gecko-dev/third_party/aom/aom_dsp/ansreader.h

215 строки
6.1 KiB
C

/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_DSP_ANSREADER_H_
#define AOM_DSP_ANSREADER_H_
// An implementation of Asymmetric Numeral Systems
// http://arxiv.org/abs/1311.2540v2
// Implements decoding of:
// * rABS (range Asymmetric Binary Systems), a boolean coder
// * rANS (range Asymmetric Numeral Systems), a multi-symbol coder
#include <assert.h>
#include "./aom_config.h"
#include "aom/aom_integer.h"
#include "aom_dsp/prob.h"
#include "aom_dsp/ans.h"
#include "aom_ports/mem_ops.h"
#if CONFIG_ACCOUNTING
#include "av1/decoder/accounting.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
struct AnsDecoder {
const uint8_t *buf;
int buf_offset;
uint32_t state;
#if ANS_MAX_SYMBOLS
int symbols_left;
int window_size;
#endif
#if CONFIG_ACCOUNTING
Accounting *accounting;
#endif
};
static INLINE int ans_read_reinit(struct AnsDecoder *const ans);
static INLINE unsigned refill_state(struct AnsDecoder *const ans,
unsigned state) {
#if ANS_REVERSE
while (state < L_BASE && ans->buf_offset < 0) {
state = state * IO_BASE + ans->buf[ans->buf_offset++];
}
#else
while (state < L_BASE && ans->buf_offset > 0) {
state = state * IO_BASE + ans->buf[--ans->buf_offset];
}
#endif
return state;
}
// Decode one rABS encoded boolean where the probability of the value being zero
// is p0.
static INLINE int rabs_read(struct AnsDecoder *ans, AnsP8 p0) {
#if ANS_MAX_SYMBOLS
if (ans->symbols_left-- == 0) {
ans_read_reinit(ans);
ans->symbols_left--;
}
#endif
unsigned state = refill_state(ans, ans->state);
const unsigned quotient = state / ANS_P8_PRECISION;
const unsigned remainder = state % ANS_P8_PRECISION;
const int value = remainder >= p0;
const unsigned qp0 = quotient * p0;
if (value)
state = state - qp0 - p0;
else
state = qp0 + remainder;
ans->state = state;
return value;
}
// Decode one rABS encoded boolean where the probability of the value being zero
// is one half.
static INLINE int rabs_read_bit(struct AnsDecoder *ans) {
#if ANS_MAX_SYMBOLS
if (ans->symbols_left-- == 0) {
ans_read_reinit(ans);
ans->symbols_left--;
}
#endif
unsigned state = refill_state(ans, ans->state);
const int value = !!(state & 0x80);
ans->state = ((state >> 1) & ~0x7F) | (state & 0x7F);
return value;
}
struct rans_dec_sym {
uint8_t val;
aom_cdf_prob prob;
aom_cdf_prob cum_prob; // not-inclusive
};
static INLINE void fetch_sym(struct rans_dec_sym *out, const aom_cdf_prob *cdf,
aom_cdf_prob rem) {
int i;
aom_cdf_prob cum_prob = 0, top_prob;
// TODO(skal): if critical, could be a binary search.
// Or, better, an O(1) alias-table.
for (i = 0; rem >= (top_prob = cdf[i]); ++i) {
cum_prob = top_prob;
}
out->val = i;
out->prob = top_prob - cum_prob;
out->cum_prob = cum_prob;
}
static INLINE int rans_read(struct AnsDecoder *ans, const aom_cdf_prob *tab) {
unsigned rem;
unsigned quo;
struct rans_dec_sym sym;
#if ANS_MAX_SYMBOLS
if (ans->symbols_left-- == 0) {
ans_read_reinit(ans);
ans->symbols_left--;
}
#endif
ans->state = refill_state(ans, ans->state);
quo = ans->state / RANS_PRECISION;
rem = ans->state % RANS_PRECISION;
fetch_sym(&sym, tab, rem);
ans->state = quo * sym.prob + rem - sym.cum_prob;
return sym.val;
}
static INLINE int ans_read_init(struct AnsDecoder *const ans,
const uint8_t *const buf, int offset) {
unsigned x;
if (offset < 1) return 1;
#if ANS_REVERSE
ans->buf = buf + offset;
ans->buf_offset = -offset;
x = buf[0];
if ((x & 0x80) == 0) { // Marker is 0xxx xxxx
if (offset < 2) return 1;
ans->buf_offset += 2;
ans->state = mem_get_be16(buf) & 0x7FFF;
#if L_BASE * IO_BASE > (1 << 23)
} else if ((x & 0xC0) == 0x80) { // Marker is 10xx xxxx
if (offset < 3) return 1;
ans->buf_offset += 3;
ans->state = mem_get_be24(buf) & 0x3FFFFF;
} else { // Marker is 11xx xxxx
if (offset < 4) return 1;
ans->buf_offset += 4;
ans->state = mem_get_be32(buf) & 0x3FFFFFFF;
#else
} else { // Marker is 1xxx xxxx
if (offset < 3) return 1;
ans->buf_offset += 3;
ans->state = mem_get_be24(buf) & 0x7FFFFF;
#endif
}
#else
ans->buf = buf;
x = buf[offset - 1];
if ((x & 0x80) == 0) { // Marker is 0xxx xxxx
if (offset < 2) return 1;
ans->buf_offset = offset - 2;
ans->state = mem_get_le16(buf + offset - 2) & 0x7FFF;
} else if ((x & 0xC0) == 0x80) { // Marker is 10xx xxxx
if (offset < 3) return 1;
ans->buf_offset = offset - 3;
ans->state = mem_get_le24(buf + offset - 3) & 0x3FFFFF;
} else if ((x & 0xE0) == 0xE0) { // Marker is 111x xxxx
if (offset < 4) return 1;
ans->buf_offset = offset - 4;
ans->state = mem_get_le32(buf + offset - 4) & 0x1FFFFFFF;
} else {
// Marker 110x xxxx implies this byte is a superframe marker
return 1;
}
#endif // ANS_REVERSE
#if CONFIG_ACCOUNTING
ans->accounting = NULL;
#endif
ans->state += L_BASE;
if (ans->state >= L_BASE * IO_BASE) return 1;
#if ANS_MAX_SYMBOLS
assert(ans->window_size > 1);
ans->symbols_left = ans->window_size;
#endif
return 0;
}
#if ANS_REVERSE
static INLINE int ans_read_reinit(struct AnsDecoder *const ans) {
return ans_read_init(ans, ans->buf + ans->buf_offset, -ans->buf_offset);
}
#endif
static INLINE int ans_read_end(const struct AnsDecoder *const ans) {
return ans->buf_offset == 0 && ans->state < L_BASE;
}
static INLINE int ans_reader_has_error(const struct AnsDecoder *const ans) {
return ans->state < L_BASE / RANS_PRECISION;
}
#ifdef __cplusplus
} // extern "C"
#endif // __cplusplus
#endif // AOM_DSP_ANSREADER_H_