gecko-dev/gfx/ipc/GPUProcessManager.cpp

1081 строка
35 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "GPUProcessManager.h"
#include "gfxPrefs.h"
#include "GPUProcessHost.h"
#include "GPUProcessListener.h"
#include "mozilla/MemoryReportingProcess.h"
#include "mozilla/Sprintf.h"
#include "mozilla/StaticPtr.h"
#include "mozilla/StaticPrefs.h"
#include "mozilla/VideoDecoderManagerChild.h"
#include "mozilla/VideoDecoderManagerParent.h"
#include "mozilla/dom/ContentParent.h"
#include "mozilla/gfx/gfxVars.h"
#include "mozilla/layers/APZCTreeManagerChild.h"
#include "mozilla/layers/CompositorBridgeParent.h"
#include "mozilla/layers/CompositorManagerChild.h"
#include "mozilla/layers/CompositorManagerParent.h"
#include "mozilla/layers/CompositorOptions.h"
#include "mozilla/layers/ImageBridgeChild.h"
#include "mozilla/layers/ImageBridgeParent.h"
#include "mozilla/layers/InProcessCompositorSession.h"
#include "mozilla/layers/LayerTreeOwnerTracker.h"
#include "mozilla/layers/RemoteCompositorSession.h"
#include "mozilla/widget/PlatformWidgetTypes.h"
#include "nsAppRunner.h"
#ifdef MOZ_WIDGET_SUPPORTS_OOP_COMPOSITING
# include "mozilla/widget/CompositorWidgetChild.h"
#endif
#include "nsBaseWidget.h"
#include "nsContentUtils.h"
#include "VRManagerChild.h"
#include "VRManagerParent.h"
#include "VsyncBridgeChild.h"
#include "VsyncIOThreadHolder.h"
#include "VsyncSource.h"
#include "nsExceptionHandler.h"
#include "nsPrintfCString.h"
#if defined(MOZ_WIDGET_ANDROID)
# include "mozilla/widget/AndroidUiThread.h"
# include "mozilla/layers/UiCompositorControllerChild.h"
#endif // defined(MOZ_WIDGET_ANDROID)
namespace mozilla {
namespace gfx {
using namespace mozilla::layers;
enum class FallbackType : uint32_t {
NONE = 0,
DECODINGDISABLED,
DISABLED,
};
static StaticAutoPtr<GPUProcessManager> sSingleton;
GPUProcessManager* GPUProcessManager::Get() { return sSingleton; }
void GPUProcessManager::Initialize() {
MOZ_ASSERT(XRE_IsParentProcess());
sSingleton = new GPUProcessManager();
}
void GPUProcessManager::Shutdown() { sSingleton = nullptr; }
GPUProcessManager::GPUProcessManager()
: mTaskFactory(this),
mNextNamespace(0),
mIdNamespace(0),
mResourceId(0),
mNumProcessAttempts(0),
mDeviceResetCount(0),
mProcess(nullptr),
mProcessToken(0),
mGPUChild(nullptr) {
MOZ_COUNT_CTOR(GPUProcessManager);
mIdNamespace = AllocateNamespace();
mObserver = new Observer(this);
nsContentUtils::RegisterShutdownObserver(mObserver);
mDeviceResetLastTime = TimeStamp::Now();
LayerTreeOwnerTracker::Initialize();
}
GPUProcessManager::~GPUProcessManager() {
MOZ_COUNT_DTOR(GPUProcessManager);
LayerTreeOwnerTracker::Shutdown();
// The GPU process should have already been shut down.
MOZ_ASSERT(!mProcess && !mGPUChild);
// We should have already removed observers.
MOZ_ASSERT(!mObserver);
}
NS_IMPL_ISUPPORTS(GPUProcessManager::Observer, nsIObserver);
GPUProcessManager::Observer::Observer(GPUProcessManager* aManager)
: mManager(aManager) {}
NS_IMETHODIMP
GPUProcessManager::Observer::Observe(nsISupports* aSubject, const char* aTopic,
const char16_t* aData) {
if (!strcmp(aTopic, NS_XPCOM_SHUTDOWN_OBSERVER_ID)) {
mManager->OnXPCOMShutdown();
}
return NS_OK;
}
void GPUProcessManager::OnXPCOMShutdown() {
if (mObserver) {
nsContentUtils::UnregisterShutdownObserver(mObserver);
mObserver = nullptr;
}
CleanShutdown();
}
void GPUProcessManager::LaunchGPUProcess() {
if (mProcess) {
return;
}
// Start the Vsync I/O thread so can use it as soon as the process launches.
EnsureVsyncIOThread();
mNumProcessAttempts++;
std::vector<std::string> extraArgs;
nsCString parentBuildID(mozilla::PlatformBuildID());
extraArgs.push_back("-parentBuildID");
extraArgs.push_back(parentBuildID.get());
// The subprocess is launched asynchronously, so we wait for a callback to
// acquire the IPDL actor.
mProcess = new GPUProcessHost(this);
if (!mProcess->Launch(extraArgs)) {
DisableGPUProcess("Failed to launch GPU process");
}
}
void GPUProcessManager::DisableGPUProcess(const char* aMessage) {
if (!gfxConfig::IsEnabled(Feature::GPU_PROCESS)) {
return;
}
gfxConfig::SetFailed(Feature::GPU_PROCESS, FeatureStatus::Failed, aMessage);
gfxCriticalNote << aMessage;
gfxPlatform::NotifyGPUProcessDisabled();
Telemetry::Accumulate(Telemetry::GPU_PROCESS_CRASH_FALLBACKS,
uint32_t(FallbackType::DISABLED));
DestroyProcess();
ShutdownVsyncIOThread();
// We may have been in the middle of guaranteeing our various services are
// available when one failed. Some callers may fallback to using the same
// process equivalent, and we need to make sure those services are setup
// correctly. We cannot re-enter DisableGPUProcess from this call because we
// know that it is disabled in the config above.
EnsureProtocolsReady();
// If we disable the GPU process during reinitialization after a previous
// crash, then we need to tell the content processes again, because they
// need to rebind to the UI process.
HandleProcessLost();
// On Windows, always fallback to software.
// The assumption is that something in the graphics driver is crashing.
#if XP_WIN
FallbackToSoftware("GPU Process is disabled, fallback to software solution.");
#endif
}
bool GPUProcessManager::EnsureGPUReady() {
if (mProcess && !mProcess->IsConnected()) {
if (!mProcess->WaitForLaunch()) {
// If this fails, we should have fired OnProcessLaunchComplete and
// removed the process.
MOZ_ASSERT(!mProcess && !mGPUChild);
return false;
}
}
if (mGPUChild) {
if (mGPUChild->EnsureGPUReady()) {
return true;
}
// If the initialization above fails, we likely have a GPU process teardown
// waiting in our message queue (or will soon). We need to ensure we don't
// restart it later because if we fail here, our callers assume they should
// fall back to a combined UI/GPU process. This also ensures our internal
// state is consistent (e.g. process token is reset).
DisableGPUProcess("Failed to initialize GPU process");
}
return false;
}
void GPUProcessManager::EnsureProtocolsReady() {
EnsureCompositorManagerChild();
EnsureImageBridgeChild();
EnsureVRManager();
}
void GPUProcessManager::EnsureCompositorManagerChild() {
bool gpuReady = EnsureGPUReady();
if (CompositorManagerChild::IsInitialized(mProcessToken)) {
return;
}
if (!gpuReady) {
CompositorManagerChild::InitSameProcess(AllocateNamespace(), mProcessToken);
return;
}
ipc::Endpoint<PCompositorManagerParent> parentPipe;
ipc::Endpoint<PCompositorManagerChild> childPipe;
nsresult rv = PCompositorManager::CreateEndpoints(
mGPUChild->OtherPid(), base::GetCurrentProcId(), &parentPipe, &childPipe);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PCompositorManager endpoints");
return;
}
mGPUChild->SendInitCompositorManager(std::move(parentPipe));
CompositorManagerChild::Init(std::move(childPipe), AllocateNamespace(),
mProcessToken);
}
void GPUProcessManager::EnsureImageBridgeChild() {
if (ImageBridgeChild::GetSingleton()) {
return;
}
if (!EnsureGPUReady()) {
ImageBridgeChild::InitSameProcess(AllocateNamespace());
return;
}
ipc::Endpoint<PImageBridgeParent> parentPipe;
ipc::Endpoint<PImageBridgeChild> childPipe;
nsresult rv = PImageBridge::CreateEndpoints(
mGPUChild->OtherPid(), base::GetCurrentProcId(), &parentPipe, &childPipe);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PImageBridge endpoints");
return;
}
mGPUChild->SendInitImageBridge(std::move(parentPipe));
ImageBridgeChild::InitWithGPUProcess(std::move(childPipe),
AllocateNamespace());
}
void GPUProcessManager::EnsureVRManager() {
if (VRManagerChild::IsCreated()) {
return;
}
if (!EnsureGPUReady()) {
VRManagerChild::InitSameProcess();
return;
}
ipc::Endpoint<PVRManagerParent> parentPipe;
ipc::Endpoint<PVRManagerChild> childPipe;
nsresult rv = PVRManager::CreateEndpoints(
mGPUChild->OtherPid(), base::GetCurrentProcId(), &parentPipe, &childPipe);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PVRManager endpoints");
return;
}
mGPUChild->SendInitVRManager(std::move(parentPipe));
VRManagerChild::InitWithGPUProcess(std::move(childPipe));
}
#if defined(MOZ_WIDGET_ANDROID)
already_AddRefed<UiCompositorControllerChild>
GPUProcessManager::CreateUiCompositorController(nsBaseWidget* aWidget,
const LayersId aId) {
RefPtr<UiCompositorControllerChild> result;
if (!EnsureGPUReady()) {
result = UiCompositorControllerChild::CreateForSameProcess(aId);
} else {
ipc::Endpoint<PUiCompositorControllerParent> parentPipe;
ipc::Endpoint<PUiCompositorControllerChild> childPipe;
nsresult rv = PUiCompositorController::CreateEndpoints(
mGPUChild->OtherPid(), base::GetCurrentProcId(), &parentPipe,
&childPipe);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PUiCompositorController endpoints");
return nullptr;
}
mGPUChild->SendInitUiCompositorController(aId, std::move(parentPipe));
result = UiCompositorControllerChild::CreateForGPUProcess(
mProcessToken, std::move(childPipe));
}
if (result) {
result->SetBaseWidget(aWidget);
}
return result.forget();
}
#endif // defined(MOZ_WIDGET_ANDROID)
void GPUProcessManager::OnProcessLaunchComplete(GPUProcessHost* aHost) {
MOZ_ASSERT(mProcess && mProcess == aHost);
if (!mProcess->IsConnected()) {
DisableGPUProcess("Failed to connect GPU process");
return;
}
mGPUChild = mProcess->GetActor();
mProcessToken = mProcess->GetProcessToken();
Endpoint<PVsyncBridgeParent> vsyncParent;
Endpoint<PVsyncBridgeChild> vsyncChild;
nsresult rv = PVsyncBridge::CreateEndpoints(mGPUChild->OtherPid(),
base::GetCurrentProcId(),
&vsyncParent, &vsyncChild);
if (NS_FAILED(rv)) {
DisableGPUProcess("Failed to create PVsyncBridge endpoints");
return;
}
mVsyncBridge = VsyncBridgeChild::Create(mVsyncIOThread, mProcessToken,
std::move(vsyncChild));
mGPUChild->SendInitVsyncBridge(std::move(vsyncParent));
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::GPUProcessStatus,
NS_LITERAL_CSTRING("Running"));
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::GPUProcessLaunchCount,
static_cast<int>(mNumProcessAttempts));
}
static bool ShouldLimitDeviceResets(uint32_t count, int32_t deltaMilliseconds) {
// We decide to limit by comparing the amount of resets that have happened
// and time since the last reset to two prefs.
int32_t timeLimit = gfxPrefs::DeviceResetThresholdMilliseconds();
int32_t countLimit = gfxPrefs::DeviceResetLimitCount();
bool hasTimeLimit = timeLimit >= 0;
bool hasCountLimit = countLimit >= 0;
bool triggeredTime = deltaMilliseconds < timeLimit;
bool triggeredCount = count > (uint32_t)countLimit;
// If we have both prefs set then it needs to trigger both limits,
// otherwise we only test the pref that is set or none
if (hasTimeLimit && hasCountLimit) {
return triggeredTime && triggeredCount;
} else if (hasTimeLimit) {
return triggeredTime;
} else if (hasCountLimit) {
return triggeredCount;
}
return false;
}
void GPUProcessManager::ResetCompositors() {
// Note: this will recreate devices in addition to recreating compositors.
// This isn't optimal, but this is only used on linux where acceleration
// isn't enabled by default, and this way we don't need a new code path.
SimulateDeviceReset();
}
void GPUProcessManager::SimulateDeviceReset() {
// Make sure we rebuild environment and configuration for accelerated
// features.
gfxPlatform::GetPlatform()->CompositorUpdated();
if (mProcess) {
GPUDeviceData data;
if (mGPUChild->SendSimulateDeviceReset(&data)) {
gfxPlatform::GetPlatform()->ImportGPUDeviceData(data);
}
OnRemoteProcessDeviceReset(mProcess);
} else {
OnInProcessDeviceReset();
}
}
void GPUProcessManager::DisableWebRender(wr::WebRenderError aError) {
if (!gfx::gfxVars::UseWebRender()) {
return;
}
// Disable WebRender
if (aError == wr::WebRenderError::INITIALIZE) {
gfx::gfxConfig::GetFeature(gfx::Feature::WEBRENDER)
.ForceDisable(
gfx::FeatureStatus::Unavailable, "WebRender initialization failed",
NS_LITERAL_CSTRING("FEATURE_FAILURE_WEBRENDER_INITIALIZE"));
} else if (aError == wr::WebRenderError::MAKE_CURRENT) {
gfx::gfxConfig::GetFeature(gfx::Feature::WEBRENDER)
.ForceDisable(
gfx::FeatureStatus::Unavailable,
"Failed to make render context current",
NS_LITERAL_CSTRING("FEATURE_FAILURE_WEBRENDER_MAKE_CURRENT"));
} else if (aError == wr::WebRenderError::RENDER) {
gfx::gfxConfig::GetFeature(gfx::Feature::WEBRENDER)
.ForceDisable(gfx::FeatureStatus::Unavailable,
"Failed to render WebRender",
NS_LITERAL_CSTRING("FEATURE_FAILURE_WEBRENDER_RENDER"));
} else {
MOZ_ASSERT_UNREACHABLE("Invalid value");
}
gfx::gfxVars::SetUseWebRender(false);
if (mProcess) {
OnRemoteProcessDeviceReset(mProcess);
} else {
OnInProcessDeviceReset();
}
}
void GPUProcessManager::NotifyWebRenderError(wr::WebRenderError aError) {
DisableWebRender(aError);
}
void GPUProcessManager::OnInProcessDeviceReset() {
RebuildInProcessSessions();
NotifyListenersOnCompositeDeviceReset();
}
void GPUProcessManager::OnRemoteProcessDeviceReset(GPUProcessHost* aHost) {
// Detect whether the device is resetting too quickly or too much
// indicating that we should give up and use software
mDeviceResetCount++;
auto newTime = TimeStamp::Now();
auto delta = (int32_t)(newTime - mDeviceResetLastTime).ToMilliseconds();
mDeviceResetLastTime = newTime;
if (ShouldLimitDeviceResets(mDeviceResetCount, delta)) {
DestroyProcess();
DisableGPUProcess("GPU processed experienced too many device resets");
HandleProcessLost();
return;
}
RebuildRemoteSessions();
NotifyListenersOnCompositeDeviceReset();
}
void GPUProcessManager::FallbackToSoftware(const char* aMessage) {
gfxConfig::SetFailed(Feature::HW_COMPOSITING, FeatureStatus::Blocked,
aMessage);
gfxConfig::SetFailed(Feature::D3D11_COMPOSITING, FeatureStatus::Blocked,
aMessage);
gfxConfig::SetFailed(Feature::DIRECT2D, FeatureStatus::Blocked, aMessage);
}
void GPUProcessManager::NotifyListenersOnCompositeDeviceReset() {
for (const auto& listener : mListeners) {
listener->OnCompositorDeviceReset();
}
}
void GPUProcessManager::OnProcessUnexpectedShutdown(GPUProcessHost* aHost) {
MOZ_ASSERT(mProcess && mProcess == aHost);
CompositorManagerChild::OnGPUProcessLost(aHost->GetProcessToken());
DestroyProcess();
if (mNumProcessAttempts > uint32_t(gfxPrefs::GPUProcessMaxRestarts())) {
char disableMessage[64];
SprintfLiteral(disableMessage, "GPU process disabled after %d attempts",
mNumProcessAttempts);
DisableGPUProcess(disableMessage);
} else if (mNumProcessAttempts >
uint32_t(gfxPrefs::GPUProcessMaxRestartsWithDecoder()) &&
mDecodeVideoOnGpuProcess) {
mDecodeVideoOnGpuProcess = false;
Telemetry::Accumulate(Telemetry::GPU_PROCESS_CRASH_FALLBACKS,
uint32_t(FallbackType::DECODINGDISABLED));
HandleProcessLost();
} else {
Telemetry::Accumulate(Telemetry::GPU_PROCESS_CRASH_FALLBACKS,
uint32_t(FallbackType::NONE));
HandleProcessLost();
}
}
void GPUProcessManager::HandleProcessLost() {
if (gfxConfig::IsEnabled(Feature::GPU_PROCESS)) {
LaunchGPUProcess();
}
// The shutdown and restart sequence for the GPU process is as follows:
//
// (1) The GPU process dies. IPDL will enqueue an ActorDestroy message on
// each channel owning a bridge to the GPU process, on the thread
// owning that channel.
//
// (2) The first channel to process its ActorDestroy message will post a
// message to the main thread to call NotifyRemoteActorDestroyed on
// the GPUProcessManager, which calls OnProcessUnexpectedShutdown if
// it has not handled shutdown for this process yet.
//
// (3) We then notify each widget that its session with the compositor is
// now invalid. The widget is responsible for destroying its layer
// manager and CompositorBridgeChild. Note that at this stage, not
// all actors may have received ActorDestroy yet. CompositorBridgeChild
// may attempt to send messages, and if this happens, it will probably
// report a MsgDropped error. This is okay.
//
// (4) At this point, the UI process has a clean slate: no layers should
// exist for the old compositor. We may make a decision on whether or
// not to re-launch the GPU process. Currently, we do not relaunch it,
// and any new compositors will be created in-process and will default
// to software.
//
// (5) Next we notify each ContentParent of the lost connection. It will
// request new endpoints from the GPUProcessManager and forward them
// to its ContentChild. The parent-side of these endpoints may come
// from the compositor thread of the UI process, or the compositor
// thread of the GPU process. However, no actual compositors should
// exist yet.
//
// (6) Each ContentChild will receive new endpoints. It will destroy its
// Compositor/ImageBridgeChild singletons and recreate them, as well
// as invalidate all retained layers.
//
// (7) In addition, each ContentChild will ask each of its BrowserChildren
// to re-request association with the compositor for the window
// owning the tab. The sequence of calls looks like:
// (a) [CONTENT] ContentChild::RecvReinitRendering
// (b) [CONTENT] BrowserChild::ReinitRendering
// (c) [CONTENT] BrowserChild::SendEnsureLayersConnected
// (d) [UI] BrowserParent::RecvEnsureLayersConnected
// (e) [UI] RenderFrame::EnsureLayersConnected
// (f) [UI] CompositorBridgeChild::SendNotifyChildRecreated
//
// Note that at step (e), RenderFrame will call GetLayerManager
// on the nsIWidget owning the tab. This step ensures that a compositor
// exists for the window. If we decided to launch a new GPU Process,
// at this point we block until the process has launched and we're
// able to create a new window compositor. Otherwise, if compositing
// is now in-process, this will simply create a new
// CompositorBridgeParent in the UI process. If there are multiple tabs
// in the same window, additional tabs will simply return the already-
// established compositor.
//
// Finally, this step serves one other crucial function: tabs must be
// associated with a window compositor or else they can't forward
// layer transactions. So this step both ensures that a compositor
// exists, and that the tab can forward layers.
//
// (8) Last, if the window had no remote tabs, step (7) will not have
// applied, and the window will not have a new compositor just yet.
// The next refresh tick and paint will ensure that one exists, again
// via nsIWidget::GetLayerManager.
RebuildRemoteSessions();
// Notify content. This will ensure that each content process re-establishes
// a connection to the compositor thread (whether it's in-process or in a
// newly launched GPU process).
for (const auto& listener : mListeners) {
listener->OnCompositorUnexpectedShutdown();
}
}
void GPUProcessManager::RebuildRemoteSessions() {
// Build a list of sessions to notify, since notification might delete
// entries from the list.
nsTArray<RefPtr<RemoteCompositorSession>> sessions;
for (auto& session : mRemoteSessions) {
sessions.AppendElement(session);
}
// Notify each widget that we have lost the GPU process. This will ensure
// that each widget destroys its layer manager and CompositorBridgeChild.
for (const auto& session : sessions) {
session->NotifySessionLost();
}
}
void GPUProcessManager::RebuildInProcessSessions() {
// Build a list of sessions to notify, since notification might delete
// entries from the list.
nsTArray<RefPtr<InProcessCompositorSession>> sessions;
for (auto& session : mInProcessSessions) {
sessions.AppendElement(session);
}
// Notify each widget that we have lost the GPU process. This will ensure
// that each widget destroys its layer manager and CompositorBridgeChild.
for (const auto& session : sessions) {
session->NotifySessionLost();
}
}
void GPUProcessManager::NotifyRemoteActorDestroyed(
const uint64_t& aProcessToken) {
if (!NS_IsMainThread()) {
RefPtr<Runnable> task = mTaskFactory.NewRunnableMethod(
&GPUProcessManager::NotifyRemoteActorDestroyed, aProcessToken);
NS_DispatchToMainThread(task.forget());
return;
}
if (mProcessToken != aProcessToken) {
// This token is for an older process; we can safely ignore it.
return;
}
// One of the bridged top-level actors for the GPU process has been
// prematurely terminated, and we're receiving a notification. This
// can happen if the ActorDestroy for a bridged protocol fires
// before the ActorDestroy for PGPUChild.
OnProcessUnexpectedShutdown(mProcess);
}
void GPUProcessManager::CleanShutdown() {
DestroyProcess();
mVsyncIOThread = nullptr;
}
void GPUProcessManager::KillProcess() {
if (!mProcess) {
return;
}
mProcess->KillProcess();
}
void GPUProcessManager::DestroyProcess() {
if (!mProcess) {
return;
}
mProcess->Shutdown();
mProcessToken = 0;
mProcess = nullptr;
mGPUChild = nullptr;
if (mVsyncBridge) {
mVsyncBridge->Close();
mVsyncBridge = nullptr;
}
CrashReporter::AnnotateCrashReport(
CrashReporter::Annotation::GPUProcessStatus,
NS_LITERAL_CSTRING("Destroyed"));
}
already_AddRefed<CompositorSession> GPUProcessManager::CreateTopLevelCompositor(
nsBaseWidget* aWidget, LayerManager* aLayerManager,
CSSToLayoutDeviceScale aScale, const CompositorOptions& aOptions,
bool aUseExternalSurfaceSize, const gfx::IntSize& aSurfaceSize,
bool* aRetryOut) {
MOZ_ASSERT(aRetryOut);
LayersId layerTreeId = AllocateLayerTreeId();
EnsureProtocolsReady();
RefPtr<CompositorSession> session;
if (EnsureGPUReady()) {
session =
CreateRemoteSession(aWidget, aLayerManager, layerTreeId, aScale,
aOptions, aUseExternalSurfaceSize, aSurfaceSize);
if (!session) {
// We couldn't create a remote compositor, so abort the process.
DisableGPUProcess("Failed to create remote compositor");
*aRetryOut = true;
return nullptr;
}
} else {
session = InProcessCompositorSession::Create(
aWidget, aLayerManager, layerTreeId, aScale, aOptions,
aUseExternalSurfaceSize, aSurfaceSize, AllocateNamespace());
}
#if defined(MOZ_WIDGET_ANDROID)
if (session) {
// Nothing to do if controller gets a nullptr
RefPtr<UiCompositorControllerChild> controller =
CreateUiCompositorController(aWidget, session->RootLayerTreeId());
session->SetUiCompositorControllerChild(controller);
}
#endif // defined(MOZ_WIDGET_ANDROID)
*aRetryOut = false;
return session.forget();
}
RefPtr<CompositorSession> GPUProcessManager::CreateRemoteSession(
nsBaseWidget* aWidget, LayerManager* aLayerManager,
const LayersId& aRootLayerTreeId, CSSToLayoutDeviceScale aScale,
const CompositorOptions& aOptions, bool aUseExternalSurfaceSize,
const gfx::IntSize& aSurfaceSize) {
#ifdef MOZ_WIDGET_SUPPORTS_OOP_COMPOSITING
CompositorWidgetInitData initData;
aWidget->GetCompositorWidgetInitData(&initData);
RefPtr<CompositorBridgeChild> child =
CompositorManagerChild::CreateWidgetCompositorBridge(
mProcessToken, aLayerManager, AllocateNamespace(), aScale, aOptions,
aUseExternalSurfaceSize, aSurfaceSize);
if (!child) {
gfxCriticalNote << "Failed to create CompositorBridgeChild";
return nullptr;
}
RefPtr<CompositorVsyncDispatcher> dispatcher =
aWidget->GetCompositorVsyncDispatcher();
RefPtr<CompositorWidgetVsyncObserver> observer =
new CompositorWidgetVsyncObserver(mVsyncBridge, aRootLayerTreeId);
CompositorWidgetChild* widget =
new CompositorWidgetChild(dispatcher, observer);
if (!child->SendPCompositorWidgetConstructor(widget, initData)) {
return nullptr;
}
if (!child->SendInitialize(aRootLayerTreeId)) {
return nullptr;
}
RefPtr<APZCTreeManagerChild> apz = nullptr;
if (aOptions.UseAPZ()) {
PAPZCTreeManagerChild* papz =
child->SendPAPZCTreeManagerConstructor(LayersId{0});
if (!papz) {
return nullptr;
}
apz = static_cast<APZCTreeManagerChild*>(papz);
PAPZInputBridgeChild* pinput =
mGPUChild->SendPAPZInputBridgeConstructor(aRootLayerTreeId);
if (!pinput) {
return nullptr;
}
apz->SetInputBridge(static_cast<APZInputBridgeChild*>(pinput));
}
RefPtr<RemoteCompositorSession> session = new RemoteCompositorSession(
aWidget, child, widget, apz, aRootLayerTreeId);
return session.forget();
#else
gfxCriticalNote << "Platform does not support out-of-process compositing";
return nullptr;
#endif
}
bool GPUProcessManager::CreateContentBridges(
base::ProcessId aOtherProcess,
ipc::Endpoint<PCompositorManagerChild>* aOutCompositor,
ipc::Endpoint<PImageBridgeChild>* aOutImageBridge,
ipc::Endpoint<PVRManagerChild>* aOutVRBridge,
ipc::Endpoint<PVideoDecoderManagerChild>* aOutVideoManager,
nsTArray<uint32_t>* aNamespaces) {
if (!CreateContentCompositorManager(aOtherProcess, aOutCompositor) ||
!CreateContentImageBridge(aOtherProcess, aOutImageBridge) ||
!CreateContentVRManager(aOtherProcess, aOutVRBridge)) {
return false;
}
// VideoDeocderManager is only supported in the GPU process, so we allow this
// to be fallible.
CreateContentVideoDecoderManager(aOtherProcess, aOutVideoManager);
// Allocates 3 namespaces(for CompositorManagerChild, CompositorBridgeChild
// and ImageBridgeChild)
aNamespaces->AppendElement(AllocateNamespace());
aNamespaces->AppendElement(AllocateNamespace());
aNamespaces->AppendElement(AllocateNamespace());
return true;
}
bool GPUProcessManager::CreateContentCompositorManager(
base::ProcessId aOtherProcess,
ipc::Endpoint<PCompositorManagerChild>* aOutEndpoint) {
ipc::Endpoint<PCompositorManagerParent> parentPipe;
ipc::Endpoint<PCompositorManagerChild> childPipe;
base::ProcessId parentPid =
EnsureGPUReady() ? mGPUChild->OtherPid() : base::GetCurrentProcId();
nsresult rv = PCompositorManager::CreateEndpoints(parentPid, aOtherProcess,
&parentPipe, &childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content compositor manager: "
<< hexa(int(rv));
return false;
}
if (mGPUChild) {
mGPUChild->SendNewContentCompositorManager(std::move(parentPipe));
} else if (!CompositorManagerParent::Create(std::move(parentPipe),
/* aIsRoot */ false)) {
return false;
}
*aOutEndpoint = std::move(childPipe);
return true;
}
bool GPUProcessManager::CreateContentImageBridge(
base::ProcessId aOtherProcess,
ipc::Endpoint<PImageBridgeChild>* aOutEndpoint) {
EnsureImageBridgeChild();
base::ProcessId parentPid =
EnsureGPUReady() ? mGPUChild->OtherPid() : base::GetCurrentProcId();
ipc::Endpoint<PImageBridgeParent> parentPipe;
ipc::Endpoint<PImageBridgeChild> childPipe;
nsresult rv = PImageBridge::CreateEndpoints(parentPid, aOtherProcess,
&parentPipe, &childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content compositor bridge: "
<< hexa(int(rv));
return false;
}
if (mGPUChild) {
mGPUChild->SendNewContentImageBridge(std::move(parentPipe));
} else {
if (!ImageBridgeParent::CreateForContent(std::move(parentPipe))) {
return false;
}
}
*aOutEndpoint = std::move(childPipe);
return true;
}
base::ProcessId GPUProcessManager::GPUProcessPid() {
base::ProcessId gpuPid = mGPUChild ? mGPUChild->OtherPid() : -1;
return gpuPid;
}
bool GPUProcessManager::CreateContentVRManager(
base::ProcessId aOtherProcess,
ipc::Endpoint<PVRManagerChild>* aOutEndpoint) {
EnsureVRManager();
base::ProcessId parentPid =
EnsureGPUReady() ? mGPUChild->OtherPid() : base::GetCurrentProcId();
ipc::Endpoint<PVRManagerParent> parentPipe;
ipc::Endpoint<PVRManagerChild> childPipe;
nsresult rv = PVRManager::CreateEndpoints(parentPid, aOtherProcess,
&parentPipe, &childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content compositor bridge: "
<< hexa(int(rv));
return false;
}
if (mGPUChild) {
mGPUChild->SendNewContentVRManager(std::move(parentPipe));
} else {
if (!VRManagerParent::CreateForContent(std::move(parentPipe))) {
return false;
}
}
*aOutEndpoint = std::move(childPipe);
return true;
}
void GPUProcessManager::CreateContentVideoDecoderManager(
base::ProcessId aOtherProcess,
ipc::Endpoint<PVideoDecoderManagerChild>* aOutEndpoint) {
if (!EnsureGPUReady() || !StaticPrefs::MediaGpuProcessDecoder() ||
!mDecodeVideoOnGpuProcess) {
return;
}
ipc::Endpoint<PVideoDecoderManagerParent> parentPipe;
ipc::Endpoint<PVideoDecoderManagerChild> childPipe;
nsresult rv = PVideoDecoderManager::CreateEndpoints(
mGPUChild->OtherPid(), aOtherProcess, &parentPipe, &childPipe);
if (NS_FAILED(rv)) {
gfxCriticalNote << "Could not create content video decoder: "
<< hexa(int(rv));
return;
}
mGPUChild->SendNewContentVideoDecoderManager(std::move(parentPipe));
*aOutEndpoint = std::move(childPipe);
}
void GPUProcessManager::MapLayerTreeId(LayersId aLayersId,
base::ProcessId aOwningId) {
LayerTreeOwnerTracker::Get()->Map(aLayersId, aOwningId);
if (EnsureGPUReady()) {
mGPUChild->SendAddLayerTreeIdMapping(
LayerTreeIdMapping(aLayersId, aOwningId));
}
}
void GPUProcessManager::UnmapLayerTreeId(LayersId aLayersId,
base::ProcessId aOwningId) {
LayerTreeOwnerTracker::Get()->Unmap(aLayersId, aOwningId);
if (EnsureGPUReady()) {
mGPUChild->SendRemoveLayerTreeIdMapping(
LayerTreeIdMapping(aLayersId, aOwningId));
return;
}
CompositorBridgeParent::DeallocateLayerTreeId(aLayersId);
}
bool GPUProcessManager::IsLayerTreeIdMapped(LayersId aLayersId,
base::ProcessId aRequestingId) {
return LayerTreeOwnerTracker::Get()->IsMapped(aLayersId, aRequestingId);
}
LayersId GPUProcessManager::AllocateLayerTreeId() {
// Allocate tree id by using id namespace.
// By it, tree id does not conflict with external image id and
// async image pipeline id.
MOZ_ASSERT(NS_IsMainThread());
++mResourceId;
if (mResourceId == UINT32_MAX) {
// Move to next id namespace.
mIdNamespace = AllocateNamespace();
mResourceId = 1;
}
uint64_t layerTreeId = mIdNamespace;
layerTreeId = (layerTreeId << 32) | mResourceId;
return LayersId{layerTreeId};
}
uint32_t GPUProcessManager::AllocateNamespace() {
MOZ_ASSERT(NS_IsMainThread());
return ++mNextNamespace;
}
bool GPUProcessManager::AllocateAndConnectLayerTreeId(
PCompositorBridgeChild* aCompositorBridge, base::ProcessId aOtherPid,
LayersId* aOutLayersId, CompositorOptions* aOutCompositorOptions) {
LayersId layersId = AllocateLayerTreeId();
*aOutLayersId = layersId;
if (!mGPUChild || !aCompositorBridge) {
// If we're not remoting to another process, or there is no compositor,
// then we'll send at most one message. In this case we can just keep
// the old behavior of making sure the mapping occurs, and maybe sending
// a creation notification.
MapLayerTreeId(layersId, aOtherPid);
if (!aCompositorBridge) {
return false;
}
return aCompositorBridge->SendNotifyChildCreated(layersId,
aOutCompositorOptions);
}
// Use the combined message path.
LayerTreeOwnerTracker::Get()->Map(layersId, aOtherPid);
return aCompositorBridge->SendMapAndNotifyChildCreated(layersId, aOtherPid,
aOutCompositorOptions);
}
void GPUProcessManager::EnsureVsyncIOThread() {
if (mVsyncIOThread) {
return;
}
mVsyncIOThread = new VsyncIOThreadHolder();
MOZ_RELEASE_ASSERT(mVsyncIOThread->Start());
}
void GPUProcessManager::ShutdownVsyncIOThread() { mVsyncIOThread = nullptr; }
void GPUProcessManager::RegisterRemoteProcessSession(
RemoteCompositorSession* aSession) {
mRemoteSessions.AppendElement(aSession);
}
void GPUProcessManager::UnregisterRemoteProcessSession(
RemoteCompositorSession* aSession) {
mRemoteSessions.RemoveElement(aSession);
}
void GPUProcessManager::RegisterInProcessSession(
InProcessCompositorSession* aSession) {
mInProcessSessions.AppendElement(aSession);
}
void GPUProcessManager::UnregisterInProcessSession(
InProcessCompositorSession* aSession) {
mInProcessSessions.RemoveElement(aSession);
}
void GPUProcessManager::AddListener(GPUProcessListener* aListener) {
mListeners.AppendElement(aListener);
}
void GPUProcessManager::RemoveListener(GPUProcessListener* aListener) {
mListeners.RemoveElement(aListener);
}
bool GPUProcessManager::NotifyGpuObservers(const char* aTopic) {
if (!EnsureGPUReady()) {
return false;
}
nsCString topic(aTopic);
mGPUChild->SendNotifyGpuObservers(topic);
return true;
}
class GPUMemoryReporter : public MemoryReportingProcess {
public:
NS_INLINE_DECL_THREADSAFE_REFCOUNTING(GPUMemoryReporter, override)
bool IsAlive() const override {
if (GPUProcessManager* gpm = GPUProcessManager::Get()) {
return !!gpm->GetGPUChild();
}
return false;
}
bool SendRequestMemoryReport(const uint32_t& aGeneration,
const bool& aAnonymize,
const bool& aMinimizeMemoryUsage,
const Maybe<FileDescriptor>& aDMDFile) override {
GPUChild* child = GetChild();
if (!child) {
return false;
}
return child->SendRequestMemoryReport(aGeneration, aAnonymize,
aMinimizeMemoryUsage, aDMDFile);
}
int32_t Pid() const override {
if (GPUChild* child = GetChild()) {
return (int32_t)child->OtherPid();
}
return 0;
}
private:
GPUChild* GetChild() const {
if (GPUProcessManager* gpm = GPUProcessManager::Get()) {
if (GPUChild* child = gpm->GetGPUChild()) {
return child;
}
}
return nullptr;
}
protected:
~GPUMemoryReporter() = default;
};
RefPtr<MemoryReportingProcess> GPUProcessManager::GetProcessMemoryReporter() {
if (!EnsureGPUReady()) {
return nullptr;
}
return new GPUMemoryReporter();
}
} // namespace gfx
} // namespace mozilla