зеркало из https://github.com/mozilla/gecko-dev.git
230 строки
7.9 KiB
C
230 строки
7.9 KiB
C
/*
|
|
* Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include "aom_dsp/entdec.h"
|
|
#include "aom_dsp/prob.h"
|
|
|
|
/*A range decoder.
|
|
This is an entropy decoder based upon \cite{Mar79}, which is itself a
|
|
rediscovery of the FIFO arithmetic code introduced by \cite{Pas76}.
|
|
It is very similar to arithmetic encoding, except that encoding is done with
|
|
digits in any base, instead of with bits, and so it is faster when using
|
|
larger bases (i.e.: a byte).
|
|
The author claims an average waste of $\frac{1}{2}\log_b(2b)$ bits, where $b$
|
|
is the base, longer than the theoretical optimum, but to my knowledge there
|
|
is no published justification for this claim.
|
|
This only seems true when using near-infinite precision arithmetic so that
|
|
the process is carried out with no rounding errors.
|
|
|
|
An excellent description of implementation details is available at
|
|
http://www.arturocampos.com/ac_range.html
|
|
A recent work \cite{MNW98} which proposes several changes to arithmetic
|
|
encoding for efficiency actually re-discovers many of the principles
|
|
behind range encoding, and presents a good theoretical analysis of them.
|
|
|
|
End of stream is handled by writing out the smallest number of bits that
|
|
ensures that the stream will be correctly decoded regardless of the value of
|
|
any subsequent bits.
|
|
od_ec_dec_tell() can be used to determine how many bits were needed to decode
|
|
all the symbols thus far; other data can be packed in the remaining bits of
|
|
the input buffer.
|
|
@PHDTHESIS{Pas76,
|
|
author="Richard Clark Pasco",
|
|
title="Source coding algorithms for fast data compression",
|
|
school="Dept. of Electrical Engineering, Stanford University",
|
|
address="Stanford, CA",
|
|
month=May,
|
|
year=1976,
|
|
URL="http://www.richpasco.org/scaffdc.pdf"
|
|
}
|
|
@INPROCEEDINGS{Mar79,
|
|
author="Martin, G.N.N.",
|
|
title="Range encoding: an algorithm for removing redundancy from a digitised
|
|
message",
|
|
booktitle="Video & Data Recording Conference",
|
|
year=1979,
|
|
address="Southampton",
|
|
month=Jul,
|
|
URL="http://www.compressconsult.com/rangecoder/rngcod.pdf.gz"
|
|
}
|
|
@ARTICLE{MNW98,
|
|
author="Alistair Moffat and Radford Neal and Ian H. Witten",
|
|
title="Arithmetic Coding Revisited",
|
|
journal="{ACM} Transactions on Information Systems",
|
|
year=1998,
|
|
volume=16,
|
|
number=3,
|
|
pages="256--294",
|
|
month=Jul,
|
|
URL="http://researchcommons.waikato.ac.nz/bitstream/handle/10289/78/content.pdf"
|
|
}*/
|
|
|
|
/*This is meant to be a large, positive constant that can still be efficiently
|
|
loaded as an immediate (on platforms like ARM, for example).
|
|
Even relatively modest values like 100 would work fine.*/
|
|
#define OD_EC_LOTS_OF_BITS (0x4000)
|
|
|
|
/*The return value of od_ec_dec_tell does not change across an od_ec_dec_refill
|
|
call.*/
|
|
static void od_ec_dec_refill(od_ec_dec *dec) {
|
|
int s;
|
|
od_ec_window dif;
|
|
int16_t cnt;
|
|
const unsigned char *bptr;
|
|
const unsigned char *end;
|
|
dif = dec->dif;
|
|
cnt = dec->cnt;
|
|
bptr = dec->bptr;
|
|
end = dec->end;
|
|
s = OD_EC_WINDOW_SIZE - 9 - (cnt + 15);
|
|
for (; s >= 0 && bptr < end; s -= 8, bptr++) {
|
|
assert(s <= OD_EC_WINDOW_SIZE - 8);
|
|
dif ^= (od_ec_window)bptr[0] << s;
|
|
cnt += 8;
|
|
}
|
|
if (bptr >= end) {
|
|
dec->tell_offs += OD_EC_LOTS_OF_BITS - cnt;
|
|
cnt = OD_EC_LOTS_OF_BITS;
|
|
}
|
|
dec->dif = dif;
|
|
dec->cnt = cnt;
|
|
dec->bptr = bptr;
|
|
}
|
|
|
|
/*Takes updated dif and range values, renormalizes them so that
|
|
32768 <= rng < 65536 (reading more bytes from the stream into dif if
|
|
necessary), and stores them back in the decoder context.
|
|
dif: The new value of dif.
|
|
rng: The new value of the range.
|
|
ret: The value to return.
|
|
Return: ret.
|
|
This allows the compiler to jump to this function via a tail-call.*/
|
|
static int od_ec_dec_normalize(od_ec_dec *dec, od_ec_window dif, unsigned rng,
|
|
int ret) {
|
|
int d;
|
|
assert(rng <= 65535U);
|
|
// The number of leading zeros in the 16-bit binary representation of rng.
|
|
d = 16 - OD_ILOG_NZ(rng);
|
|
dec->cnt -= d;
|
|
/*This is equivalent to shifting in 1's instead of 0's.*/
|
|
dec->dif = ((dif + 1) << d) - 1;
|
|
dec->rng = rng << d;
|
|
if (dec->cnt < 0) od_ec_dec_refill(dec);
|
|
return ret;
|
|
}
|
|
|
|
/*Initializes the decoder.
|
|
buf: The input buffer to use.
|
|
Return: 0 on success, or a negative value on error.*/
|
|
void od_ec_dec_init(od_ec_dec *dec, const unsigned char *buf,
|
|
uint32_t storage) {
|
|
dec->buf = buf;
|
|
dec->tell_offs = 10 - (OD_EC_WINDOW_SIZE - 8);
|
|
dec->end = buf + storage;
|
|
dec->bptr = buf;
|
|
dec->dif = ((od_ec_window)1 << (OD_EC_WINDOW_SIZE - 1)) - 1;
|
|
dec->rng = 0x8000;
|
|
dec->cnt = -15;
|
|
dec->error = 0;
|
|
od_ec_dec_refill(dec);
|
|
}
|
|
|
|
/*Decode a single binary value.
|
|
f: The probability that the bit is one, scaled by 32768.
|
|
Return: The value decoded (0 or 1).*/
|
|
int od_ec_decode_bool_q15(od_ec_dec *dec, unsigned f) {
|
|
od_ec_window dif;
|
|
od_ec_window vw;
|
|
unsigned r;
|
|
unsigned r_new;
|
|
unsigned v;
|
|
int ret;
|
|
assert(0 < f);
|
|
assert(f < 32768U);
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
assert(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
assert(32768U <= r);
|
|
v = ((r >> 8) * (uint32_t)(f >> EC_PROB_SHIFT) >> (7 - EC_PROB_SHIFT));
|
|
v += EC_MIN_PROB;
|
|
vw = (od_ec_window)v << (OD_EC_WINDOW_SIZE - 16);
|
|
ret = 1;
|
|
r_new = v;
|
|
if (dif >= vw) {
|
|
r_new = r - v;
|
|
dif -= vw;
|
|
ret = 0;
|
|
}
|
|
return od_ec_dec_normalize(dec, dif, r_new, ret);
|
|
}
|
|
|
|
/*Decodes a symbol given an inverse cumulative distribution function (CDF)
|
|
table in Q15.
|
|
icdf: CDF_PROB_TOP minus the CDF, such that symbol s falls in the range
|
|
[s > 0 ? (CDF_PROB_TOP - icdf[s - 1]) : 0, CDF_PROB_TOP - icdf[s]).
|
|
The values must be monotonically non-increasing, and icdf[nsyms - 1]
|
|
must be 0.
|
|
nsyms: The number of symbols in the alphabet.
|
|
This should be at most 16.
|
|
Return: The decoded symbol s.*/
|
|
int od_ec_decode_cdf_q15(od_ec_dec *dec, const uint16_t *icdf, int nsyms) {
|
|
od_ec_window dif;
|
|
unsigned r;
|
|
unsigned c;
|
|
unsigned u;
|
|
unsigned v;
|
|
int ret;
|
|
(void)nsyms;
|
|
dif = dec->dif;
|
|
r = dec->rng;
|
|
const int N = nsyms - 1;
|
|
|
|
assert(dif >> (OD_EC_WINDOW_SIZE - 16) < r);
|
|
assert(icdf[nsyms - 1] == OD_ICDF(CDF_PROB_TOP));
|
|
assert(32768U <= r);
|
|
assert(7 - EC_PROB_SHIFT - CDF_SHIFT >= 0);
|
|
c = (unsigned)(dif >> (OD_EC_WINDOW_SIZE - 16));
|
|
v = r;
|
|
ret = -1;
|
|
do {
|
|
u = v;
|
|
v = ((r >> 8) * (uint32_t)(icdf[++ret] >> EC_PROB_SHIFT) >>
|
|
(7 - EC_PROB_SHIFT - CDF_SHIFT));
|
|
v += EC_MIN_PROB * (N - ret);
|
|
} while (c < v);
|
|
assert(v < u);
|
|
assert(u <= r);
|
|
r = u - v;
|
|
dif -= (od_ec_window)v << (OD_EC_WINDOW_SIZE - 16);
|
|
return od_ec_dec_normalize(dec, dif, r, ret);
|
|
}
|
|
|
|
/*Returns the number of bits "used" by the decoded symbols so far.
|
|
This same number can be computed in either the encoder or the decoder, and is
|
|
suitable for making coding decisions.
|
|
Return: The number of bits.
|
|
This will always be slightly larger than the exact value (e.g., all
|
|
rounding error is in the positive direction).*/
|
|
int od_ec_dec_tell(const od_ec_dec *dec) {
|
|
return (int)((dec->bptr - dec->buf) * 8 - dec->cnt + dec->tell_offs);
|
|
}
|
|
|
|
/*Returns the number of bits "used" by the decoded symbols so far.
|
|
This same number can be computed in either the encoder or the decoder, and is
|
|
suitable for making coding decisions.
|
|
Return: The number of bits scaled by 2**OD_BITRES.
|
|
This will always be slightly larger than the exact value (e.g., all
|
|
rounding error is in the positive direction).*/
|
|
uint32_t od_ec_dec_tell_frac(const od_ec_dec *dec) {
|
|
return od_ec_tell_frac(od_ec_dec_tell(dec), dec->rng);
|
|
}
|