зеркало из https://github.com/mozilla/gecko-dev.git
124 строки
3.2 KiB
C++
124 строки
3.2 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*-
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "Matrix.h"
|
|
#include "Quaternion.h"
|
|
#include "Tools.h"
|
|
#include <algorithm>
|
|
#include <ostream>
|
|
#include <math.h>
|
|
#include <float.h> // for FLT_EPSILON
|
|
|
|
#include "mozilla/FloatingPoint.h" // for UnspecifiedNaN
|
|
|
|
using namespace std;
|
|
|
|
|
|
namespace mozilla {
|
|
namespace gfx {
|
|
|
|
/* Force small values to zero. We do this to avoid having sin(360deg)
|
|
* evaluate to a tiny but nonzero value.
|
|
*/
|
|
double
|
|
FlushToZero(double aVal)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
if (-FLT_EPSILON < aVal && aVal < FLT_EPSILON) {
|
|
return 0.0f;
|
|
} else {
|
|
return aVal;
|
|
}
|
|
}
|
|
|
|
/* Computes tan(aTheta). For values of aTheta such that tan(aTheta) is
|
|
* undefined or very large, SafeTangent returns a manageably large value
|
|
* of the correct sign.
|
|
*/
|
|
double
|
|
SafeTangent(double aTheta)
|
|
{
|
|
// XXX Is double precision really necessary here
|
|
const double kEpsilon = 0.0001;
|
|
|
|
/* tan(theta) = sin(theta)/cos(theta); problems arise when
|
|
* cos(theta) is too close to zero. Limit cos(theta) to the
|
|
* range [-1, -epsilon] U [epsilon, 1].
|
|
*/
|
|
|
|
double sinTheta = sin(aTheta);
|
|
double cosTheta = cos(aTheta);
|
|
|
|
if (cosTheta >= 0 && cosTheta < kEpsilon) {
|
|
cosTheta = kEpsilon;
|
|
} else if (cosTheta < 0 && cosTheta >= -kEpsilon) {
|
|
cosTheta = -kEpsilon;
|
|
}
|
|
return FlushToZero(sinTheta / cosTheta);
|
|
}
|
|
|
|
template<> Matrix
|
|
Matrix::Rotation(Float aAngle)
|
|
{
|
|
Matrix newMatrix;
|
|
|
|
Float s = sinf(aAngle);
|
|
Float c = cosf(aAngle);
|
|
|
|
newMatrix._11 = c;
|
|
newMatrix._12 = s;
|
|
newMatrix._21 = -s;
|
|
newMatrix._22 = c;
|
|
|
|
return newMatrix;
|
|
}
|
|
|
|
template<> MatrixDouble
|
|
MatrixDouble::Rotation(Double aAngle)
|
|
{
|
|
MatrixDouble newMatrix;
|
|
|
|
Double s = sin(aAngle);
|
|
Double c = cos(aAngle);
|
|
|
|
newMatrix._11 = c;
|
|
newMatrix._12 = s;
|
|
newMatrix._21 = -s;
|
|
newMatrix._22 = c;
|
|
|
|
return newMatrix;
|
|
}
|
|
|
|
template<> Matrix4x4
|
|
MatrixDouble::operator*(const Matrix4x4& aMatrix) const
|
|
{
|
|
Matrix4x4 resultMatrix;
|
|
|
|
resultMatrix._11 = this->_11 * aMatrix._11 + this->_12 * aMatrix._21;
|
|
resultMatrix._12 = this->_11 * aMatrix._12 + this->_12 * aMatrix._22;
|
|
resultMatrix._13 = this->_11 * aMatrix._13 + this->_12 * aMatrix._23;
|
|
resultMatrix._14 = this->_11 * aMatrix._14 + this->_12 * aMatrix._24;
|
|
|
|
resultMatrix._21 = this->_21 * aMatrix._11 + this->_22 * aMatrix._21;
|
|
resultMatrix._22 = this->_21 * aMatrix._12 + this->_22 * aMatrix._22;
|
|
resultMatrix._23 = this->_21 * aMatrix._13 + this->_22 * aMatrix._23;
|
|
resultMatrix._24 = this->_21 * aMatrix._14 + this->_22 * aMatrix._24;
|
|
|
|
resultMatrix._31 = aMatrix._31;
|
|
resultMatrix._32 = aMatrix._32;
|
|
resultMatrix._33 = aMatrix._33;
|
|
resultMatrix._34 = aMatrix._34;
|
|
|
|
resultMatrix._41 = this->_31 * aMatrix._11 + this->_32 * aMatrix._21 + aMatrix._41;
|
|
resultMatrix._42 = this->_31 * aMatrix._12 + this->_32 * aMatrix._22 + aMatrix._42;
|
|
resultMatrix._43 = this->_31 * aMatrix._13 + this->_32 * aMatrix._23 + aMatrix._43;
|
|
resultMatrix._44 = this->_31 * aMatrix._14 + this->_32 * aMatrix._24 + aMatrix._44;
|
|
|
|
return resultMatrix;
|
|
}
|
|
|
|
} // namespace gfx
|
|
} // namespace mozilla
|