode);
paint.mPaint.setLCDRenderText(shouldLCDRenderText);
bool useSubpixelText = true;
switch (aFont->GetType()) {
case FontType::SKIA:
case FontType::CAIRO:
case FontType::FONTCONFIG:
// SkFontHost_cairo does not support subpixel text positioning,
// so only enable it for other font hosts.
useSubpixelText = false;
break;
case FontType::MAC:
if (aOptions.mAntialiasMode == AntialiasMode::GRAY) {
// Normally, Skia enables LCD FontSmoothing which creates thicker fonts
// and also enables subpixel AA. CoreGraphics without font smoothing
// explicitly creates thinner fonts and grayscale AA.
// CoreGraphics doesn't support a configuration that produces thicker
// fonts with grayscale AA as LCD Font Smoothing enables or disables both.
// However, Skia supports it by enabling font smoothing (producing subpixel AA)
// and converts it to grayscale AA. Since Skia doesn't support subpixel AA on
// transparent backgrounds, we still want font smoothing for the thicker fonts,
// even if it is grayscale AA.
//
// With explicit Grayscale AA (from -moz-osx-font-smoothing:grayscale),
// we want to have grayscale AA with no smoothing at all. This means
// disabling the LCD font smoothing behaviour.
// To accomplish this we have to explicitly disable hinting,
// and disable LCDRenderText.
paint.mPaint.setHinting(SkPaint::kNo_Hinting);
}
break;
case FontType::GDI:
if (!shouldLCDRenderText) {
// If we have non LCD GDI text, Cairo currently always uses cleartype fonts and
// converts them to grayscale. Force Skia to do the same, otherwise we use
// GDI fonts with the ANTIALIASED_QUALITY which is generally bolder than
// Cleartype fonts.
paint.mPaint.setFlags(paint.mPaint.getFlags() | SkPaint::kGenA8FromLCD_Flag);
}
break;
default:
break;
}
paint.mPaint.setSubpixelText(useSubpixelText);
std::vector<uint16_t> indices;
std::vector<SkPoint> offsets;
indices.resize(aBuffer.mNumGlyphs);
offsets.resize(aBuffer.mNumGlyphs);
for (unsigned int i = 0; i < aBuffer.mNumGlyphs; i++) {
indices[i] = aBuffer.mGlyphs[i].mIndex;
offsets[i].fX = SkFloatToScalar(aBuffer.mGlyphs[i].mPosition.x);
offsets[i].fY = SkFloatToScalar(aBuffer.mGlyphs[i].mPosition.y);
}
mCanvas->drawPosText(&indices.front(), aBuffer.mNumGlyphs*2, &offsets.front(), paint.mPaint);
}
void
DrawTargetSkia::Mask(const Pattern &aSource,
const Pattern &aMask,
const DrawOptions &aOptions)
{
MarkChanged();
AutoPaintSetup paint(mCanvas.get(), aOptions, aSource);
SkPaint maskPaint;
SetPaintPattern(maskPaint, aMask);
SkLayerRasterizer::Builder builder;
builder.addLayer(maskPaint);
sk_sp<SkLayerRasterizer> raster(builder.detach());
paint.mPaint.setRasterizer(raster);
mCanvas->drawPaint(paint.mPaint);
}
void
DrawTargetSkia::MaskSurface(const Pattern &aSource,
SourceSurface *aMask,
Point aOffset,
const DrawOptions &aOptions)
{
MarkChanged();
AutoPaintSetup paint(mCanvas.get(), aOptions, aSource);
SkBitmap bitmap = GetBitmapForSurface(aMask);
if (bitmap.colorType() != kAlpha_8_SkColorType &&
!bitmap.extractAlpha(&bitmap)) {
gfxDebug() << *this << ": MaskSurface() failed to extract alpha for mask";
return;
}
if (aOffset != Point(0, 0) &&
paint.mPaint.getShader()) {
SkMatrix transform;
transform.setTranslate(PointToSkPoint(-aOffset));
sk_sp<SkShader> matrixShader = paint.mPaint.getShader()->makeWithLocalMatrix(transform);
paint.mPaint.setShader(matrixShader);
}
mCanvas->drawBitmap(bitmap, aOffset.x, aOffset.y, &paint.mPaint);
}
bool
DrawTarget::Draw3DTransformedSurface(SourceSurface* aSurface, const Matrix4x4& aMatrix)
{
// Composite the 3D transform with the DT's transform.
Matrix4x4 fullMat = aMatrix * Matrix4x4::From2D(mTransform);
if (fullMat.IsSingular()) {
return false;
}
// Transform the surface bounds and clip to this DT.
IntRect xformBounds =
RoundedOut(
fullMat.TransformAndClipBounds(Rect(Point(0, 0), Size(aSurface->GetSize())),
Rect(Point(0, 0), Size(GetSize()))));
if (xformBounds.IsEmpty()) {
return true;
}
// Offset the matrix by the transformed origin.
fullMat.PostTranslate(-xformBounds.x, -xformBounds.y, 0);
// Read in the source data.
SkBitmap srcBitmap = GetBitmapForSurface(aSurface);
// Set up an intermediate destination surface only the size of the transformed bounds.
// Try to pass through the source's format unmodified in both the BGRA and ARGB cases.
RefPtr<DataSourceSurface> dstSurf =
Factory::CreateDataSourceSurface(xformBounds.Size(),
srcBitmap.alphaType() == kPremul_SkAlphaType ?
aSurface->GetFormat() : SurfaceFormat::A8R8G8B8_UINT32,
true);
if (!dstSurf) {
return false;
}
SkAutoTUnref<SkCanvas> dstCanvas(
SkCanvas::NewRasterDirect(
SkImageInfo::Make(xformBounds.width, xformBounds.height,
srcBitmap.alphaType() == kPremul_SkAlphaType ?
srcBitmap.colorType() : kBGRA_8888_SkColorType,
kPremul_SkAlphaType),
dstSurf->GetData(), dstSurf->Stride()));
if (!dstCanvas) {
return false;
}
// Do the transform.
SkPaint paint;
paint.setAntiAlias(true);
paint.setFilterQuality(kLow_SkFilterQuality);
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
SkMatrix xform;
GfxMatrixToSkiaMatrix(fullMat, xform);
dstCanvas->setMatrix(xform);
dstCanvas->drawBitmap(srcBitmap, 0, 0, &paint);
dstCanvas->flush();
// Temporarily reset the DT's transform, since it has already been composed above.
Matrix origTransform = mTransform;
SetTransform(Matrix());
// Draw the transformed surface within the transformed bounds.
DrawSurface(dstSurf, Rect(xformBounds), Rect(Point(0, 0), Size(xformBounds.Size())));
SetTransform(origTransform);
return true;
}
bool
DrawTargetSkia::Draw3DTransformedSurface(SourceSurface* aSurface, const Matrix4x4& aMatrix)
{
if (aMatrix.IsSingular()) {
return false;
}
MarkChanged();
SkBitmap bitmap = GetBitmapForSurface(aSurface);
mCanvas->save();
SkPaint paint;
paint.setAntiAlias(true);
paint.setFilterQuality(kLow_SkFilterQuality);
SkMatrix xform;
GfxMatrixToSkiaMatrix(aMatrix, xform);
mCanvas->concat(xform);
mCanvas->drawBitmap(bitmap, 0, 0, &paint);
mCanvas->restore();
return true;
}
already_AddRefed<SourceSurface>
DrawTargetSkia::CreateSourceSurfaceFromData(unsigned char *aData,
const IntSize &aSize,
int32_t aStride,
SurfaceFormat aFormat) const
{
RefPtr<SourceSurfaceSkia> newSurf = new SourceSurfaceSkia();
if (!newSurf->InitFromData(aData, aSize, aStride, aFormat)) {
gfxDebug() << *this << ": Failure to create source surface from data. Size: " << aSize;
return nullptr;
}
return newSurf.forget();
}
already_AddRefed<DrawTarget>
DrawTargetSkia::CreateSimilarDrawTarget(const IntSize &aSize, SurfaceFormat aFormat) const
{
RefPtr<DrawTargetSkia> target = new DrawTargetSkia();
#ifdef USE_SKIA_GPU
if (UsingSkiaGPU()) {
// Try to create a GPU draw target first if we're currently using the GPU.
// Mark the DT as cached so that shadow DTs, extracted subrects, and similar can be reused.
if (target->InitWithGrContext(mGrContext.get(), aSize, aFormat, true)) {
return target.forget();
}
// Otherwise, just fall back to a software draw target.
}
#endif
if (!target->Init(aSize, aFormat)) {
return nullptr;
}
return target.forget();
}
bool
DrawTargetSkia::UsingSkiaGPU() const
{
#ifdef USE_SKIA_GPU
return !!mGrContext;
#else
return false;
#endif
}
#ifdef USE_SKIA_GPU
already_AddRefed<SourceSurface>
DrawTargetSkia::OptimizeGPUSourceSurface(SourceSurface *aSurface) const
{
// Check if the underlying SkBitmap already has an associated GrTexture.
if (aSurface->GetType() == SurfaceType::SKIA &&
static_cast<SourceSurfaceSkia*>(aSurface)->GetBitmap().getTexture()) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
SkBitmap bitmap = GetBitmapForSurface(aSurface);
// Upload the SkBitmap to a GrTexture otherwise.
SkAutoTUnref<GrTexture> texture(
GrRefCachedBitmapTexture(mGrContext.get(), bitmap, GrTextureParams::ClampBilerp()));
if (texture) {
// Create a new SourceSurfaceSkia whose SkBitmap contains the GrTexture.
RefPtr<SourceSurfaceSkia> surface = new SourceSurfaceSkia();
if (surface->InitFromGrTexture(texture, aSurface->GetSize(), aSurface->GetFormat())) {
return surface.forget();
}
}
// The data was too big to fit in a GrTexture.
if (aSurface->GetType() == SurfaceType::SKIA) {
// It is already a Skia source surface, so just reuse it as-is.
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
// Wrap it in a Skia source surface so that can do tiled uploads on-demand.
RefPtr<SourceSurfaceSkia> surface = new SourceSurfaceSkia();
surface->InitFromBitmap(bitmap);
return surface.forget();
}
#endif
already_AddRefed<SourceSurface>
DrawTargetSkia::OptimizeSourceSurfaceForUnknownAlpha(SourceSurface *aSurface) const
{
#ifdef USE_SKIA_GPU
if (UsingSkiaGPU()) {
return OptimizeGPUSourceSurface(aSurface);
}
#endif
if (aSurface->GetType() == SurfaceType::SKIA) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
// For plugins, GDI can sometimes just write 0 to the alpha channel
// even for RGBX formats. In this case, we have to manually write
// the alpha channel to make Skia happy with RGBX and in case GDI
// writes some bad data. Luckily, this only happens on plugins.
WriteRGBXFormat(dataSurface->GetData(), dataSurface->GetSize(),
dataSurface->Stride(), dataSurface->GetFormat());
return dataSurface.forget();
}
already_AddRefed<SourceSurface>
DrawTargetSkia::OptimizeSourceSurface(SourceSurface *aSurface) const
{
#ifdef USE_SKIA_GPU
if (UsingSkiaGPU()) {
return OptimizeGPUSourceSurface(aSurface);
}
#endif
if (aSurface->GetType() == SurfaceType::SKIA) {
RefPtr<SourceSurface> surface(aSurface);
return surface.forget();
}
// If we're not using skia-gl then drawing doesn't require any
// uploading, so any data surface is fine. Call GetDataSurface
// to trigger any required readback so that it only happens
// once.
RefPtr<DataSourceSurface> dataSurface = aSurface->GetDataSurface();
MOZ_ASSERT(VerifyRGBXFormat(dataSurface->GetData(), dataSurface->GetSize(),
dataSurface->Stride(), dataSurface->GetFormat()));
return dataSurface.forget();
}
already_AddRefed<SourceSurface>
DrawTargetSkia::CreateSourceSurfaceFromNativeSurface(const NativeSurface &aSurface) const
{
#if USE_SKIA_GPU
if (aSurface.mType == NativeSurfaceType::OPENGL_TEXTURE && UsingSkiaGPU()) {
// Wrap the OpenGL texture id in a Skia texture handle.
GrBackendTextureDesc texDesc;
texDesc.fWidth = aSurface.mSize.width;
texDesc.fHeight = aSurface.mSize.height;
texDesc.fOrigin = kTopLeft_GrSurfaceOrigin;
texDesc.fConfig = GfxFormatToGrConfig(aSurface.mFormat);
GrGLTextureInfo texInfo;
texInfo.fTarget = LOCAL_GL_TEXTURE_2D;
texInfo.fID = (GrGLuint)(uintptr_t)aSurface.mSurface;
texDesc.fTextureHandle = reinterpret_cast<GrBackendObject>(&texInfo);
SkAutoTUnref<GrTexture> texture(mGrContext->textureProvider()->wrapBackendTexture(texDesc, kAdopt_GrWrapOwnership));
RefPtr<SourceSurfaceSkia> newSurf = new SourceSurfaceSkia();
if (newSurf->InitFromGrTexture(texture, aSurface.mSize, aSurface.mFormat)) {
return newSurf.forget();
}
return nullptr;
}
#endif
return nullptr;
}
void
DrawTargetSkia::CopySurface(SourceSurface *aSurface,
const IntRect& aSourceRect,
const IntPoint &aDestination)
{
if (aSurface->GetType() != SurfaceType::SKIA && aSurface->GetType() != SurfaceType::DATA) {
return;
}
MarkChanged();
SkBitmap bitmap = GetBitmapForSurface(aSurface);
mCanvas->save();
mCanvas->setMatrix(SkMatrix::MakeTrans(SkIntToScalar(aDestination.x), SkIntToScalar(aDestination.y)));
mCanvas->clipRect(SkRect::MakeIWH(aSourceRect.width, aSourceRect.height), SkRegion::kReplace_Op);
SkPaint paint;
if (!bitmap.isOpaque()) {
// Keep the xfermode as SOURCE_OVER for opaque bitmaps
// http://code.google.com/p/skia/issues/detail?id=628
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
}
// drawBitmap with A8 bitmaps ends up doing a mask operation
// so we need to clear before
if (bitmap.colorType() == kAlpha_8_SkColorType) {
mCanvas->clear(SK_ColorTRANSPARENT);
}
mCanvas->drawBitmap(bitmap, -SkIntToScalar(aSourceRect.x), -SkIntToScalar(aSourceRect.y), &paint);
mCanvas->restore();
}
bool
DrawTargetSkia::Init(const IntSize &aSize, SurfaceFormat aFormat)
{
if (size_t(std::max(aSize.width, aSize.height)) > GetMaxSurfaceSize()) {
return false;
}
// we need to have surfaces that have a stride aligned to 4 for interop with cairo
int stride = (BytesPerPixel(aFormat)*aSize.width + (4-1)) & -4;
SkBitmap bitmap;
bitmap.setInfo(MakeSkiaImageInfo(aSize, aFormat), stride);
if (!bitmap.tryAllocPixels()) {
return false;
}
SkColor clearColor = (aFormat == SurfaceFormat::B8G8R8X8) ? SK_ColorBLACK : SK_ColorTRANSPARENT;
bitmap.eraseColor(clearColor);
mCanvas.adopt(new SkCanvas(bitmap));
mSize = aSize;
mFormat = aFormat;
return true;
}
#ifdef USE_SKIA_GPU
/** Indicating a DT should be cached means that space will be reserved in Skia's cache
* for the render target at creation time, with any unused resources exceeding the cache
* limits being purged. When the DT is freed, it will then be guaranteed to be kept around
* for subsequent allocations until it gets incidentally purged.
*
* If it is not marked as cached, no space will be purged to make room for the render
* target in the cache. When the DT is freed, If there is space within the resource limits
* it may be added to the cache, otherwise it will be freed immediately if the cache is
* already full.
*
* If you want to ensure that the resources will be kept around for reuse, it is better
* to mark them as cached. Such resources should be short-lived to ensure they don't
* permanently tie up cache resource limits. Long-lived resources should generally be
* left as uncached.
*
* In neither case will cache resource limits affect whether the resource allocation
* succeeds. The amount of in-use GPU resources is allowed to exceed the size of the cache.
* Thus, only hard GPU out-of-memory conditions will cause resource allocation to fail.
*/
bool
DrawTargetSkia::InitWithGrContext(GrContext* aGrContext,
const IntSize &aSize,
SurfaceFormat aFormat,
bool aCached)
{
MOZ_ASSERT(aGrContext, "null GrContext");
if (size_t(std::max(aSize.width, aSize.height)) > GetMaxSurfaceSize()) {
return false;
}
// Create a GPU rendertarget/texture using the supplied GrContext.
// NewRenderTarget also implicitly clears the underlying texture on creation.
sk_sp<SkSurface> gpuSurface =
SkSurface::MakeRenderTarget(aGrContext,
SkBudgeted(aCached),
MakeSkiaImageInfo(aSize, aFormat));
if (!gpuSurface) {
return false;
}
mGrContext = aGrContext;
mSize = aSize;
mFormat = aFormat;
mCanvas = gpuSurface->getCanvas();
return true;
}
#endif
void
DrawTargetSkia::Init(unsigned char* aData, const IntSize &aSize, int32_t aStride, SurfaceFormat aFormat, bool aUninitialized)
{
MOZ_ASSERT((aFormat != SurfaceFormat::B8G8R8X8) ||
aUninitialized || VerifyRGBXFormat(aData, aSize, aStride, aFormat));
SkBitmap bitmap;
bitmap.setInfo(MakeSkiaImageInfo(aSize, aFormat), aStride);
bitmap.setPixels(aData);
mCanvas.adopt(new SkCanvas(bitmap));
mSize = aSize;
mFormat = aFormat;
}
void
DrawTargetSkia::SetTransform(const Matrix& aTransform)
{
SkMatrix mat;
GfxMatrixToSkiaMatrix(aTransform, mat);
mCanvas->setMatrix(mat);
mTransform = aTransform;
}
void*
DrawTargetSkia::GetNativeSurface(NativeSurfaceType aType)
{
#ifdef USE_SKIA_GPU
if (aType == NativeSurfaceType::OPENGL_TEXTURE) {
// Get the current texture backing the GPU device.
// Beware - this texture is only guaranteed to valid after a draw target flush.
GrRenderTarget* rt = mCanvas->getDevice()->accessRenderTarget();
if (rt) {
GrTexture* tex = rt->asTexture();
if (tex) {
return (void*)(uintptr_t)reinterpret_cast<GrGLTextureInfo *>(tex->getTextureHandle())->fID;
}
}
}
#endif
return nullptr;
}
already_AddRefed<PathBuilder>
DrawTargetSkia::CreatePathBuilder(FillRule aFillRule) const
{
return MakeAndAddRef<PathBuilderSkia>(aFillRule);
}
void
DrawTargetSkia::ClearRect(const Rect &aRect)
{
MarkChanged();
mCanvas->save();
mCanvas->clipRect(RectToSkRect(aRect), SkRegion::kIntersect_Op, true);
SkColor clearColor = (mFormat == SurfaceFormat::B8G8R8X8) ? SK_ColorBLACK : SK_ColorTRANSPARENT;
mCanvas->clear(clearColor);
mCanvas->restore();
}
void
DrawTargetSkia::PushClip(const Path *aPath)
{
if (aPath->GetBackendType() != BackendType::SKIA) {
return;
}
const PathSkia *skiaPath = static_cast<const PathSkia*>(aPath);
mCanvas->save();
mCanvas->clipPath(skiaPath->GetPath(), SkRegion::kIntersect_Op, true);
}
void
DrawTargetSkia::PushClipRect(const Rect& aRect)
{
SkRect rect = RectToSkRect(aRect);
mCanvas->save();
mCanvas->clipRect(rect, SkRegion::kIntersect_Op, true);
}
void
DrawTargetSkia::PopClip()
{
mCanvas->restore();
}
// Image filter that just passes the source through to the result unmodified.
class CopyLayerImageFilter : public SkImageFilter
{
public:
CopyLayerImageFilter()
: SkImageFilter(0, nullptr)
{}
virtual bool onFilterImageDeprecated(Proxy*, const SkBitmap& src, const Context&,
SkBitmap* result, SkIPoint* offset) const override {
*result = src;
offset->set(0, 0);
return true;
}
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(CopyLayerImageFilter)
};
sk_sp<SkFlattenable>
CopyLayerImageFilter::CreateProc(SkReadBuffer& buffer)
{
SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 0);
return sk_make_sp<CopyLayerImageFilter>();
}
#ifndef SK_IGNORE_TO_STRING
void
CopyLayerImageFilter::toString(SkString* str) const
{
str->append("CopyLayerImageFilter: ()");
}
#endif
void
DrawTargetSkia::PushLayer(bool aOpaque, Float aOpacity, SourceSurface* aMask,
const Matrix& aMaskTransform, const IntRect& aBounds,
bool aCopyBackground)
{
PushedLayer layer(GetPermitSubpixelAA(), aOpaque, aOpacity, aMask, aMaskTransform);
mPushedLayers.push_back(layer);
SkPaint paint;
// If we have a mask, set the opacity to 0 so that SkCanvas::restore skips
// implicitly drawing the layer so that we can properly mask it in PopLayer.
paint.setAlpha(aMask ? 0 : ColorFloatToByte(aOpacity));
SkRect bounds = IntRectToSkRect(aBounds);
SkAutoTUnref<SkImageFilter> backdrop(aCopyBackground ? new CopyLayerImageFilter : nullptr);
SkCanvas::SaveLayerRec saveRec(aBounds.IsEmpty() ? nullptr : &bounds,
&paint,
backdrop.get(),
aOpaque ? SkCanvas::kIsOpaque_SaveLayerFlag : 0);
mCanvas->saveLayer(saveRec);
SetPermitSubpixelAA(aOpaque);
#ifdef MOZ_WIDGET_COCOA
CGContextRelease(mCG);
mCG = nullptr;
#endif
}
void
DrawTargetSkia::PopLayer()
{
MarkChanged();
MOZ_ASSERT(mPushedLayers.size());
const PushedLayer& layer = mPushedLayers.back();
if (layer.mMask) {
// If we have a mask, take a reference to the layer's bitmap device so that
// we can mask it ourselves. This assumes we forced SkCanvas::restore to
// skip implicitly drawing the layer.
SkAutoTUnref<SkBaseDevice> layerDevice(SkSafeRef(mCanvas->getTopDevice()));
SkIRect layerBounds = layerDevice->getGlobalBounds();
SkBitmap layerBitmap = layerDevice->accessBitmap(false);
// Restore the background with the layer's device left alive.
mCanvas->restore();
SkPaint paint;
paint.setAlpha(ColorFloatToByte(layer.mOpacity));
SkMatrix maskMat, layerMat;
// Get the total transform affecting the mask, considering its pattern
// transform and the current canvas transform.
GfxMatrixToSkiaMatrix(layer.mMaskTransform, maskMat);
maskMat.postConcat(mCanvas->getTotalMatrix());
if (!maskMat.invert(&layerMat)) {
gfxDebug() << *this << ": PopLayer() failed to invert mask transform";
} else {
// The layer should not be affected by the current canvas transform,
// even though the mask is. So first we use the inverse of the transform
// affecting the mask, then add back on the layer's origin.
layerMat.preTranslate(layerBounds.x(), layerBounds.y());
sk_sp<SkShader> shader = SkShader::MakeBitmapShader(layerBitmap,
SkShader::kClamp_TileMode,
SkShader::kClamp_TileMode,
&layerMat);
paint.setShader(shader);
SkBitmap mask = GetBitmapForSurface(layer.mMask);
if (mask.colorType() != kAlpha_8_SkColorType &&
!mask.extractAlpha(&mask)) {
gfxDebug() << *this << ": PopLayer() failed to extract alpha for mask";
} else {
mCanvas->save();
// The layer may be smaller than the canvas size, so make sure drawing is
// clipped to within the bounds of the layer.
mCanvas->resetMatrix();
mCanvas->clipRect(SkRect::Make(layerBounds));
mCanvas->setMatrix(maskMat);
mCanvas->drawBitmap(mask, 0, 0, &paint);
mCanvas->restore();
}
}
} else {
mCanvas->restore();
}
SetPermitSubpixelAA(layer.mOldPermitSubpixelAA);
mPushedLayers.pop_back();
#ifdef MOZ_WIDGET_COCOA
CGContextRelease(mCG);
mCG = nullptr;
#endif
}
already_AddRefed<GradientStops>
DrawTargetSkia::CreateGradientStops(GradientStop *aStops, uint32_t aNumStops, ExtendMode aExtendMode) const
{
std::vector<GradientStop> stops;
stops.resize(aNumStops);
for (uint32_t i = 0; i < aNumStops; i++) {
stops[i] = aStops[i];
}
std::stable_sort(stops.begin(), stops.end());
return MakeAndAddRef<GradientStopsSkia>(stops, aNumStops, aExtendMode);
}
already_AddRefed<FilterNode>
DrawTargetSkia::CreateFilter(FilterType aType)
{
return FilterNodeSoftware::Create(aType);
}
void
DrawTargetSkia::MarkChanged()
{
if (mSnapshot) {
mSnapshot->DrawTargetWillChange();
mSnapshot = nullptr;
}
}
void
DrawTargetSkia::SnapshotDestroyed()
{
mSnapshot = nullptr;
}
} // namespace gfx
} // namespace mozilla