зеркало из https://github.com/mozilla/gecko-dev.git
116 строки
2.9 KiB
C++
116 строки
2.9 KiB
C++
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
|
|
* You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include <math.h>
|
|
|
|
#include "mozilla/Assertions.h"
|
|
#include "mozilla/PodOperations.h"
|
|
#include "mozilla/XorShift128PlusRNG.h"
|
|
|
|
using mozilla::non_crypto::XorShift128PlusRNG;
|
|
|
|
static void
|
|
TestDumbSequence()
|
|
{
|
|
XorShift128PlusRNG rng(1, 4);
|
|
|
|
// Calculated by hand following the algorithm given in the paper. The upper
|
|
// bits are mostly zero because we started with a poor seed; once it has run
|
|
// for a while, we'll get an even mix of ones and zeros in all 64 bits.
|
|
MOZ_RELEASE_ASSERT(rng.next() == 0x800049);
|
|
MOZ_RELEASE_ASSERT(rng.next() == 0x3000186);
|
|
MOZ_RELEASE_ASSERT(rng.next() == 0x400003001145);
|
|
|
|
// Using ldexp here lets us write out the mantissa in hex, so we can compare
|
|
// them with the results generated by hand.
|
|
MOZ_RELEASE_ASSERT(rng.nextDouble()
|
|
== ldexp(static_cast<double>(0x1400003105049), -53));
|
|
MOZ_RELEASE_ASSERT(rng.nextDouble()
|
|
== ldexp(static_cast<double>(0x2000802e49146), -53));
|
|
MOZ_RELEASE_ASSERT(rng.nextDouble()
|
|
== ldexp(static_cast<double>(0x248300468544d), -53));
|
|
}
|
|
|
|
static size_t
|
|
Population(uint64_t n)
|
|
{
|
|
size_t pop = 0;
|
|
|
|
while (n > 0) {
|
|
n &= n-1; // Clear the rightmost 1-bit in n.
|
|
pop++;
|
|
}
|
|
|
|
return pop;
|
|
}
|
|
|
|
static void
|
|
TestPopulation()
|
|
{
|
|
XorShift128PlusRNG rng(698079309544035222ULL, 6012389156611637584ULL);
|
|
|
|
// Give it some time to warm up; it should tend towards more
|
|
// even distributions of zeros and ones.
|
|
for (size_t i = 0; i < 40; i++)
|
|
rng.next();
|
|
|
|
for (size_t i = 0; i < 40; i++) {
|
|
size_t pop = Population(rng.next());
|
|
MOZ_RELEASE_ASSERT(24 <= pop && pop <= 40);
|
|
}
|
|
}
|
|
|
|
static void
|
|
TestSetState()
|
|
{
|
|
static const uint64_t seed[2] = { 1795644156779822404ULL, 14162896116325912595ULL };
|
|
XorShift128PlusRNG rng(seed[0], seed[1]);
|
|
|
|
const size_t n = 10;
|
|
uint64_t log[n];
|
|
|
|
for (size_t i = 0; i < n; i++)
|
|
log[i] = rng.next();
|
|
|
|
rng.setState(seed[0], seed[1]);
|
|
|
|
for (size_t i = 0; i < n; i++)
|
|
MOZ_RELEASE_ASSERT(log[i] == rng.next());
|
|
}
|
|
|
|
static void
|
|
TestDoubleDistribution()
|
|
{
|
|
XorShift128PlusRNG rng(0xa207aaede6859736, 0xaca6ca5060804791);
|
|
|
|
const size_t n = 100;
|
|
size_t bins[n];
|
|
mozilla::PodArrayZero(bins);
|
|
|
|
// This entire file runs in 0.006s on my laptop. Generating
|
|
// more numbers lets us put tighter bounds on the bins.
|
|
for (size_t i = 0; i < 100000; i++) {
|
|
double d = rng.nextDouble();
|
|
MOZ_RELEASE_ASSERT(0.0 <= d && d < 1.0);
|
|
bins[(int) (d * n)]++;
|
|
}
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
MOZ_RELEASE_ASSERT(900 <= bins[i] && bins[i] <= 1100);
|
|
}
|
|
}
|
|
|
|
int
|
|
main()
|
|
{
|
|
TestDumbSequence();
|
|
TestPopulation();
|
|
TestSetState();
|
|
TestDoubleDistribution();
|
|
|
|
return 0;
|
|
}
|