gecko-dev/tools/footprint/wm.cpp

614 строки
20 KiB
C++

/* -*- Mode: C++; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/*
* This program tracks a process's working memory usage using the
* ``performance'' entries in the Win32 registry. It borrows from
* the ``pviewer'' source code in the MS SDK.
*/
#include <assert.h>
#include <windows.h>
#include <winperf.h>
#include <stdio.h>
#include <stdlib.h>
#define PN_PROCESS 1
#define PN_PROCESS_CPU 2
#define PN_PROCESS_PRIV 3
#define PN_PROCESS_USER 4
#define PN_PROCESS_WORKING_SET 5
#define PN_PROCESS_PEAK_WS 6
#define PN_PROCESS_PRIO 7
#define PN_PROCESS_ELAPSE 8
#define PN_PROCESS_ID 9
#define PN_PROCESS_PRIVATE_PAGE 10
#define PN_PROCESS_VIRTUAL_SIZE 11
#define PN_PROCESS_PEAK_VS 12
#define PN_PROCESS_FAULT_COUNT 13
#define PN_THREAD 14
#define PN_THREAD_CPU 15
#define PN_THREAD_PRIV 16
#define PN_THREAD_USER 17
#define PN_THREAD_START 18
#define PN_THREAD_SWITCHES 19
#define PN_THREAD_PRIO 20
#define PN_THREAD_BASE_PRIO 21
#define PN_THREAD_ELAPSE 22
#define PN_THREAD_DETAILS 23
#define PN_THREAD_PC 24
#define PN_IMAGE 25
#define PN_IMAGE_NOACCESS 26
#define PN_IMAGE_READONLY 27
#define PN_IMAGE_READWRITE 28
#define PN_IMAGE_WRITECOPY 29
#define PN_IMAGE_EXECUTABLE 30
#define PN_IMAGE_EXE_READONLY 31
#define PN_IMAGE_EXE_READWRITE 32
#define PN_IMAGE_EXE_WRITECOPY 33
#define PN_PROCESS_ADDRESS_SPACE 34
#define PN_PROCESS_PRIVATE_NOACCESS 35
#define PN_PROCESS_PRIVATE_READONLY 36
#define PN_PROCESS_PRIVATE_READWRITE 37
#define PN_PROCESS_PRIVATE_WRITECOPY 38
#define PN_PROCESS_PRIVATE_EXECUTABLE 39
#define PN_PROCESS_PRIVATE_EXE_READONLY 40
#define PN_PROCESS_PRIVATE_EXE_READWRITE 41
#define PN_PROCESS_PRIVATE_EXE_WRITECOPY 42
#define PN_PROCESS_MAPPED_NOACCESS 43
#define PN_PROCESS_MAPPED_READONLY 44
#define PN_PROCESS_MAPPED_READWRITE 45
#define PN_PROCESS_MAPPED_WRITECOPY 46
#define PN_PROCESS_MAPPED_EXECUTABLE 47
#define PN_PROCESS_MAPPED_EXE_READONLY 48
#define PN_PROCESS_MAPPED_EXE_READWRITE 49
#define PN_PROCESS_MAPPED_EXE_WRITECOPY 50
#define PN_PROCESS_IMAGE_NOACCESS 51
#define PN_PROCESS_IMAGE_READONLY 52
#define PN_PROCESS_IMAGE_READWRITE 53
#define PN_PROCESS_IMAGE_WRITECOPY 54
#define PN_PROCESS_IMAGE_EXECUTABLE 55
#define PN_PROCESS_IMAGE_EXE_READONLY 56
#define PN_PROCESS_IMAGE_EXE_READWRITE 57
#define PN_PROCESS_IMAGE_EXE_WRITECOPY 58
struct entry_t {
int e_key;
int e_index;
char* e_title;
};
entry_t entries[] = {
{ PN_PROCESS, 0, TEXT("Process") },
{ PN_PROCESS_CPU, 0, TEXT("% Processor Time") },
{ PN_PROCESS_PRIV, 0, TEXT("% Privileged Time") },
{ PN_PROCESS_USER, 0, TEXT("% User Time") },
{ PN_PROCESS_WORKING_SET, 0, TEXT("Working Set") },
{ PN_PROCESS_PEAK_WS, 0, TEXT("Working Set Peak") },
{ PN_PROCESS_PRIO, 0, TEXT("Priority Base") },
{ PN_PROCESS_ELAPSE, 0, TEXT("Elapsed Time") },
{ PN_PROCESS_ID, 0, TEXT("ID Process") },
{ PN_PROCESS_PRIVATE_PAGE, 0, TEXT("Private Bytes") },
{ PN_PROCESS_VIRTUAL_SIZE, 0, TEXT("Virtual Bytes") },
{ PN_PROCESS_PEAK_VS, 0, TEXT("Virtual Bytes Peak") },
{ PN_PROCESS_FAULT_COUNT, 0, TEXT("Page Faults/sec") },
{ PN_THREAD, 0, TEXT("Thread") },
{ PN_THREAD_CPU, 0, TEXT("% Processor Time") },
{ PN_THREAD_PRIV, 0, TEXT("% Privileged Time") },
{ PN_THREAD_USER, 0, TEXT("% User Time") },
{ PN_THREAD_START, 0, TEXT("Start Address") },
{ PN_THREAD_SWITCHES, 0, TEXT("Con0, TEXT Switches/sec") },
{ PN_THREAD_PRIO, 0, TEXT("Priority Current") },
{ PN_THREAD_BASE_PRIO, 0, TEXT("Priority Base") },
{ PN_THREAD_ELAPSE, 0, TEXT("Elapsed Time") },
{ PN_THREAD_DETAILS, 0, TEXT("Thread Details") },
{ PN_THREAD_PC, 0, TEXT("User PC") },
{ PN_IMAGE, 0, TEXT("Image") },
{ PN_IMAGE_NOACCESS, 0, TEXT("No Access") },
{ PN_IMAGE_READONLY, 0, TEXT("Read Only") },
{ PN_IMAGE_READWRITE, 0, TEXT("Read/Write") },
{ PN_IMAGE_WRITECOPY, 0, TEXT("Write Copy") },
{ PN_IMAGE_EXECUTABLE, 0, TEXT("Executable") },
{ PN_IMAGE_EXE_READONLY, 0, TEXT("Exec Read Only") },
{ PN_IMAGE_EXE_READWRITE, 0, TEXT("Exec Read/Write") },
{ PN_IMAGE_EXE_WRITECOPY, 0, TEXT("Exec Write Copy") },
{ PN_PROCESS_ADDRESS_SPACE, 0, TEXT("Process Address Space") },
{ PN_PROCESS_PRIVATE_NOACCESS, 0, TEXT("Reserved Space No Access") },
{ PN_PROCESS_PRIVATE_READONLY, 0, TEXT("Reserved Space Read Only") },
{ PN_PROCESS_PRIVATE_READWRITE, 0, TEXT("Reserved Space Read/Write") },
{ PN_PROCESS_PRIVATE_WRITECOPY, 0, TEXT("Reserved Space Write Copy") },
{ PN_PROCESS_PRIVATE_EXECUTABLE, 0, TEXT("Reserved Space Executable") },
{ PN_PROCESS_PRIVATE_EXE_READONLY, 0, TEXT("Reserved Space Exec Read Only") },
{ PN_PROCESS_PRIVATE_EXE_READWRITE, 0, TEXT("Reserved Space Exec Read/Write") },
{ PN_PROCESS_PRIVATE_EXE_WRITECOPY, 0, TEXT("Reserved Space Exec Write Copy") },
{ PN_PROCESS_MAPPED_NOACCESS, 0, TEXT("Mapped Space No Access") },
{ PN_PROCESS_MAPPED_READONLY, 0, TEXT("Mapped Space Read Only") },
{ PN_PROCESS_MAPPED_READWRITE, 0, TEXT("Mapped Space Read/Write") },
{ PN_PROCESS_MAPPED_WRITECOPY, 0, TEXT("Mapped Space Write Copy") },
{ PN_PROCESS_MAPPED_EXECUTABLE, 0, TEXT("Mapped Space Executable") },
{ PN_PROCESS_MAPPED_EXE_READONLY, 0, TEXT("Mapped Space Exec Read Only") },
{ PN_PROCESS_MAPPED_EXE_READWRITE, 0, TEXT("Mapped Space Exec Read/Write") },
{ PN_PROCESS_MAPPED_EXE_WRITECOPY, 0, TEXT("Mapped Space Exec Write Copy") },
{ PN_PROCESS_IMAGE_NOACCESS, 0, TEXT("Image Space No Access") },
{ PN_PROCESS_IMAGE_READONLY, 0, TEXT("Image Space Read Only") },
{ PN_PROCESS_IMAGE_READWRITE, 0, TEXT("Image Space Read/Write") },
{ PN_PROCESS_IMAGE_WRITECOPY, 0, TEXT("Image Space Write Copy") },
{ PN_PROCESS_IMAGE_EXECUTABLE, 0, TEXT("Image Space Executable") },
{ PN_PROCESS_IMAGE_EXE_READONLY, 0, TEXT("Image Space Exec Read Only") },
{ PN_PROCESS_IMAGE_EXE_READWRITE, 0, TEXT("Image Space Exec Read/Write") },
{ PN_PROCESS_IMAGE_EXE_WRITECOPY, 0, TEXT("Image Space Exec Write Copy") },
{ 0, 0, 0 },
};
#define NENTRIES ((sizeof(entries) / sizeof(entry_t)) - 1)
static int
key_for_index(int key)
{
entry_t* entry = entries + NENTRIES / 2;
unsigned int step = 64 / 4; // XXX
while (step) {
if (key < entry->e_key)
entry -= step;
else if (key > entry->e_key)
entry += step;
if (key == entry->e_key)
return entry->e_index;
step >>= 1;
}
assert(false);
return 0;
}
class auto_hkey {
protected:
HKEY hkey;
HKEY* begin_assignment() {
if (hkey) {
::RegCloseKey(hkey);
hkey = 0;
}
return &hkey;
}
public:
auto_hkey() : hkey(0) {}
~auto_hkey() { ::RegCloseKey(hkey); }
HKEY get() const { return hkey; }
operator HKEY() const { return get(); }
friend HKEY*
getter_Acquires(auto_hkey& hkey);
};
static HKEY*
getter_Acquires(auto_hkey& hkey)
{
return hkey.begin_assignment();
}
static int
get_perf_titles(char*& buffer, char**& titles, int& last_title_index)
{
DWORD result;
// Open the perflib key to find out the last counter's index and
// system version.
auto_hkey perflib_hkey;
result = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,
TEXT("software\\microsoft\\windows nt\\currentversion\\perflib"),
0,
KEY_READ,
getter_Acquires(perflib_hkey));
if (result != ERROR_SUCCESS)
return result;
// Get the last counter's index so we know how much memory to
// allocate for titles
DWORD data_size = sizeof(DWORD);
DWORD type;
result = ::RegQueryValueEx(perflib_hkey,
TEXT("Last Counter"),
0,
&type,
reinterpret_cast<BYTE*>(&last_title_index),
&data_size);
if (result != ERROR_SUCCESS)
return result;
// Find system version, for system earlier than 1.0a, there's no
// version value.
int version;
result = ::RegQueryValueEx(perflib_hkey,
TEXT("Version"),
0,
&type,
reinterpret_cast<BYTE*>(&version),
&data_size);
bool is_nt_10 = (result == ERROR_SUCCESS);
// Now, get ready for the counter names and indexes.
char* counter_value_name;
auto_hkey counter_autohkey;
HKEY counter_hkey;
if (is_nt_10) {
// NT 1.0, so make hKey2 point to ...\perflib\009 and get
// the counters from value "Counters"
counter_value_name = TEXT("Counters");
result = ::RegOpenKeyEx(HKEY_LOCAL_MACHINE,
TEXT("software\\microsoft\\windows nt\\currentversion\\perflib\\009"),
0,
KEY_READ,
getter_Acquires(counter_autohkey));
if (result != ERROR_SUCCESS)
return result;
counter_hkey = counter_autohkey;
}
else {
// NT 1.0a or later. Get the counters in key HKEY_PERFORMANCE_KEY
// and from value "Counter 009"
counter_value_name = TEXT("Counter 009");
counter_hkey = HKEY_PERFORMANCE_DATA;
}
// Find out the size of the data.
result = ::RegQueryValueEx(counter_hkey,
counter_value_name,
0,
&type,
0,
&data_size);
if (result != ERROR_SUCCESS)
return result;
// Allocate memory
buffer = new char[data_size];
titles = new char*[last_title_index + 1];
for (int i = 0; i <= last_title_index; ++i)
titles[i] = 0;
// Query the data
result = ::RegQueryValueEx(counter_hkey,
counter_value_name,
0,
&type,
reinterpret_cast<BYTE*>(buffer),
&data_size);
if (result != ERROR_SUCCESS)
return result;
// Setup the titles array of pointers to point to beginning of
// each title string.
char* title = buffer;
int len;
while (len = lstrlen(title)) {
int index = atoi(title);
title += len + 1;
if (index <= last_title_index)
titles[index] = title;
#ifdef DEBUG
printf("%d=%s\n", index, title);
#endif
title += lstrlen(title) + 1;
}
return ERROR_SUCCESS;
}
static void
init_entries()
{
char* buffer;
char** titles;
int last = 0;
DWORD result = get_perf_titles(buffer, titles, last);
assert(result == ERROR_SUCCESS);
for (entry_t* entry = entries; entry->e_key != 0; ++entry) {
for (int index = 0; index <= last; ++index) {
if (titles[index] && 0 == lstrcmpi(titles[index], entry->e_title)) {
entry->e_index = index;
break;
}
}
if (entry->e_index == 0) {
fprintf(stderr, "warning: unable to find index for ``%s''\n", entry->e_title);
}
}
delete[] buffer;
delete[] titles;
}
static DWORD
get_perf_data(HKEY perf_hkey, char* object_index, PERF_DATA_BLOCK** data, DWORD* size)
{
if (! *data)
*data = reinterpret_cast<PERF_DATA_BLOCK*>(new char[*size]);
DWORD result;
while (1) {
DWORD type;
DWORD real_size = *size;
result = ::RegQueryValueEx(perf_hkey,
object_index,
0,
&type,
reinterpret_cast<BYTE*>(*data),
&real_size);
if (result != ERROR_MORE_DATA)
break;
delete[] *data;
*size += 1024;
*data = reinterpret_cast<PERF_DATA_BLOCK*>(new char[*size]);
if (! *data)
return ERROR_NOT_ENOUGH_MEMORY;
}
return result;
}
static const PERF_OBJECT_TYPE*
first_object(const PERF_DATA_BLOCK* data)
{
return data
? reinterpret_cast<const PERF_OBJECT_TYPE*>(reinterpret_cast<const char*>(data) + data->HeaderLength)
: 0;
}
static const PERF_OBJECT_TYPE*
next_object(const PERF_OBJECT_TYPE* object)
{
return object
? reinterpret_cast<const PERF_OBJECT_TYPE*>(reinterpret_cast<const char*>(object) + object->TotalByteLength)
: 0;
}
const PERF_OBJECT_TYPE*
find_object(const PERF_DATA_BLOCK* data, DWORD index)
{
const PERF_OBJECT_TYPE* object = first_object(data);
if (! object)
return 0;
for (int i = 0; i < data->NumObjectTypes; ++i) {
if (object->ObjectNameTitleIndex == index)
return object;
object = next_object(object);
}
return 0;
}
static const PERF_COUNTER_DEFINITION*
first_counter(const PERF_OBJECT_TYPE* object)
{
return object
? reinterpret_cast<const PERF_COUNTER_DEFINITION*>(reinterpret_cast<const char*>(object) + object->HeaderLength)
: 0;
}
static const PERF_COUNTER_DEFINITION*
next_counter(const PERF_COUNTER_DEFINITION* counter)
{
return counter ?
reinterpret_cast<const PERF_COUNTER_DEFINITION*>(reinterpret_cast<const char*>(counter) + counter->ByteLength)
: 0;
}
static const PERF_COUNTER_DEFINITION*
find_counter(const PERF_OBJECT_TYPE* object, int index)
{
const PERF_COUNTER_DEFINITION* counter =
first_counter(object);
if (! counter)
return 0;
for (int i; i < object->NumCounters; ++i) {
if (counter->CounterNameTitleIndex == index)
return counter;
counter = next_counter(counter);
}
return 0;
}
static const PERF_INSTANCE_DEFINITION*
first_instance(const PERF_OBJECT_TYPE* object)
{
return object
? reinterpret_cast<const PERF_INSTANCE_DEFINITION*>(reinterpret_cast<const char*>(object) + object->DefinitionLength)
: 0;
}
static const PERF_INSTANCE_DEFINITION*
next_instance(const PERF_INSTANCE_DEFINITION* instance)
{
if (instance) {
const PERF_COUNTER_BLOCK* counter_block =
reinterpret_cast<const PERF_COUNTER_BLOCK*>(reinterpret_cast<const char*>(instance) + instance->ByteLength);
return reinterpret_cast<const PERF_INSTANCE_DEFINITION*>(reinterpret_cast<const char*>(counter_block) + counter_block->ByteLength);
}
else {
return 0;
}
}
static const wchar_t*
instance_name(const PERF_INSTANCE_DEFINITION* instance)
{
return instance
? reinterpret_cast<const wchar_t*>(reinterpret_cast<const char*>(instance) + instance->NameOffset)
: 0;
}
static const void*
counter_data(const PERF_INSTANCE_DEFINITION* instance,
const PERF_COUNTER_DEFINITION* counter)
{
if (counter && instance) {
const PERF_COUNTER_BLOCK* counter_block;
counter_block = reinterpret_cast<const PERF_COUNTER_BLOCK*>(reinterpret_cast<const char*>(instance) + instance->ByteLength);
return reinterpret_cast<const char*>(counter_block) + counter->CounterOffset;
}
else {
return 0;
}
}
static bool
list_process(PERF_DATA_BLOCK* perf_data, wchar_t* process_name)
{
const PERF_OBJECT_TYPE* process = find_object(perf_data, key_for_index(PN_PROCESS));
const PERF_COUNTER_DEFINITION* working_set = find_counter(process, key_for_index(PN_PROCESS_WORKING_SET));
const PERF_COUNTER_DEFINITION* peak_working_set = find_counter(process, key_for_index(PN_PROCESS_PEAK_WS));
const PERF_COUNTER_DEFINITION* private_page = find_counter(process, key_for_index(PN_PROCESS_PRIVATE_PAGE));
const PERF_COUNTER_DEFINITION* virtual_size = find_counter(process, key_for_index(PN_PROCESS_VIRTUAL_SIZE));
const PERF_INSTANCE_DEFINITION* instance = first_instance(process);
int index = 0;
bool found = false;
while (instance && index < process->NumInstances) {
const wchar_t* name = instance_name(instance);
if (lstrcmpW(process_name, name) == 0) {
printf("%d %d %d %d\n",
*(static_cast<const int*>(counter_data(instance, working_set))),
*(static_cast<const int*>(counter_data(instance, peak_working_set))),
*(static_cast<const int*>(counter_data(instance, private_page))),
*(static_cast<const int*>(counter_data(instance, virtual_size))));
found = true;
}
instance = next_instance(instance);
++index;
}
if (found) {
#if 0
// Dig up address space data.
PERF_OBJECT_TYPE* address_space = FindObject(costly_data, PX_PROCESS_ADDRESS_SPACE);
PERF_COUNTER_DEFINITION* image_executable = FindCounter(process, PX_PROCESS_IMAGE_EXECUTABLE);
PERF_COUNTER_DEFINITION* image_exe_readonly = FindCounter(process, PX_PROCESS_IMAGE_EXE_READONLY);
PERF_COUNTER_DEFINITION* image_exe_readwrite = FindCounter(process, PX_PROCESS_IMAGE_EXE_READWRITE);
PERF_COUNTER_DEFINITION* image_exe_writecopy = FindCounter(process, PX_PROCESS_IMAGE_EXE_WRITECOPY);
#endif
}
return found;
}
int
main(int argc, char* argv[])
{
wchar_t process_name[32];
int interval = 10000; // msec
int i = 0;
while (++i < argc) {
if (argv[i][0] != '-')
break;
switch (argv[i][1]) {
case 'i':
interval = atoi(argv[++i]) * 1000;
break;
default:
fprintf(stderr, "unknown option `%c'\n", argv[i][1]);
exit(1);
}
}
if (argv[i]) {
char* p = argv[i];
wchar_t* q = process_name;
while (*q++ = wchar_t(*p++))
continue;
}
else {
fprintf(stderr, "no image name specified\n");
exit(1);
}
init_entries();
PERF_DATA_BLOCK* perf_data = 0;
PERF_DATA_BLOCK* costly_data = 0;
DWORD perf_data_size = 50 * 1024;
DWORD costly_data_size = 100 * 1024;
do {
char buf[64];
sprintf(buf, "%ld %ld",
key_for_index(PN_PROCESS),
key_for_index(PN_THREAD));
get_perf_data(HKEY_PERFORMANCE_DATA, buf, &perf_data, &perf_data_size);
#if 0
sprintf(buf, "%ld %ld %ld",
key_for_index(PN_PROCESS_ADDRESS_SPACE),
key_for_index(PN_IMAGE),
key_for_index(PN_THREAD_DETAILS));
get_perf_data(HKEY_PERFORMANCE_DATA, buf, &costly_data, &costly_data_size);
#endif
if (! list_process(perf_data, process_name))
break;
_sleep(interval);
} while (1);
return 0;
}