зеркало из https://github.com/mozilla/gecko-dev.git
1456 строки
41 KiB
C
1456 строки
41 KiB
C
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
/*
|
|
* RSA PKCS#1 v2.1 (RFC 3447) operations
|
|
*/
|
|
|
|
#ifdef FREEBL_NO_DEPEND
|
|
#include "stubs.h"
|
|
#endif
|
|
|
|
#include "secerr.h"
|
|
|
|
#include "blapi.h"
|
|
#include "secitem.h"
|
|
#include "blapii.h"
|
|
|
|
#define RSA_BLOCK_MIN_PAD_LEN 8
|
|
#define RSA_BLOCK_FIRST_OCTET 0x00
|
|
#define RSA_BLOCK_PRIVATE_PAD_OCTET 0xff
|
|
#define RSA_BLOCK_AFTER_PAD_OCTET 0x00
|
|
|
|
/*
|
|
* RSA block types
|
|
*
|
|
* The values of RSA_BlockPrivate and RSA_BlockPublic are fixed.
|
|
* The value of RSA_BlockRaw isn't fixed by definition, but we are keeping
|
|
* the value that NSS has been using in the past.
|
|
*/
|
|
typedef enum {
|
|
RSA_BlockPrivate = 1, /* pad for a private-key operation */
|
|
RSA_BlockPublic = 2, /* pad for a public-key operation */
|
|
RSA_BlockRaw = 4 /* simply justify the block appropriately */
|
|
} RSA_BlockType;
|
|
|
|
/* Needed for RSA-PSS functions */
|
|
static const unsigned char eightZeros[] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
/* Constant time comparison of a single byte.
|
|
* Returns 1 iff a == b, otherwise returns 0.
|
|
* Note: For ranges of bytes, use constantTimeCompare.
|
|
*/
|
|
static unsigned char
|
|
constantTimeEQ8(unsigned char a, unsigned char b)
|
|
{
|
|
unsigned char c = ~((a - b) | (b - a));
|
|
c >>= 7;
|
|
return c;
|
|
}
|
|
|
|
/* Constant time comparison of a range of bytes.
|
|
* Returns 1 iff len bytes of a are identical to len bytes of b, otherwise
|
|
* returns 0.
|
|
*/
|
|
static unsigned char
|
|
constantTimeCompare(const unsigned char *a,
|
|
const unsigned char *b,
|
|
unsigned int len)
|
|
{
|
|
unsigned char tmp = 0;
|
|
unsigned int i;
|
|
for (i = 0; i < len; ++i, ++a, ++b)
|
|
tmp |= *a ^ *b;
|
|
return constantTimeEQ8(0x00, tmp);
|
|
}
|
|
|
|
/* Constant time conditional.
|
|
* Returns a if c is 1, or b if c is 0. The result is undefined if c is
|
|
* not 0 or 1.
|
|
*/
|
|
static unsigned int
|
|
constantTimeCondition(unsigned int c,
|
|
unsigned int a,
|
|
unsigned int b)
|
|
{
|
|
return (~(c - 1) & a) | ((c - 1) & b);
|
|
}
|
|
|
|
static unsigned int
|
|
rsa_modulusLen(SECItem *modulus)
|
|
{
|
|
unsigned char byteZero = modulus->data[0];
|
|
unsigned int modLen = modulus->len - !byteZero;
|
|
return modLen;
|
|
}
|
|
|
|
static unsigned int
|
|
rsa_modulusBits(SECItem *modulus)
|
|
{
|
|
unsigned char byteZero = modulus->data[0];
|
|
unsigned int numBits = (modulus->len - 1) * 8;
|
|
|
|
if (byteZero == 0) {
|
|
numBits -= 8;
|
|
byteZero = modulus->data[1];
|
|
}
|
|
|
|
while (byteZero > 0) {
|
|
numBits++;
|
|
byteZero >>= 1;
|
|
}
|
|
|
|
return numBits;
|
|
}
|
|
|
|
/*
|
|
* Format one block of data for public/private key encryption using
|
|
* the rules defined in PKCS #1.
|
|
*/
|
|
static unsigned char *
|
|
rsa_FormatOneBlock(unsigned modulusLen,
|
|
RSA_BlockType blockType,
|
|
SECItem *data)
|
|
{
|
|
unsigned char *block;
|
|
unsigned char *bp;
|
|
int padLen;
|
|
int i, j;
|
|
SECStatus rv;
|
|
|
|
block = (unsigned char *)PORT_Alloc(modulusLen);
|
|
if (block == NULL)
|
|
return NULL;
|
|
|
|
bp = block;
|
|
|
|
/*
|
|
* All RSA blocks start with two octets:
|
|
* 0x00 || BlockType
|
|
*/
|
|
*bp++ = RSA_BLOCK_FIRST_OCTET;
|
|
*bp++ = (unsigned char)blockType;
|
|
|
|
switch (blockType) {
|
|
|
|
/*
|
|
* Blocks intended for private-key operation.
|
|
*/
|
|
case RSA_BlockPrivate: /* preferred method */
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
* 1 1 padLen 1 data->len
|
|
* Pad is either all 0x00 or all 0xff bytes, depending on blockType.
|
|
*/
|
|
padLen = modulusLen - data->len - 3;
|
|
PORT_Assert(padLen >= RSA_BLOCK_MIN_PAD_LEN);
|
|
if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
|
|
PORT_Free(block);
|
|
return NULL;
|
|
}
|
|
PORT_Memset(bp, RSA_BLOCK_PRIVATE_PAD_OCTET, padLen);
|
|
bp += padLen;
|
|
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
|
|
PORT_Memcpy(bp, data->data, data->len);
|
|
break;
|
|
|
|
/*
|
|
* Blocks intended for public-key operation.
|
|
*/
|
|
case RSA_BlockPublic:
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
* 1 1 padLen 1 data->len
|
|
* Pad is all non-zero random bytes.
|
|
*
|
|
* Build the block left to right.
|
|
* Fill the entire block from Pad to the end with random bytes.
|
|
* Use the bytes after Pad as a supply of extra random bytes from
|
|
* which to find replacements for the zero bytes in Pad.
|
|
* If we need more than that, refill the bytes after Pad with
|
|
* new random bytes as necessary.
|
|
*/
|
|
padLen = modulusLen - (data->len + 3);
|
|
PORT_Assert(padLen >= RSA_BLOCK_MIN_PAD_LEN);
|
|
if (padLen < RSA_BLOCK_MIN_PAD_LEN) {
|
|
PORT_Free(block);
|
|
return NULL;
|
|
}
|
|
j = modulusLen - 2;
|
|
rv = RNG_GenerateGlobalRandomBytes(bp, j);
|
|
if (rv == SECSuccess) {
|
|
for (i = 0; i < padLen;) {
|
|
unsigned char repl;
|
|
/* Pad with non-zero random data. */
|
|
if (bp[i] != RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
++i;
|
|
continue;
|
|
}
|
|
if (j <= padLen) {
|
|
rv = RNG_GenerateGlobalRandomBytes(bp + padLen,
|
|
modulusLen - (2 + padLen));
|
|
if (rv != SECSuccess)
|
|
break;
|
|
j = modulusLen - 2;
|
|
}
|
|
do {
|
|
repl = bp[--j];
|
|
} while (repl == RSA_BLOCK_AFTER_PAD_OCTET && j > padLen);
|
|
if (repl != RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
bp[i++] = repl;
|
|
}
|
|
}
|
|
}
|
|
if (rv != SECSuccess) {
|
|
PORT_Free(block);
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
return NULL;
|
|
}
|
|
bp += padLen;
|
|
*bp++ = RSA_BLOCK_AFTER_PAD_OCTET;
|
|
PORT_Memcpy(bp, data->data, data->len);
|
|
break;
|
|
|
|
default:
|
|
PORT_Assert(0);
|
|
PORT_Free(block);
|
|
return NULL;
|
|
}
|
|
|
|
return block;
|
|
}
|
|
|
|
static SECStatus
|
|
rsa_FormatBlock(SECItem *result,
|
|
unsigned modulusLen,
|
|
RSA_BlockType blockType,
|
|
SECItem *data)
|
|
{
|
|
switch (blockType) {
|
|
case RSA_BlockPrivate:
|
|
case RSA_BlockPublic:
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
*
|
|
* The "3" below is the first octet + the second octet + the 0x00
|
|
* octet that always comes just before the ActualData.
|
|
*/
|
|
PORT_Assert(data->len <= (modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN)));
|
|
|
|
result->data = rsa_FormatOneBlock(modulusLen, blockType, data);
|
|
if (result->data == NULL) {
|
|
result->len = 0;
|
|
return SECFailure;
|
|
}
|
|
result->len = modulusLen;
|
|
|
|
break;
|
|
|
|
case RSA_BlockRaw:
|
|
/*
|
|
* Pad || ActualData
|
|
* Pad is zeros. The application is responsible for recovering
|
|
* the actual data.
|
|
*/
|
|
if (data->len > modulusLen) {
|
|
return SECFailure;
|
|
}
|
|
result->data = (unsigned char *)PORT_ZAlloc(modulusLen);
|
|
result->len = modulusLen;
|
|
PORT_Memcpy(result->data + (modulusLen - data->len),
|
|
data->data, data->len);
|
|
break;
|
|
|
|
default:
|
|
PORT_Assert(0);
|
|
result->data = NULL;
|
|
result->len = 0;
|
|
return SECFailure;
|
|
}
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Mask generation function MGF1 as defined in PKCS #1 v2.1 / RFC 3447.
|
|
*/
|
|
static SECStatus
|
|
MGF1(HASH_HashType hashAlg,
|
|
unsigned char *mask,
|
|
unsigned int maskLen,
|
|
const unsigned char *mgfSeed,
|
|
unsigned int mgfSeedLen)
|
|
{
|
|
unsigned int digestLen;
|
|
PRUint32 counter;
|
|
PRUint32 rounds;
|
|
unsigned char *tempHash;
|
|
unsigned char *temp;
|
|
const SECHashObject *hash;
|
|
void *hashContext;
|
|
unsigned char C[4];
|
|
SECStatus rv = SECSuccess;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
if (hash == NULL) {
|
|
return SECFailure;
|
|
}
|
|
|
|
hashContext = (*hash->create)();
|
|
rounds = (maskLen + hash->length - 1) / hash->length;
|
|
for (counter = 0; counter < rounds; counter++) {
|
|
C[0] = (unsigned char)((counter >> 24) & 0xff);
|
|
C[1] = (unsigned char)((counter >> 16) & 0xff);
|
|
C[2] = (unsigned char)((counter >> 8) & 0xff);
|
|
C[3] = (unsigned char)(counter & 0xff);
|
|
|
|
/* This could be optimized when the clone functions in
|
|
* rawhash.c are implemented. */
|
|
(*hash->begin)(hashContext);
|
|
(*hash->update)(hashContext, mgfSeed, mgfSeedLen);
|
|
(*hash->update)(hashContext, C, sizeof C);
|
|
|
|
tempHash = mask + counter * hash->length;
|
|
if (counter != (rounds - 1)) {
|
|
(*hash->end)(hashContext, tempHash, &digestLen, hash->length);
|
|
} else { /* we're in the last round and need to cut the hash */
|
|
temp = (unsigned char *)PORT_Alloc(hash->length);
|
|
if (!temp) {
|
|
rv = SECFailure;
|
|
goto done;
|
|
}
|
|
(*hash->end)(hashContext, temp, &digestLen, hash->length);
|
|
PORT_Memcpy(tempHash, temp, maskLen - counter * hash->length);
|
|
PORT_Free(temp);
|
|
}
|
|
}
|
|
|
|
done:
|
|
(*hash->destroy)(hashContext, PR_TRUE);
|
|
return rv;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_SignRaw(RSAPrivateKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *data,
|
|
unsigned int dataLen)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
if (maxOutputLen < modulusLen)
|
|
return SECFailure;
|
|
|
|
unformatted.len = dataLen;
|
|
unformatted.data = (unsigned char *)data;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockRaw, &unformatted);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
|
|
rv = RSA_PrivateKeyOpDoubleChecked(key, output, formatted.data);
|
|
*outputLen = modulusLen;
|
|
|
|
done:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulusLen);
|
|
return rv;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_CheckSignRaw(RSAPublicKey *key,
|
|
const unsigned char *sig,
|
|
unsigned int sigLen,
|
|
const unsigned char *hash,
|
|
unsigned int hashLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned char *buffer;
|
|
|
|
if (sigLen != modulusLen)
|
|
goto failure;
|
|
if (hashLen > modulusLen)
|
|
goto failure;
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
|
|
if (!buffer)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(key, buffer, sig);
|
|
if (rv != SECSuccess)
|
|
goto loser;
|
|
|
|
/*
|
|
* make sure we get the same results
|
|
*/
|
|
/* XXX(rsleevi): Constant time */
|
|
/* NOTE: should we verify the leading zeros? */
|
|
if (PORT_Memcmp(buffer + (modulusLen - hashLen), hash, hashLen) != 0)
|
|
goto loser;
|
|
|
|
PORT_Free(buffer);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_Free(buffer);
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_CheckSignRecoverRaw(RSAPublicKey *key,
|
|
unsigned char *data,
|
|
unsigned int *dataLen,
|
|
unsigned int maxDataLen,
|
|
const unsigned char *sig,
|
|
unsigned int sigLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
|
|
if (sigLen != modulusLen)
|
|
goto failure;
|
|
if (maxDataLen < modulusLen)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(key, data, sig);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
*dataLen = modulusLen;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_EncryptRaw(RSAPublicKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
formatted.data = NULL;
|
|
if (maxOutputLen < modulusLen)
|
|
goto failure;
|
|
|
|
unformatted.len = inputLen;
|
|
unformatted.data = (unsigned char *)input;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockRaw, &unformatted);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(key, output, formatted.data);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
PORT_ZFree(formatted.data, modulusLen);
|
|
*outputLen = modulusLen;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulusLen);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_DecryptRaw(RSAPrivateKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
|
|
if (modulusLen > maxOutputLen)
|
|
goto failure;
|
|
if (inputLen != modulusLen)
|
|
goto failure;
|
|
|
|
rv = RSA_PrivateKeyOp(key, output, input);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
*outputLen = modulusLen;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* Decodes an EME-OAEP encoded block, validating the encoding in constant
|
|
* time.
|
|
* Described in RFC 3447, section 7.1.2.
|
|
* input contains the encoded block, after decryption.
|
|
* label is the optional value L that was associated with the message.
|
|
* On success, the original message and message length will be stored in
|
|
* output and outputLen.
|
|
*/
|
|
static SECStatus
|
|
eme_oaep_decode(unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
const unsigned char *label,
|
|
unsigned int labelLen)
|
|
{
|
|
const SECHashObject *hash;
|
|
void *hashContext;
|
|
SECStatus rv = SECFailure;
|
|
unsigned char labelHash[HASH_LENGTH_MAX];
|
|
unsigned int i;
|
|
unsigned int maskLen;
|
|
unsigned int paddingOffset;
|
|
unsigned char *mask = NULL;
|
|
unsigned char *tmpOutput = NULL;
|
|
unsigned char isGood;
|
|
unsigned char foundPaddingEnd;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
|
|
/* 1.c */
|
|
if (inputLen < (hash->length * 2) + 2) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 3.a - Generate lHash */
|
|
hashContext = (*hash->create)();
|
|
if (hashContext == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
(*hash->begin)(hashContext);
|
|
if (labelLen > 0)
|
|
(*hash->update)(hashContext, label, labelLen);
|
|
(*hash->end)(hashContext, labelHash, &i, sizeof(labelHash));
|
|
(*hash->destroy)(hashContext, PR_TRUE);
|
|
|
|
tmpOutput = (unsigned char *)PORT_Alloc(inputLen);
|
|
if (tmpOutput == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
goto done;
|
|
}
|
|
|
|
maskLen = inputLen - hash->length - 1;
|
|
mask = (unsigned char *)PORT_Alloc(maskLen);
|
|
if (mask == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
goto done;
|
|
}
|
|
|
|
PORT_Memcpy(tmpOutput, input, inputLen);
|
|
|
|
/* 3.c - Generate seedMask */
|
|
MGF1(maskHashAlg, mask, hash->length, &tmpOutput[1 + hash->length],
|
|
inputLen - hash->length - 1);
|
|
/* 3.d - Unmask seed */
|
|
for (i = 0; i < hash->length; ++i)
|
|
tmpOutput[1 + i] ^= mask[i];
|
|
|
|
/* 3.e - Generate dbMask */
|
|
MGF1(maskHashAlg, mask, maskLen, &tmpOutput[1], hash->length);
|
|
/* 3.f - Unmask DB */
|
|
for (i = 0; i < maskLen; ++i)
|
|
tmpOutput[1 + hash->length + i] ^= mask[i];
|
|
|
|
/* 3.g - Compare Y, lHash, and PS in constant time
|
|
* Warning: This code is timing dependent and must not disclose which of
|
|
* these were invalid.
|
|
*/
|
|
paddingOffset = 0;
|
|
isGood = 1;
|
|
foundPaddingEnd = 0;
|
|
|
|
/* Compare Y */
|
|
isGood &= constantTimeEQ8(0x00, tmpOutput[0]);
|
|
|
|
/* Compare lHash and lHash' */
|
|
isGood &= constantTimeCompare(&labelHash[0],
|
|
&tmpOutput[1 + hash->length],
|
|
hash->length);
|
|
|
|
/* Compare that the padding is zero or more zero octets, followed by a
|
|
* 0x01 octet */
|
|
for (i = 1 + (hash->length * 2); i < inputLen; ++i) {
|
|
unsigned char isZero = constantTimeEQ8(0x00, tmpOutput[i]);
|
|
unsigned char isOne = constantTimeEQ8(0x01, tmpOutput[i]);
|
|
/* non-constant time equivalent:
|
|
* if (tmpOutput[i] == 0x01 && !foundPaddingEnd)
|
|
* paddingOffset = i;
|
|
*/
|
|
paddingOffset = constantTimeCondition(isOne & ~foundPaddingEnd, i,
|
|
paddingOffset);
|
|
/* non-constant time equivalent:
|
|
* if (tmpOutput[i] == 0x01)
|
|
* foundPaddingEnd = true;
|
|
*
|
|
* Note: This may yield false positives, as it will be set whenever
|
|
* a 0x01 byte is encountered. If there was bad padding (eg:
|
|
* 0x03 0x02 0x01), foundPaddingEnd will still be set to true, and
|
|
* paddingOffset will still be set to 2.
|
|
*/
|
|
foundPaddingEnd = constantTimeCondition(isOne, 1, foundPaddingEnd);
|
|
/* non-constant time equivalent:
|
|
* if (tmpOutput[i] != 0x00 && tmpOutput[i] != 0x01 &&
|
|
* !foundPaddingEnd) {
|
|
* isGood = false;
|
|
* }
|
|
*
|
|
* Note: This may yield false positives, as a message (and padding)
|
|
* that is entirely zeros will result in isGood still being true. Thus
|
|
* it's necessary to check foundPaddingEnd is positive below.
|
|
*/
|
|
isGood = constantTimeCondition(~foundPaddingEnd & ~isZero, 0, isGood);
|
|
}
|
|
|
|
/* While both isGood and foundPaddingEnd may have false positives, they
|
|
* cannot BOTH have false positives. If both are not true, then an invalid
|
|
* message was received. Note, this comparison must still be done in constant
|
|
* time so as not to leak either condition.
|
|
*/
|
|
if (!(isGood & foundPaddingEnd)) {
|
|
PORT_SetError(SEC_ERROR_BAD_DATA);
|
|
goto done;
|
|
}
|
|
|
|
/* End timing dependent code */
|
|
|
|
++paddingOffset; /* Skip the 0x01 following the end of PS */
|
|
|
|
*outputLen = inputLen - paddingOffset;
|
|
if (*outputLen > maxOutputLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
goto done;
|
|
}
|
|
|
|
if (*outputLen)
|
|
PORT_Memcpy(output, &tmpOutput[paddingOffset], *outputLen);
|
|
rv = SECSuccess;
|
|
|
|
done:
|
|
if (mask)
|
|
PORT_ZFree(mask, maskLen);
|
|
if (tmpOutput)
|
|
PORT_ZFree(tmpOutput, inputLen);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Generate an EME-OAEP encoded block for encryption
|
|
* Described in RFC 3447, section 7.1.1
|
|
* We use input instead of M for the message to be encrypted
|
|
* label is the optional value L to be associated with the message.
|
|
*/
|
|
static SECStatus
|
|
eme_oaep_encode(unsigned char *em,
|
|
unsigned int emLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
const unsigned char *label,
|
|
unsigned int labelLen,
|
|
const unsigned char *seed,
|
|
unsigned int seedLen)
|
|
{
|
|
const SECHashObject *hash;
|
|
void *hashContext;
|
|
SECStatus rv;
|
|
unsigned char *mask;
|
|
unsigned int reservedLen;
|
|
unsigned int dbMaskLen;
|
|
unsigned int i;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
PORT_Assert(seed == NULL || seedLen == hash->length);
|
|
|
|
/* Step 1.b */
|
|
reservedLen = (2 * hash->length) + 2;
|
|
if (emLen < reservedLen || inputLen > (emLen - reservedLen)) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* From RFC 3447, Section 7.1
|
|
* +----------+---------+-------+
|
|
* DB = | lHash | PS | M |
|
|
* +----------+---------+-------+
|
|
* |
|
|
* +----------+ V
|
|
* | seed |--> MGF ---> xor
|
|
* +----------+ |
|
|
* | |
|
|
* +--+ V |
|
|
* |00| xor <----- MGF <-----|
|
|
* +--+ | |
|
|
* | | |
|
|
* V V V
|
|
* +--+----------+----------------------------+
|
|
* EM = |00|maskedSeed| maskedDB |
|
|
* +--+----------+----------------------------+
|
|
*
|
|
* We use mask to hold the result of the MGF functions, and all other
|
|
* values are generated in their final resting place.
|
|
*/
|
|
*em = 0x00;
|
|
|
|
/* Step 2.a - Generate lHash */
|
|
hashContext = (*hash->create)();
|
|
if (hashContext == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
(*hash->begin)(hashContext);
|
|
if (labelLen > 0)
|
|
(*hash->update)(hashContext, label, labelLen);
|
|
(*hash->end)(hashContext, &em[1 + hash->length], &i, hash->length);
|
|
(*hash->destroy)(hashContext, PR_TRUE);
|
|
|
|
/* Step 2.b - Generate PS */
|
|
if (emLen - reservedLen - inputLen > 0) {
|
|
PORT_Memset(em + 1 + (hash->length * 2), 0x00,
|
|
emLen - reservedLen - inputLen);
|
|
}
|
|
|
|
/* Step 2.c. - Generate DB
|
|
* DB = lHash || PS || 0x01 || M
|
|
* Note that PS and lHash have already been placed into em at their
|
|
* appropriate offsets. This just copies M into place
|
|
*/
|
|
em[emLen - inputLen - 1] = 0x01;
|
|
if (inputLen)
|
|
PORT_Memcpy(em + emLen - inputLen, input, inputLen);
|
|
|
|
if (seed == NULL) {
|
|
/* Step 2.d - Generate seed */
|
|
rv = RNG_GenerateGlobalRandomBytes(em + 1, hash->length);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
} else {
|
|
/* For Known Answer Tests, copy the supplied seed. */
|
|
PORT_Memcpy(em + 1, seed, seedLen);
|
|
}
|
|
|
|
/* Step 2.e - Generate dbMask*/
|
|
dbMaskLen = emLen - hash->length - 1;
|
|
mask = (unsigned char *)PORT_Alloc(dbMaskLen);
|
|
if (mask == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
MGF1(maskHashAlg, mask, dbMaskLen, em + 1, hash->length);
|
|
/* Step 2.f - Compute maskedDB*/
|
|
for (i = 0; i < dbMaskLen; ++i)
|
|
em[1 + hash->length + i] ^= mask[i];
|
|
|
|
/* Step 2.g - Generate seedMask */
|
|
MGF1(maskHashAlg, mask, hash->length, &em[1 + hash->length], dbMaskLen);
|
|
/* Step 2.h - Compute maskedSeed */
|
|
for (i = 0; i < hash->length; ++i)
|
|
em[1 + i] ^= mask[i];
|
|
|
|
PORT_ZFree(mask, dbMaskLen);
|
|
return SECSuccess;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_EncryptOAEP(RSAPublicKey *key,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
const unsigned char *label,
|
|
unsigned int labelLen,
|
|
const unsigned char *seed,
|
|
unsigned int seedLen,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned char *oaepEncoded = NULL;
|
|
|
|
if (maxOutputLen < modulusLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
if ((labelLen == 0 && label != NULL) ||
|
|
(labelLen > 0 && label == NULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
|
|
if (oaepEncoded == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
rv = eme_oaep_encode(oaepEncoded, modulusLen, input, inputLen,
|
|
hashAlg, maskHashAlg, label, labelLen, seed, seedLen);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
|
|
rv = RSA_PublicKeyOp(key, output, oaepEncoded);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
*outputLen = modulusLen;
|
|
|
|
done:
|
|
PORT_Free(oaepEncoded);
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_DecryptOAEP(RSAPrivateKey *key,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
const unsigned char *label,
|
|
unsigned int labelLen,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned char *oaepEncoded = NULL;
|
|
|
|
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
if (inputLen != modulusLen) {
|
|
PORT_SetError(SEC_ERROR_INPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
if ((labelLen == 0 && label != NULL) ||
|
|
(labelLen > 0 && label == NULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
oaepEncoded = (unsigned char *)PORT_Alloc(modulusLen);
|
|
if (oaepEncoded == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = RSA_PrivateKeyOpDoubleChecked(key, oaepEncoded, input);
|
|
if (rv != SECSuccess) {
|
|
goto done;
|
|
}
|
|
rv = eme_oaep_decode(output, outputLen, maxOutputLen, oaepEncoded,
|
|
modulusLen, hashAlg, maskHashAlg, label,
|
|
labelLen);
|
|
|
|
done:
|
|
if (oaepEncoded)
|
|
PORT_ZFree(oaepEncoded, modulusLen);
|
|
return rv;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_EncryptBlock(RSAPublicKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
SECItem formatted;
|
|
SECItem unformatted;
|
|
|
|
formatted.data = NULL;
|
|
if (maxOutputLen < modulusLen)
|
|
goto failure;
|
|
|
|
unformatted.len = inputLen;
|
|
unformatted.data = (unsigned char *)input;
|
|
formatted.data = NULL;
|
|
rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockPublic,
|
|
&unformatted);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
rv = RSA_PublicKeyOp(key, output, formatted.data);
|
|
if (rv != SECSuccess)
|
|
goto failure;
|
|
|
|
PORT_ZFree(formatted.data, modulusLen);
|
|
*outputLen = modulusLen;
|
|
return SECSuccess;
|
|
|
|
failure:
|
|
if (formatted.data != NULL)
|
|
PORT_ZFree(formatted.data, modulusLen);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* XXX Doesn't set error code */
|
|
SECStatus
|
|
RSA_DecryptBlock(RSAPrivateKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned int i;
|
|
unsigned char *buffer;
|
|
|
|
if (inputLen != modulusLen)
|
|
goto failure;
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
|
|
if (!buffer)
|
|
goto failure;
|
|
|
|
rv = RSA_PrivateKeyOp(key, buffer, input);
|
|
if (rv != SECSuccess)
|
|
goto loser;
|
|
|
|
/* XXX(rsleevi): Constant time */
|
|
if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
|
|
buffer[1] != (unsigned char)RSA_BlockPublic) {
|
|
goto loser;
|
|
}
|
|
*outputLen = 0;
|
|
for (i = 2; i < modulusLen; i++) {
|
|
if (buffer[i] == RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
*outputLen = modulusLen - i - 1;
|
|
break;
|
|
}
|
|
}
|
|
if (*outputLen == 0)
|
|
goto loser;
|
|
if (*outputLen > maxOutputLen)
|
|
goto loser;
|
|
|
|
PORT_Memcpy(output, buffer + modulusLen - *outputLen, *outputLen);
|
|
|
|
PORT_Free(buffer);
|
|
return SECSuccess;
|
|
|
|
loser:
|
|
PORT_Free(buffer);
|
|
failure:
|
|
return SECFailure;
|
|
}
|
|
|
|
/*
|
|
* Encode a RSA-PSS signature.
|
|
* Described in RFC 3447, section 9.1.1.
|
|
* We use mHash instead of M as input.
|
|
* emBits from the RFC is just modBits - 1, see section 8.1.1.
|
|
* We only support MGF1 as the MGF.
|
|
*/
|
|
static SECStatus
|
|
emsa_pss_encode(unsigned char *em,
|
|
unsigned int emLen,
|
|
unsigned int emBits,
|
|
const unsigned char *mHash,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
const unsigned char *salt,
|
|
unsigned int saltLen)
|
|
{
|
|
const SECHashObject *hash;
|
|
void *hash_context;
|
|
unsigned char *dbMask;
|
|
unsigned int dbMaskLen;
|
|
unsigned int i;
|
|
SECStatus rv;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
dbMaskLen = emLen - hash->length - 1;
|
|
|
|
/* Step 3 */
|
|
if (emLen < hash->length + saltLen + 2) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 4 */
|
|
if (salt == NULL) {
|
|
rv = RNG_GenerateGlobalRandomBytes(&em[dbMaskLen - saltLen], saltLen);
|
|
if (rv != SECSuccess) {
|
|
return rv;
|
|
}
|
|
} else {
|
|
PORT_Memcpy(&em[dbMaskLen - saltLen], salt, saltLen);
|
|
}
|
|
|
|
/* Step 5 + 6 */
|
|
/* Compute H and store it at its final location &em[dbMaskLen]. */
|
|
hash_context = (*hash->create)();
|
|
if (hash_context == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
(*hash->begin)(hash_context);
|
|
(*hash->update)(hash_context, eightZeros, 8);
|
|
(*hash->update)(hash_context, mHash, hash->length);
|
|
(*hash->update)(hash_context, &em[dbMaskLen - saltLen], saltLen);
|
|
(*hash->end)(hash_context, &em[dbMaskLen], &i, hash->length);
|
|
(*hash->destroy)(hash_context, PR_TRUE);
|
|
|
|
/* Step 7 + 8 */
|
|
PORT_Memset(em, 0, dbMaskLen - saltLen - 1);
|
|
em[dbMaskLen - saltLen - 1] = 0x01;
|
|
|
|
/* Step 9 */
|
|
dbMask = (unsigned char *)PORT_Alloc(dbMaskLen);
|
|
if (dbMask == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
MGF1(maskHashAlg, dbMask, dbMaskLen, &em[dbMaskLen], hash->length);
|
|
|
|
/* Step 10 */
|
|
for (i = 0; i < dbMaskLen; i++)
|
|
em[i] ^= dbMask[i];
|
|
PORT_Free(dbMask);
|
|
|
|
/* Step 11 */
|
|
em[0] &= 0xff >> (8 * emLen - emBits);
|
|
|
|
/* Step 12 */
|
|
em[emLen - 1] = 0xbc;
|
|
|
|
return SECSuccess;
|
|
}
|
|
|
|
/*
|
|
* Verify a RSA-PSS signature.
|
|
* Described in RFC 3447, section 9.1.2.
|
|
* We use mHash instead of M as input.
|
|
* emBits from the RFC is just modBits - 1, see section 8.1.2.
|
|
* We only support MGF1 as the MGF.
|
|
*/
|
|
static SECStatus
|
|
emsa_pss_verify(const unsigned char *mHash,
|
|
const unsigned char *em,
|
|
unsigned int emLen,
|
|
unsigned int emBits,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
unsigned int saltLen)
|
|
{
|
|
const SECHashObject *hash;
|
|
void *hash_context;
|
|
unsigned char *db;
|
|
unsigned char *H_; /* H' from the RFC */
|
|
unsigned int i;
|
|
unsigned int dbMaskLen;
|
|
unsigned int zeroBits;
|
|
SECStatus rv;
|
|
|
|
hash = HASH_GetRawHashObject(hashAlg);
|
|
dbMaskLen = emLen - hash->length - 1;
|
|
|
|
/* Step 3 + 4 */
|
|
if ((emLen < (hash->length + saltLen + 2)) ||
|
|
(em[emLen - 1] != 0xbc)) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 6 */
|
|
zeroBits = 8 * emLen - emBits;
|
|
if (em[0] >> (8 - zeroBits)) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 7 */
|
|
db = (unsigned char *)PORT_Alloc(dbMaskLen);
|
|
if (db == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
/* &em[dbMaskLen] points to H, used as mgfSeed */
|
|
MGF1(maskHashAlg, db, dbMaskLen, &em[dbMaskLen], hash->length);
|
|
|
|
/* Step 8 */
|
|
for (i = 0; i < dbMaskLen; i++) {
|
|
db[i] ^= em[i];
|
|
}
|
|
|
|
/* Step 9 */
|
|
db[0] &= 0xff >> zeroBits;
|
|
|
|
/* Step 10 */
|
|
for (i = 0; i < (dbMaskLen - saltLen - 1); i++) {
|
|
if (db[i] != 0) {
|
|
PORT_Free(db);
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
}
|
|
if (db[dbMaskLen - saltLen - 1] != 0x01) {
|
|
PORT_Free(db);
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* Step 12 + 13 */
|
|
H_ = (unsigned char *)PORT_Alloc(hash->length);
|
|
if (H_ == NULL) {
|
|
PORT_Free(db);
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
hash_context = (*hash->create)();
|
|
if (hash_context == NULL) {
|
|
PORT_Free(db);
|
|
PORT_Free(H_);
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
(*hash->begin)(hash_context);
|
|
(*hash->update)(hash_context, eightZeros, 8);
|
|
(*hash->update)(hash_context, mHash, hash->length);
|
|
(*hash->update)(hash_context, &db[dbMaskLen - saltLen], saltLen);
|
|
(*hash->end)(hash_context, H_, &i, hash->length);
|
|
(*hash->destroy)(hash_context, PR_TRUE);
|
|
|
|
PORT_Free(db);
|
|
|
|
/* Step 14 */
|
|
if (PORT_Memcmp(H_, &em[dbMaskLen], hash->length) != 0) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
rv = SECFailure;
|
|
} else {
|
|
rv = SECSuccess;
|
|
}
|
|
|
|
PORT_Free(H_);
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_SignPSS(RSAPrivateKey *key,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
const unsigned char *salt,
|
|
unsigned int saltLength,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv = SECSuccess;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned int modulusBits = rsa_modulusBits(&key->modulus);
|
|
unsigned int emLen = modulusLen;
|
|
unsigned char *pssEncoded, *em;
|
|
|
|
if (maxOutputLen < modulusLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
return SECFailure;
|
|
}
|
|
|
|
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
pssEncoded = em = (unsigned char *)PORT_Alloc(modulusLen);
|
|
if (pssEncoded == NULL) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* len(em) == ceil((modulusBits - 1) / 8). */
|
|
if (modulusBits % 8 == 1) {
|
|
em[0] = 0;
|
|
emLen--;
|
|
em++;
|
|
}
|
|
rv = emsa_pss_encode(em, emLen, modulusBits - 1, input, hashAlg,
|
|
maskHashAlg, salt, saltLength);
|
|
if (rv != SECSuccess)
|
|
goto done;
|
|
|
|
// This sets error codes upon failure.
|
|
rv = RSA_PrivateKeyOpDoubleChecked(key, output, pssEncoded);
|
|
*outputLen = modulusLen;
|
|
|
|
done:
|
|
PORT_Free(pssEncoded);
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_CheckSignPSS(RSAPublicKey *key,
|
|
HASH_HashType hashAlg,
|
|
HASH_HashType maskHashAlg,
|
|
unsigned int saltLength,
|
|
const unsigned char *sig,
|
|
unsigned int sigLen,
|
|
const unsigned char *hash,
|
|
unsigned int hashLen)
|
|
{
|
|
SECStatus rv;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned int modulusBits = rsa_modulusBits(&key->modulus);
|
|
unsigned int emLen = modulusLen;
|
|
unsigned char *buffer, *em;
|
|
|
|
if (sigLen != modulusLen) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
if ((hashAlg == HASH_AlgNULL) || (maskHashAlg == HASH_AlgNULL)) {
|
|
PORT_SetError(SEC_ERROR_INVALID_ALGORITHM);
|
|
return SECFailure;
|
|
}
|
|
|
|
buffer = em = (unsigned char *)PORT_Alloc(modulusLen);
|
|
if (!buffer) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
return SECFailure;
|
|
}
|
|
|
|
rv = RSA_PublicKeyOp(key, buffer, sig);
|
|
if (rv != SECSuccess) {
|
|
PORT_Free(buffer);
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
return SECFailure;
|
|
}
|
|
|
|
/* len(em) == ceil((modulusBits - 1) / 8). */
|
|
if (modulusBits % 8 == 1) {
|
|
emLen--;
|
|
em++;
|
|
}
|
|
rv = emsa_pss_verify(hash, em, emLen, modulusBits - 1, hashAlg,
|
|
maskHashAlg, saltLength);
|
|
|
|
PORT_Free(buffer);
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_Sign(RSAPrivateKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *input,
|
|
unsigned int inputLen)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
SECItem formatted = { siBuffer, NULL, 0 };
|
|
SECItem unformatted = { siBuffer, (unsigned char *)input, inputLen };
|
|
|
|
if (maxOutputLen < modulusLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
goto done;
|
|
}
|
|
|
|
rv = rsa_FormatBlock(&formatted, modulusLen, RSA_BlockPrivate,
|
|
&unformatted);
|
|
if (rv != SECSuccess) {
|
|
PORT_SetError(SEC_ERROR_LIBRARY_FAILURE);
|
|
goto done;
|
|
}
|
|
|
|
// This sets error codes upon failure.
|
|
rv = RSA_PrivateKeyOpDoubleChecked(key, output, formatted.data);
|
|
*outputLen = modulusLen;
|
|
|
|
done:
|
|
if (formatted.data != NULL) {
|
|
PORT_ZFree(formatted.data, modulusLen);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_CheckSign(RSAPublicKey *key,
|
|
const unsigned char *sig,
|
|
unsigned int sigLen,
|
|
const unsigned char *data,
|
|
unsigned int dataLen)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned int i;
|
|
unsigned char *buffer = NULL;
|
|
|
|
if (sigLen != modulusLen) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* 0x00 || BT || Pad || 0x00 || ActualData
|
|
*
|
|
* The "3" below is the first octet + the second octet + the 0x00
|
|
* octet that always comes just before the ActualData.
|
|
*/
|
|
if (dataLen > modulusLen - (3 + RSA_BLOCK_MIN_PAD_LEN)) {
|
|
PORT_SetError(SEC_ERROR_BAD_DATA);
|
|
goto done;
|
|
}
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
|
|
if (!buffer) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
goto done;
|
|
}
|
|
|
|
if (RSA_PublicKeyOp(key, buffer, sig) != SECSuccess) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* check the padding that was used
|
|
*/
|
|
if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
|
|
buffer[1] != (unsigned char)RSA_BlockPrivate) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
for (i = 2; i < modulusLen - dataLen - 1; i++) {
|
|
if (buffer[i] != RSA_BLOCK_PRIVATE_PAD_OCTET) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
}
|
|
if (buffer[i] != RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* make sure we get the same results
|
|
*/
|
|
if (PORT_Memcmp(buffer + modulusLen - dataLen, data, dataLen) == 0) {
|
|
rv = SECSuccess;
|
|
}
|
|
|
|
done:
|
|
if (buffer) {
|
|
PORT_Free(buffer);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
SECStatus
|
|
RSA_CheckSignRecover(RSAPublicKey *key,
|
|
unsigned char *output,
|
|
unsigned int *outputLen,
|
|
unsigned int maxOutputLen,
|
|
const unsigned char *sig,
|
|
unsigned int sigLen)
|
|
{
|
|
SECStatus rv = SECFailure;
|
|
unsigned int modulusLen = rsa_modulusLen(&key->modulus);
|
|
unsigned int i;
|
|
unsigned char *buffer = NULL;
|
|
|
|
if (sigLen != modulusLen) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
|
|
buffer = (unsigned char *)PORT_Alloc(modulusLen + 1);
|
|
if (!buffer) {
|
|
PORT_SetError(SEC_ERROR_NO_MEMORY);
|
|
goto done;
|
|
}
|
|
|
|
if (RSA_PublicKeyOp(key, buffer, sig) != SECSuccess) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
|
|
*outputLen = 0;
|
|
|
|
/*
|
|
* check the padding that was used
|
|
*/
|
|
if (buffer[0] != RSA_BLOCK_FIRST_OCTET ||
|
|
buffer[1] != (unsigned char)RSA_BlockPrivate) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
for (i = 2; i < modulusLen; i++) {
|
|
if (buffer[i] == RSA_BLOCK_AFTER_PAD_OCTET) {
|
|
*outputLen = modulusLen - i - 1;
|
|
break;
|
|
}
|
|
if (buffer[i] != RSA_BLOCK_PRIVATE_PAD_OCTET) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
}
|
|
if (*outputLen == 0) {
|
|
PORT_SetError(SEC_ERROR_BAD_SIGNATURE);
|
|
goto done;
|
|
}
|
|
if (*outputLen > maxOutputLen) {
|
|
PORT_SetError(SEC_ERROR_OUTPUT_LEN);
|
|
goto done;
|
|
}
|
|
|
|
PORT_Memcpy(output, buffer + modulusLen - *outputLen, *outputLen);
|
|
rv = SECSuccess;
|
|
|
|
done:
|
|
if (buffer) {
|
|
PORT_Free(buffer);
|
|
}
|
|
return rv;
|
|
}
|