зеркало из https://github.com/mozilla/gecko-dev.git
1704 строки
61 KiB
C++
1704 строки
61 KiB
C++
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
|
|
/* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
|
|
|
|
#include "nsString.h"
|
|
#include "gfxContext.h"
|
|
#include "gfxFontConstants.h"
|
|
#include "gfxHarfBuzzShaper.h"
|
|
#include "gfxFontUtils.h"
|
|
#include "gfxTextRun.h"
|
|
#include "mozilla/Sprintf.h"
|
|
#include "nsUnicodeProperties.h"
|
|
#include "nsUnicodeScriptCodes.h"
|
|
|
|
#include "harfbuzz/hb.h"
|
|
#include "harfbuzz/hb-ot.h"
|
|
|
|
#include "unicode/unorm.h"
|
|
#include "unicode/utext.h"
|
|
|
|
static const UNormalizer2* sNormalizer = nullptr;
|
|
|
|
#include <algorithm>
|
|
|
|
#define FloatToFixed(f) (65536 * (f))
|
|
#define FixedToFloat(f) ((f) * (1.0 / 65536.0))
|
|
// Right shifts of negative (signed) integers are undefined, as are overflows
|
|
// when converting unsigned to negative signed integers.
|
|
// (If speed were an issue we could make some 2's complement assumptions.)
|
|
#define FixedToIntRound(f) \
|
|
((f) > 0 ? ((32768 + (f)) >> 16) : -((32767 - (f)) >> 16))
|
|
|
|
using namespace mozilla; // for AutoSwap_* types
|
|
using namespace mozilla::unicode; // for Unicode property lookup
|
|
|
|
/*
|
|
* Creation and destruction; on deletion, release any font tables we're holding
|
|
*/
|
|
|
|
gfxHarfBuzzShaper::gfxHarfBuzzShaper(gfxFont* aFont)
|
|
: gfxFontShaper(aFont),
|
|
mHBFace(aFont->GetFontEntry()->GetHBFace()),
|
|
mHBFont(nullptr),
|
|
mBuffer(nullptr),
|
|
mCallbackData(),
|
|
mKernTable(nullptr),
|
|
mHmtxTable(nullptr),
|
|
mVmtxTable(nullptr),
|
|
mVORGTable(nullptr),
|
|
mLocaTable(nullptr),
|
|
mGlyfTable(nullptr),
|
|
mCmapTable(nullptr),
|
|
mCmapFormat(-1),
|
|
mSubtableOffset(0),
|
|
mUVSTableOffset(0),
|
|
mNumLongHMetrics(0),
|
|
mNumLongVMetrics(0),
|
|
mDefaultVOrg(-1.0),
|
|
mUseFontGetGlyph(aFont->ProvidesGetGlyph()),
|
|
mUseFontGlyphWidths(aFont->ProvidesGlyphWidths()),
|
|
mInitialized(false),
|
|
mVerticalInitialized(false),
|
|
mUseVerticalPresentationForms(false),
|
|
mLoadedLocaGlyf(false),
|
|
mLocaLongOffsets(false) {}
|
|
|
|
gfxHarfBuzzShaper::~gfxHarfBuzzShaper() {
|
|
// hb_*_destroy functions are safe to call on nullptr
|
|
hb_blob_destroy(mCmapTable);
|
|
hb_blob_destroy(mHmtxTable);
|
|
hb_blob_destroy(mKernTable);
|
|
hb_blob_destroy(mVmtxTable);
|
|
hb_blob_destroy(mVORGTable);
|
|
hb_blob_destroy(mLocaTable);
|
|
hb_blob_destroy(mGlyfTable);
|
|
hb_font_destroy(mHBFont);
|
|
hb_face_destroy(mHBFace);
|
|
hb_buffer_destroy(mBuffer);
|
|
}
|
|
|
|
#define UNICODE_BMP_LIMIT 0x10000
|
|
|
|
hb_codepoint_t gfxHarfBuzzShaper::GetNominalGlyph(
|
|
hb_codepoint_t unicode) const {
|
|
hb_codepoint_t gid = 0;
|
|
|
|
if (mUseFontGetGlyph) {
|
|
gid = mFont->GetGlyph(unicode, 0);
|
|
} else {
|
|
// we only instantiate a harfbuzz shaper if there's a cmap available
|
|
NS_ASSERTION(mFont->GetFontEntry()->HasCmapTable(),
|
|
"we cannot be using this font!");
|
|
|
|
NS_ASSERTION(mCmapTable && (mCmapFormat > 0) && (mSubtableOffset > 0),
|
|
"cmap data not correctly set up, expect disaster");
|
|
|
|
uint32_t length;
|
|
const uint8_t* data = (const uint8_t*)hb_blob_get_data(mCmapTable, &length);
|
|
|
|
switch (mCmapFormat) {
|
|
case 4:
|
|
gid =
|
|
unicode < UNICODE_BMP_LIMIT
|
|
? gfxFontUtils::MapCharToGlyphFormat4(
|
|
data + mSubtableOffset, length - mSubtableOffset, unicode)
|
|
: 0;
|
|
break;
|
|
case 10:
|
|
gid = gfxFontUtils::MapCharToGlyphFormat10(data + mSubtableOffset,
|
|
unicode);
|
|
break;
|
|
case 12:
|
|
case 13:
|
|
gid = gfxFontUtils::MapCharToGlyphFormat12or13(data + mSubtableOffset,
|
|
unicode);
|
|
break;
|
|
default:
|
|
NS_WARNING("unsupported cmap format, glyphs will be missing");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!gid) {
|
|
// if there's no glyph for , just use the space glyph instead
|
|
if (unicode == 0xA0) {
|
|
gid = mFont->GetSpaceGlyph();
|
|
}
|
|
}
|
|
|
|
return gid;
|
|
}
|
|
|
|
hb_codepoint_t gfxHarfBuzzShaper::GetVariationGlyph(
|
|
hb_codepoint_t unicode, hb_codepoint_t variation_selector) const {
|
|
if (mUseFontGetGlyph) {
|
|
return mFont->GetGlyph(unicode, variation_selector);
|
|
}
|
|
|
|
NS_ASSERTION(mFont->GetFontEntry()->HasCmapTable(),
|
|
"we cannot be using this font!");
|
|
NS_ASSERTION(mCmapTable && (mCmapFormat > 0) && (mSubtableOffset > 0),
|
|
"cmap data not correctly set up, expect disaster");
|
|
|
|
uint32_t length;
|
|
const uint8_t* data = (const uint8_t*)hb_blob_get_data(mCmapTable, &length);
|
|
|
|
if (mUVSTableOffset) {
|
|
hb_codepoint_t gid = gfxFontUtils::MapUVSToGlyphFormat14(
|
|
data + mUVSTableOffset, unicode, variation_selector);
|
|
if (gid) {
|
|
return gid;
|
|
}
|
|
}
|
|
|
|
uint32_t compat = gfxFontUtils::GetUVSFallback(unicode, variation_selector);
|
|
if (compat) {
|
|
switch (mCmapFormat) {
|
|
case 4:
|
|
if (compat < UNICODE_BMP_LIMIT) {
|
|
return gfxFontUtils::MapCharToGlyphFormat4(
|
|
data + mSubtableOffset, length - mSubtableOffset, compat);
|
|
}
|
|
break;
|
|
case 10:
|
|
return gfxFontUtils::MapCharToGlyphFormat10(data + mSubtableOffset,
|
|
compat);
|
|
break;
|
|
case 12:
|
|
case 13:
|
|
return gfxFontUtils::MapCharToGlyphFormat12or13(data + mSubtableOffset,
|
|
compat);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int VertFormsGlyphCompare(const void* aKey, const void* aElem) {
|
|
return int(*((hb_codepoint_t*)(aKey))) - int(*((uint16_t*)(aElem)));
|
|
}
|
|
|
|
// Return a vertical presentation-form codepoint corresponding to the
|
|
// given Unicode value, or 0 if no such form is available.
|
|
hb_codepoint_t gfxHarfBuzzShaper::GetVerticalPresentationForm(
|
|
hb_codepoint_t aUnicode) {
|
|
static const uint16_t sVerticalForms[][2] = {
|
|
{0x2013, 0xfe32}, // EN DASH
|
|
{0x2014, 0xfe31}, // EM DASH
|
|
{0x2025, 0xfe30}, // TWO DOT LEADER
|
|
{0x2026, 0xfe19}, // HORIZONTAL ELLIPSIS
|
|
{0x3001, 0xfe11}, // IDEOGRAPHIC COMMA
|
|
{0x3002, 0xfe12}, // IDEOGRAPHIC FULL STOP
|
|
{0x3008, 0xfe3f}, // LEFT ANGLE BRACKET
|
|
{0x3009, 0xfe40}, // RIGHT ANGLE BRACKET
|
|
{0x300a, 0xfe3d}, // LEFT DOUBLE ANGLE BRACKET
|
|
{0x300b, 0xfe3e}, // RIGHT DOUBLE ANGLE BRACKET
|
|
{0x300c, 0xfe41}, // LEFT CORNER BRACKET
|
|
{0x300d, 0xfe42}, // RIGHT CORNER BRACKET
|
|
{0x300e, 0xfe43}, // LEFT WHITE CORNER BRACKET
|
|
{0x300f, 0xfe44}, // RIGHT WHITE CORNER BRACKET
|
|
{0x3010, 0xfe3b}, // LEFT BLACK LENTICULAR BRACKET
|
|
{0x3011, 0xfe3c}, // RIGHT BLACK LENTICULAR BRACKET
|
|
{0x3014, 0xfe39}, // LEFT TORTOISE SHELL BRACKET
|
|
{0x3015, 0xfe3a}, // RIGHT TORTOISE SHELL BRACKET
|
|
{0x3016, 0xfe17}, // LEFT WHITE LENTICULAR BRACKET
|
|
{0x3017, 0xfe18}, // RIGHT WHITE LENTICULAR BRACKET
|
|
{0xfe4f, 0xfe34}, // WAVY LOW LINE
|
|
{0xff01, 0xfe15}, // FULLWIDTH EXCLAMATION MARK
|
|
{0xff08, 0xfe35}, // FULLWIDTH LEFT PARENTHESIS
|
|
{0xff09, 0xfe36}, // FULLWIDTH RIGHT PARENTHESIS
|
|
{0xff0c, 0xfe10}, // FULLWIDTH COMMA
|
|
{0xff1a, 0xfe13}, // FULLWIDTH COLON
|
|
{0xff1b, 0xfe14}, // FULLWIDTH SEMICOLON
|
|
{0xff1f, 0xfe16}, // FULLWIDTH QUESTION MARK
|
|
{0xff3b, 0xfe47}, // FULLWIDTH LEFT SQUARE BRACKET
|
|
{0xff3d, 0xfe48}, // FULLWIDTH RIGHT SQUARE BRACKET
|
|
{0xff3f, 0xfe33}, // FULLWIDTH LOW LINE
|
|
{0xff5b, 0xfe37}, // FULLWIDTH LEFT CURLY BRACKET
|
|
{0xff5d, 0xfe38} // FULLWIDTH RIGHT CURLY BRACKET
|
|
};
|
|
const uint16_t* charPair = static_cast<const uint16_t*>(
|
|
bsearch(&aUnicode, sVerticalForms, ArrayLength(sVerticalForms),
|
|
sizeof(sVerticalForms[0]), VertFormsGlyphCompare));
|
|
return charPair ? charPair[1] : 0;
|
|
}
|
|
|
|
static hb_bool_t HBGetNominalGlyph(hb_font_t* font, void* font_data,
|
|
hb_codepoint_t unicode,
|
|
hb_codepoint_t* glyph, void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
|
|
if (fcd->mShaper->UseVerticalPresentationForms()) {
|
|
hb_codepoint_t verticalForm =
|
|
gfxHarfBuzzShaper::GetVerticalPresentationForm(unicode);
|
|
if (verticalForm) {
|
|
*glyph = fcd->mShaper->GetNominalGlyph(verticalForm);
|
|
if (*glyph != 0) {
|
|
return true;
|
|
}
|
|
}
|
|
// fall back to the non-vertical form if we didn't find an alternate
|
|
}
|
|
|
|
*glyph = fcd->mShaper->GetNominalGlyph(unicode);
|
|
return *glyph != 0;
|
|
}
|
|
|
|
static hb_bool_t HBGetVariationGlyph(hb_font_t* font, void* font_data,
|
|
hb_codepoint_t unicode,
|
|
hb_codepoint_t variation_selector,
|
|
hb_codepoint_t* glyph, void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
|
|
if (fcd->mShaper->UseVerticalPresentationForms()) {
|
|
hb_codepoint_t verticalForm =
|
|
gfxHarfBuzzShaper::GetVerticalPresentationForm(unicode);
|
|
if (verticalForm) {
|
|
*glyph =
|
|
fcd->mShaper->GetVariationGlyph(verticalForm, variation_selector);
|
|
if (*glyph != 0) {
|
|
return true;
|
|
}
|
|
}
|
|
// fall back to the non-vertical form if we didn't find an alternate
|
|
}
|
|
|
|
*glyph = fcd->mShaper->GetVariationGlyph(unicode, variation_selector);
|
|
return *glyph != 0;
|
|
}
|
|
|
|
// Glyph metrics structures, shared (with appropriate reinterpretation of
|
|
// field names) by horizontal and vertical metrics tables.
|
|
struct LongMetric {
|
|
AutoSwap_PRUint16 advanceWidth; // or advanceHeight, when vertical
|
|
AutoSwap_PRInt16 lsb; // or tsb, when vertical
|
|
};
|
|
|
|
struct GlyphMetrics {
|
|
LongMetric metrics[1]; // actually numberOfLongMetrics
|
|
// the variable-length metrics[] array is immediately followed by:
|
|
// AutoSwap_PRUint16 leftSideBearing[];
|
|
};
|
|
|
|
hb_position_t gfxHarfBuzzShaper::GetGlyphHAdvance(hb_codepoint_t glyph) const {
|
|
// font did not implement GetGlyphWidth, so get an unhinted value
|
|
// directly from the font tables
|
|
|
|
NS_ASSERTION((mNumLongHMetrics > 0) && mHmtxTable != nullptr,
|
|
"font is lacking metrics, we shouldn't be here");
|
|
|
|
if (glyph >= uint32_t(mNumLongHMetrics)) {
|
|
glyph = mNumLongHMetrics - 1;
|
|
}
|
|
|
|
// glyph must be valid now, because we checked during initialization
|
|
// that mNumLongHMetrics is > 0, and that the metrics table is large enough
|
|
// to contain mNumLongHMetrics records
|
|
const ::GlyphMetrics* metrics = reinterpret_cast<const ::GlyphMetrics*>(
|
|
hb_blob_get_data(mHmtxTable, nullptr));
|
|
return FloatToFixed(mFont->FUnitsToDevUnitsFactor() *
|
|
uint16_t(metrics->metrics[glyph].advanceWidth));
|
|
}
|
|
|
|
hb_position_t gfxHarfBuzzShaper::GetGlyphVAdvance(hb_codepoint_t glyph) const {
|
|
if (!mVmtxTable) {
|
|
// Must be a "vertical" font that doesn't actually have vertical metrics;
|
|
// use a fixed advance.
|
|
return FloatToFixed(
|
|
mFont->GetMetrics(nsFontMetrics::eVertical).aveCharWidth);
|
|
}
|
|
|
|
NS_ASSERTION(mNumLongVMetrics > 0,
|
|
"font is lacking metrics, we shouldn't be here");
|
|
|
|
if (glyph >= uint32_t(mNumLongVMetrics)) {
|
|
glyph = mNumLongVMetrics - 1;
|
|
}
|
|
|
|
// glyph must be valid now, because we checked during initialization
|
|
// that mNumLongVMetrics is > 0, and that the metrics table is large enough
|
|
// to contain mNumLongVMetrics records
|
|
const ::GlyphMetrics* metrics = reinterpret_cast<const ::GlyphMetrics*>(
|
|
hb_blob_get_data(mVmtxTable, nullptr));
|
|
return FloatToFixed(mFont->FUnitsToDevUnitsFactor() *
|
|
uint16_t(metrics->metrics[glyph].advanceWidth));
|
|
}
|
|
|
|
/* static */
|
|
hb_position_t gfxHarfBuzzShaper::HBGetGlyphHAdvance(hb_font_t* font,
|
|
void* font_data,
|
|
hb_codepoint_t glyph,
|
|
void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
const gfxHarfBuzzShaper* shaper = fcd->mShaper;
|
|
if (shaper->mUseFontGlyphWidths) {
|
|
return shaper->GetFont()->GetGlyphWidth(glyph);
|
|
}
|
|
return shaper->GetGlyphHAdvance(glyph);
|
|
}
|
|
|
|
/* static */
|
|
hb_position_t gfxHarfBuzzShaper::HBGetGlyphVAdvance(hb_font_t* font,
|
|
void* font_data,
|
|
hb_codepoint_t glyph,
|
|
void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
// Currently, we don't offer gfxFont subclasses a method to override this
|
|
// and provide hinted platform-specific vertical advances (analogous to the
|
|
// GetGlyphWidth method for horizontal advances). If that proves necessary,
|
|
// we'll add a new gfxFont method and call it from here.
|
|
//
|
|
// We negate the value from GetGlyphVAdvance here because harfbuzz shapes
|
|
// with a coordinate system where positive is upwards, whereas the inline
|
|
// direction in which glyphs advance is downwards.
|
|
return -fcd->mShaper->GetGlyphVAdvance(glyph);
|
|
}
|
|
|
|
struct VORG {
|
|
AutoSwap_PRUint16 majorVersion;
|
|
AutoSwap_PRUint16 minorVersion;
|
|
AutoSwap_PRInt16 defaultVertOriginY;
|
|
AutoSwap_PRUint16 numVertOriginYMetrics;
|
|
};
|
|
|
|
struct VORGrec {
|
|
AutoSwap_PRUint16 glyphIndex;
|
|
AutoSwap_PRInt16 vertOriginY;
|
|
};
|
|
|
|
/* static */
|
|
hb_bool_t gfxHarfBuzzShaper::HBGetGlyphVOrigin(hb_font_t* font, void* font_data,
|
|
hb_codepoint_t glyph,
|
|
hb_position_t* x,
|
|
hb_position_t* y,
|
|
void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
fcd->mShaper->GetGlyphVOrigin(glyph, x, y);
|
|
return true;
|
|
}
|
|
|
|
void gfxHarfBuzzShaper::GetGlyphVOrigin(hb_codepoint_t aGlyph,
|
|
hb_position_t* aX,
|
|
hb_position_t* aY) const {
|
|
*aX = 0.5 * (mUseFontGlyphWidths ? mFont->GetGlyphWidth(aGlyph)
|
|
: GetGlyphHAdvance(aGlyph));
|
|
|
|
if (mVORGTable) {
|
|
// We checked in Initialize() that the VORG table is safely readable,
|
|
// so no length/bounds-check needed here.
|
|
const VORG* vorg =
|
|
reinterpret_cast<const VORG*>(hb_blob_get_data(mVORGTable, nullptr));
|
|
|
|
const VORGrec* lo = reinterpret_cast<const VORGrec*>(vorg + 1);
|
|
const VORGrec* hi = lo + uint16_t(vorg->numVertOriginYMetrics);
|
|
const VORGrec* limit = hi;
|
|
while (lo < hi) {
|
|
const VORGrec* mid = lo + (hi - lo) / 2;
|
|
if (uint16_t(mid->glyphIndex) < aGlyph) {
|
|
lo = mid + 1;
|
|
} else {
|
|
hi = mid;
|
|
}
|
|
}
|
|
|
|
if (lo < limit && uint16_t(lo->glyphIndex) == aGlyph) {
|
|
*aY = FloatToFixed(GetFont()->FUnitsToDevUnitsFactor() *
|
|
int16_t(lo->vertOriginY));
|
|
} else {
|
|
*aY = FloatToFixed(GetFont()->FUnitsToDevUnitsFactor() *
|
|
int16_t(vorg->defaultVertOriginY));
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (mVmtxTable) {
|
|
bool emptyGlyf;
|
|
const Glyf* glyf = FindGlyf(aGlyph, &emptyGlyf);
|
|
if (glyf) {
|
|
if (emptyGlyf) {
|
|
*aY = 0;
|
|
return;
|
|
}
|
|
|
|
const ::GlyphMetrics* metrics = reinterpret_cast<const ::GlyphMetrics*>(
|
|
hb_blob_get_data(mVmtxTable, nullptr));
|
|
int16_t lsb;
|
|
if (aGlyph < hb_codepoint_t(mNumLongVMetrics)) {
|
|
// Glyph is covered by the first (advance & sidebearing) array
|
|
lsb = int16_t(metrics->metrics[aGlyph].lsb);
|
|
} else {
|
|
// Glyph is covered by the second (sidebearing-only) array
|
|
const AutoSwap_PRInt16* sidebearings =
|
|
reinterpret_cast<const AutoSwap_PRInt16*>(
|
|
&metrics->metrics[mNumLongVMetrics]);
|
|
lsb = int16_t(sidebearings[aGlyph - mNumLongVMetrics]);
|
|
}
|
|
*aY = FloatToFixed(mFont->FUnitsToDevUnitsFactor() *
|
|
(lsb + int16_t(glyf->yMax)));
|
|
return;
|
|
} else {
|
|
// XXX TODO: not a truetype font; need to get glyph extents
|
|
// via some other API?
|
|
// For now, fall through to default code below.
|
|
}
|
|
}
|
|
|
|
if (mDefaultVOrg < 0.0) {
|
|
// XXX should we consider using OS/2 sTypo* metrics if available?
|
|
|
|
gfxFontEntry::AutoTable hheaTable(GetFont()->GetFontEntry(),
|
|
TRUETYPE_TAG('h', 'h', 'e', 'a'));
|
|
if (hheaTable) {
|
|
uint32_t len;
|
|
const MetricsHeader* hhea = reinterpret_cast<const MetricsHeader*>(
|
|
hb_blob_get_data(hheaTable, &len));
|
|
if (len >= sizeof(MetricsHeader)) {
|
|
// divide up the default advance we're using (1em) in proportion
|
|
// to ascender:descender from the hhea table
|
|
int16_t a = int16_t(hhea->ascender);
|
|
int16_t d = int16_t(hhea->descender);
|
|
mDefaultVOrg = FloatToFixed(GetFont()->GetAdjustedSize() * a / (a - d));
|
|
}
|
|
}
|
|
|
|
if (mDefaultVOrg < 0.0) {
|
|
// Last resort, for non-sfnt fonts: get the horizontal metrics and
|
|
// compute a default VOrg from their ascent and descent.
|
|
const gfxFont::Metrics& mtx = mFont->GetHorizontalMetrics();
|
|
gfxFloat advance =
|
|
mFont->GetMetrics(nsFontMetrics::eVertical).aveCharWidth;
|
|
gfxFloat ascent = mtx.emAscent;
|
|
gfxFloat height = ascent + mtx.emDescent;
|
|
// vOrigin that will place the glyph so that its origin is shifted
|
|
// down most of the way within overall (vertical) advance, in
|
|
// proportion to the font ascent as a part of the overall font
|
|
// height.
|
|
mDefaultVOrg = FloatToFixed(advance * ascent / height);
|
|
}
|
|
}
|
|
|
|
*aY = mDefaultVOrg;
|
|
}
|
|
|
|
static hb_bool_t HBGetGlyphExtents(hb_font_t* font, void* font_data,
|
|
hb_codepoint_t glyph,
|
|
hb_glyph_extents_t* extents,
|
|
void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
return fcd->mShaper->GetGlyphExtents(glyph, extents);
|
|
}
|
|
|
|
// Find the data for glyph ID |aGlyph| in the 'glyf' table, if present.
|
|
// Returns null if not found, otherwise pointer to the beginning of the
|
|
// glyph's data. Sets aEmptyGlyf true if there is no actual data;
|
|
// otherwise, it's guaranteed that we can read at least the bounding box.
|
|
const gfxHarfBuzzShaper::Glyf* gfxHarfBuzzShaper::FindGlyf(
|
|
hb_codepoint_t aGlyph, bool* aEmptyGlyf) const {
|
|
if (!mLoadedLocaGlyf) {
|
|
mLoadedLocaGlyf = true; // only try this once; if it fails, this
|
|
// isn't a truetype font
|
|
gfxFontEntry* entry = mFont->GetFontEntry();
|
|
uint32_t len;
|
|
gfxFontEntry::AutoTable headTable(entry, TRUETYPE_TAG('h', 'e', 'a', 'd'));
|
|
if (!headTable) {
|
|
return nullptr;
|
|
}
|
|
const HeadTable* head =
|
|
reinterpret_cast<const HeadTable*>(hb_blob_get_data(headTable, &len));
|
|
if (len < sizeof(HeadTable)) {
|
|
return nullptr;
|
|
}
|
|
mLocaLongOffsets = int16_t(head->indexToLocFormat) > 0;
|
|
mLocaTable = entry->GetFontTable(TRUETYPE_TAG('l', 'o', 'c', 'a'));
|
|
mGlyfTable = entry->GetFontTable(TRUETYPE_TAG('g', 'l', 'y', 'f'));
|
|
}
|
|
|
|
if (!mLocaTable || !mGlyfTable) {
|
|
// it's not a truetype font
|
|
return nullptr;
|
|
}
|
|
|
|
uint32_t offset; // offset of glyph record in the 'glyf' table
|
|
uint32_t len;
|
|
const char* data = hb_blob_get_data(mLocaTable, &len);
|
|
if (mLocaLongOffsets) {
|
|
if ((aGlyph + 1) * sizeof(AutoSwap_PRUint32) > len) {
|
|
return nullptr;
|
|
}
|
|
const AutoSwap_PRUint32* offsets =
|
|
reinterpret_cast<const AutoSwap_PRUint32*>(data);
|
|
offset = offsets[aGlyph];
|
|
*aEmptyGlyf = (offset == uint16_t(offsets[aGlyph + 1]));
|
|
} else {
|
|
if ((aGlyph + 1) * sizeof(AutoSwap_PRUint16) > len) {
|
|
return nullptr;
|
|
}
|
|
const AutoSwap_PRUint16* offsets =
|
|
reinterpret_cast<const AutoSwap_PRUint16*>(data);
|
|
offset = uint16_t(offsets[aGlyph]);
|
|
*aEmptyGlyf = (offset == uint16_t(offsets[aGlyph + 1]));
|
|
offset *= 2;
|
|
}
|
|
|
|
data = hb_blob_get_data(mGlyfTable, &len);
|
|
if (offset + sizeof(Glyf) > len) {
|
|
return nullptr;
|
|
}
|
|
|
|
return reinterpret_cast<const Glyf*>(data + offset);
|
|
}
|
|
|
|
hb_bool_t gfxHarfBuzzShaper::GetGlyphExtents(
|
|
hb_codepoint_t aGlyph, hb_glyph_extents_t* aExtents) const {
|
|
bool emptyGlyf;
|
|
const Glyf* glyf = FindGlyf(aGlyph, &emptyGlyf);
|
|
if (!glyf) {
|
|
// TODO: for non-truetype fonts, get extents some other way?
|
|
return false;
|
|
}
|
|
|
|
if (emptyGlyf) {
|
|
aExtents->x_bearing = 0;
|
|
aExtents->y_bearing = 0;
|
|
aExtents->width = 0;
|
|
aExtents->height = 0;
|
|
return true;
|
|
}
|
|
|
|
double f = mFont->FUnitsToDevUnitsFactor();
|
|
aExtents->x_bearing = FloatToFixed(int16_t(glyf->xMin) * f);
|
|
aExtents->width =
|
|
FloatToFixed((int16_t(glyf->xMax) - int16_t(glyf->xMin)) * f);
|
|
|
|
// Our y-coordinates are positive-downwards, whereas harfbuzz assumes
|
|
// positive-upwards; hence the apparently-reversed subtractions here.
|
|
aExtents->y_bearing = FloatToFixed(int16_t(glyf->yMax) * f -
|
|
mFont->GetHorizontalMetrics().emAscent);
|
|
aExtents->height =
|
|
FloatToFixed((int16_t(glyf->yMin) - int16_t(glyf->yMax)) * f);
|
|
|
|
return true;
|
|
}
|
|
|
|
static hb_bool_t HBGetContourPoint(hb_font_t* font, void* font_data,
|
|
unsigned int point_index,
|
|
hb_codepoint_t glyph, hb_position_t* x,
|
|
hb_position_t* y, void* user_data) {
|
|
/* not yet implemented - no support for used of hinted contour points
|
|
to fine-tune anchor positions in GPOS AnchorFormat2 */
|
|
return false;
|
|
}
|
|
|
|
struct KernHeaderFmt0 {
|
|
AutoSwap_PRUint16 nPairs;
|
|
AutoSwap_PRUint16 searchRange;
|
|
AutoSwap_PRUint16 entrySelector;
|
|
AutoSwap_PRUint16 rangeShift;
|
|
};
|
|
|
|
struct KernPair {
|
|
AutoSwap_PRUint16 left;
|
|
AutoSwap_PRUint16 right;
|
|
AutoSwap_PRInt16 value;
|
|
};
|
|
|
|
// Find a kern pair in a Format 0 subtable.
|
|
// The aSubtable parameter points to the subtable itself, NOT its header,
|
|
// as the header structure differs between Windows and Mac (v0 and v1.0)
|
|
// versions of the 'kern' table.
|
|
// aSubtableLen is the length of the subtable EXCLUDING its header.
|
|
// If the pair <aFirstGlyph,aSecondGlyph> is found, the kerning value is
|
|
// added to aValue, so that multiple subtables can accumulate a total
|
|
// kerning value for a given pair.
|
|
static void GetKernValueFmt0(const void* aSubtable, uint32_t aSubtableLen,
|
|
uint16_t aFirstGlyph, uint16_t aSecondGlyph,
|
|
int32_t& aValue, bool aIsOverride = false,
|
|
bool aIsMinimum = false) {
|
|
const KernHeaderFmt0* hdr =
|
|
reinterpret_cast<const KernHeaderFmt0*>(aSubtable);
|
|
|
|
const KernPair* lo = reinterpret_cast<const KernPair*>(hdr + 1);
|
|
const KernPair* hi = lo + uint16_t(hdr->nPairs);
|
|
const KernPair* limit = hi;
|
|
|
|
if (reinterpret_cast<const char*>(aSubtable) + aSubtableLen <
|
|
reinterpret_cast<const char*>(hi)) {
|
|
// subtable is not large enough to contain the claimed number
|
|
// of kern pairs, so just ignore it
|
|
return;
|
|
}
|
|
|
|
#define KERN_PAIR_KEY(l, r) (uint32_t((uint16_t(l) << 16) + uint16_t(r)))
|
|
|
|
uint32_t key = KERN_PAIR_KEY(aFirstGlyph, aSecondGlyph);
|
|
while (lo < hi) {
|
|
const KernPair* mid = lo + (hi - lo) / 2;
|
|
if (KERN_PAIR_KEY(mid->left, mid->right) < key) {
|
|
lo = mid + 1;
|
|
} else {
|
|
hi = mid;
|
|
}
|
|
}
|
|
|
|
if (lo < limit && KERN_PAIR_KEY(lo->left, lo->right) == key) {
|
|
if (aIsOverride) {
|
|
aValue = int16_t(lo->value);
|
|
} else if (aIsMinimum) {
|
|
aValue = std::max(aValue, int32_t(lo->value));
|
|
} else {
|
|
aValue += int16_t(lo->value);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get kerning value from Apple (version 1.0) kern table,
|
|
// subtable format 2 (simple N x M array of kerning values)
|
|
|
|
// See http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html
|
|
// for details of version 1.0 format 2 subtable.
|
|
|
|
struct KernHeaderVersion1Fmt2 {
|
|
KernTableSubtableHeaderVersion1 header;
|
|
AutoSwap_PRUint16 rowWidth;
|
|
AutoSwap_PRUint16 leftOffsetTable;
|
|
AutoSwap_PRUint16 rightOffsetTable;
|
|
AutoSwap_PRUint16 array;
|
|
};
|
|
|
|
struct KernClassTableHdr {
|
|
AutoSwap_PRUint16 firstGlyph;
|
|
AutoSwap_PRUint16 nGlyphs;
|
|
AutoSwap_PRUint16 offsets[1]; // actually an array of nGlyphs entries
|
|
};
|
|
|
|
static int16_t GetKernValueVersion1Fmt2(const void* aSubtable,
|
|
uint32_t aSubtableLen,
|
|
uint16_t aFirstGlyph,
|
|
uint16_t aSecondGlyph) {
|
|
if (aSubtableLen < sizeof(KernHeaderVersion1Fmt2)) {
|
|
return 0;
|
|
}
|
|
|
|
const char* base = reinterpret_cast<const char*>(aSubtable);
|
|
const char* subtableEnd = base + aSubtableLen;
|
|
|
|
const KernHeaderVersion1Fmt2* h =
|
|
reinterpret_cast<const KernHeaderVersion1Fmt2*>(aSubtable);
|
|
uint32_t offset = h->array;
|
|
|
|
const KernClassTableHdr* leftClassTable =
|
|
reinterpret_cast<const KernClassTableHdr*>(base +
|
|
uint16_t(h->leftOffsetTable));
|
|
if (reinterpret_cast<const char*>(leftClassTable) +
|
|
sizeof(KernClassTableHdr) >
|
|
subtableEnd) {
|
|
return 0;
|
|
}
|
|
if (aFirstGlyph >= uint16_t(leftClassTable->firstGlyph)) {
|
|
aFirstGlyph -= uint16_t(leftClassTable->firstGlyph);
|
|
if (aFirstGlyph < uint16_t(leftClassTable->nGlyphs)) {
|
|
if (reinterpret_cast<const char*>(leftClassTable) +
|
|
sizeof(KernClassTableHdr) + aFirstGlyph * sizeof(uint16_t) >=
|
|
subtableEnd) {
|
|
return 0;
|
|
}
|
|
offset = uint16_t(leftClassTable->offsets[aFirstGlyph]);
|
|
}
|
|
}
|
|
|
|
const KernClassTableHdr* rightClassTable =
|
|
reinterpret_cast<const KernClassTableHdr*>(base +
|
|
uint16_t(h->rightOffsetTable));
|
|
if (reinterpret_cast<const char*>(rightClassTable) +
|
|
sizeof(KernClassTableHdr) >
|
|
subtableEnd) {
|
|
return 0;
|
|
}
|
|
if (aSecondGlyph >= uint16_t(rightClassTable->firstGlyph)) {
|
|
aSecondGlyph -= uint16_t(rightClassTable->firstGlyph);
|
|
if (aSecondGlyph < uint16_t(rightClassTable->nGlyphs)) {
|
|
if (reinterpret_cast<const char*>(rightClassTable) +
|
|
sizeof(KernClassTableHdr) + aSecondGlyph * sizeof(uint16_t) >=
|
|
subtableEnd) {
|
|
return 0;
|
|
}
|
|
offset += uint16_t(rightClassTable->offsets[aSecondGlyph]);
|
|
}
|
|
}
|
|
|
|
const AutoSwap_PRInt16* pval =
|
|
reinterpret_cast<const AutoSwap_PRInt16*>(base + offset);
|
|
if (reinterpret_cast<const char*>(pval + 1) >= subtableEnd) {
|
|
return 0;
|
|
}
|
|
return *pval;
|
|
}
|
|
|
|
// Get kerning value from Apple (version 1.0) kern table,
|
|
// subtable format 3 (simple N x M array of kerning values)
|
|
|
|
// See http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html
|
|
// for details of version 1.0 format 3 subtable.
|
|
|
|
struct KernHeaderVersion1Fmt3 {
|
|
KernTableSubtableHeaderVersion1 header;
|
|
AutoSwap_PRUint16 glyphCount;
|
|
uint8_t kernValueCount;
|
|
uint8_t leftClassCount;
|
|
uint8_t rightClassCount;
|
|
uint8_t flags;
|
|
};
|
|
|
|
static int16_t GetKernValueVersion1Fmt3(const void* aSubtable,
|
|
uint32_t aSubtableLen,
|
|
uint16_t aFirstGlyph,
|
|
uint16_t aSecondGlyph) {
|
|
// check that we can safely read the header fields
|
|
if (aSubtableLen < sizeof(KernHeaderVersion1Fmt3)) {
|
|
return 0;
|
|
}
|
|
|
|
const KernHeaderVersion1Fmt3* hdr =
|
|
reinterpret_cast<const KernHeaderVersion1Fmt3*>(aSubtable);
|
|
if (hdr->flags != 0) {
|
|
return 0;
|
|
}
|
|
|
|
uint16_t glyphCount = hdr->glyphCount;
|
|
|
|
// check that table is large enough for the arrays
|
|
if (sizeof(KernHeaderVersion1Fmt3) + hdr->kernValueCount * sizeof(int16_t) +
|
|
glyphCount + glyphCount + hdr->leftClassCount * hdr->rightClassCount >
|
|
aSubtableLen) {
|
|
return 0;
|
|
}
|
|
|
|
if (aFirstGlyph >= glyphCount || aSecondGlyph >= glyphCount) {
|
|
// glyphs are out of range for the class tables
|
|
return 0;
|
|
}
|
|
|
|
// get pointers to the four arrays within the subtable
|
|
const AutoSwap_PRInt16* kernValue =
|
|
reinterpret_cast<const AutoSwap_PRInt16*>(hdr + 1);
|
|
const uint8_t* leftClass =
|
|
reinterpret_cast<const uint8_t*>(kernValue + hdr->kernValueCount);
|
|
const uint8_t* rightClass = leftClass + glyphCount;
|
|
const uint8_t* kernIndex = rightClass + glyphCount;
|
|
|
|
uint8_t lc = leftClass[aFirstGlyph];
|
|
uint8_t rc = rightClass[aSecondGlyph];
|
|
if (lc >= hdr->leftClassCount || rc >= hdr->rightClassCount) {
|
|
return 0;
|
|
}
|
|
|
|
uint8_t ki = kernIndex[leftClass[aFirstGlyph] * hdr->rightClassCount +
|
|
rightClass[aSecondGlyph]];
|
|
if (ki >= hdr->kernValueCount) {
|
|
return 0;
|
|
}
|
|
|
|
return kernValue[ki];
|
|
}
|
|
|
|
#define KERN0_COVERAGE_HORIZONTAL 0x0001
|
|
#define KERN0_COVERAGE_MINIMUM 0x0002
|
|
#define KERN0_COVERAGE_CROSS_STREAM 0x0004
|
|
#define KERN0_COVERAGE_OVERRIDE 0x0008
|
|
#define KERN0_COVERAGE_RESERVED 0x00F0
|
|
|
|
#define KERN1_COVERAGE_VERTICAL 0x8000
|
|
#define KERN1_COVERAGE_CROSS_STREAM 0x4000
|
|
#define KERN1_COVERAGE_VARIATION 0x2000
|
|
#define KERN1_COVERAGE_RESERVED 0x1F00
|
|
|
|
hb_position_t gfxHarfBuzzShaper::GetHKerning(uint16_t aFirstGlyph,
|
|
uint16_t aSecondGlyph) const {
|
|
// We want to ignore any kern pairs involving <space>, because we are
|
|
// handling words in isolation, the only space characters seen here are
|
|
// the ones artificially added by the textRun code.
|
|
uint32_t spaceGlyph = mFont->GetSpaceGlyph();
|
|
if (aFirstGlyph == spaceGlyph || aSecondGlyph == spaceGlyph) {
|
|
return 0;
|
|
}
|
|
|
|
if (!mKernTable) {
|
|
mKernTable =
|
|
mFont->GetFontEntry()->GetFontTable(TRUETYPE_TAG('k', 'e', 'r', 'n'));
|
|
if (!mKernTable) {
|
|
mKernTable = hb_blob_get_empty();
|
|
}
|
|
}
|
|
|
|
uint32_t len;
|
|
const char* base = hb_blob_get_data(mKernTable, &len);
|
|
if (len < sizeof(KernTableVersion0)) {
|
|
return 0;
|
|
}
|
|
int32_t value = 0;
|
|
|
|
// First try to interpret as "version 0" kern table
|
|
// (see http://www.microsoft.com/typography/otspec/kern.htm)
|
|
const KernTableVersion0* kern0 =
|
|
reinterpret_cast<const KernTableVersion0*>(base);
|
|
if (uint16_t(kern0->version) == 0) {
|
|
uint16_t nTables = kern0->nTables;
|
|
uint32_t offs = sizeof(KernTableVersion0);
|
|
for (uint16_t i = 0; i < nTables; ++i) {
|
|
if (offs + sizeof(KernTableSubtableHeaderVersion0) > len) {
|
|
break;
|
|
}
|
|
const KernTableSubtableHeaderVersion0* st0 =
|
|
reinterpret_cast<const KernTableSubtableHeaderVersion0*>(base + offs);
|
|
uint16_t subtableLen = uint16_t(st0->length);
|
|
if (offs + subtableLen > len) {
|
|
break;
|
|
}
|
|
offs += subtableLen;
|
|
uint16_t coverage = st0->coverage;
|
|
if (!(coverage & KERN0_COVERAGE_HORIZONTAL)) {
|
|
// we only care about horizontal kerning (for now)
|
|
continue;
|
|
}
|
|
if (coverage & (KERN0_COVERAGE_CROSS_STREAM | KERN0_COVERAGE_RESERVED)) {
|
|
// we don't support cross-stream kerning, and
|
|
// reserved bits should be zero;
|
|
// ignore the subtable if not
|
|
continue;
|
|
}
|
|
uint8_t format = (coverage >> 8);
|
|
switch (format) {
|
|
case 0:
|
|
GetKernValueFmt0(st0 + 1, subtableLen - sizeof(*st0), aFirstGlyph,
|
|
aSecondGlyph, value,
|
|
(coverage & KERN0_COVERAGE_OVERRIDE) != 0,
|
|
(coverage & KERN0_COVERAGE_MINIMUM) != 0);
|
|
break;
|
|
default:
|
|
// TODO: implement support for other formats,
|
|
// if they're ever used in practice
|
|
#if DEBUG
|
|
{
|
|
char buf[1024];
|
|
SprintfLiteral(buf,
|
|
"unknown kern subtable in %s: "
|
|
"ver 0 format %d\n",
|
|
mFont->GetName().get(), format);
|
|
NS_WARNING(buf);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// It wasn't a "version 0" table; check if it is Apple version 1.0
|
|
// (see http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html)
|
|
const KernTableVersion1* kern1 =
|
|
reinterpret_cast<const KernTableVersion1*>(base);
|
|
if (uint32_t(kern1->version) == 0x00010000) {
|
|
uint32_t nTables = kern1->nTables;
|
|
uint32_t offs = sizeof(KernTableVersion1);
|
|
for (uint32_t i = 0; i < nTables; ++i) {
|
|
if (offs + sizeof(KernTableSubtableHeaderVersion1) > len) {
|
|
break;
|
|
}
|
|
const KernTableSubtableHeaderVersion1* st1 =
|
|
reinterpret_cast<const KernTableSubtableHeaderVersion1*>(base +
|
|
offs);
|
|
uint32_t subtableLen = uint32_t(st1->length);
|
|
offs += subtableLen;
|
|
uint16_t coverage = st1->coverage;
|
|
if (coverage & (KERN1_COVERAGE_VERTICAL | KERN1_COVERAGE_CROSS_STREAM |
|
|
KERN1_COVERAGE_VARIATION | KERN1_COVERAGE_RESERVED)) {
|
|
// we only care about horizontal kerning (for now),
|
|
// we don't support cross-stream kerning,
|
|
// we don't support variations,
|
|
// reserved bits should be zero;
|
|
// ignore the subtable if not
|
|
continue;
|
|
}
|
|
uint8_t format = (coverage & 0xff);
|
|
switch (format) {
|
|
case 0:
|
|
GetKernValueFmt0(st1 + 1, subtableLen - sizeof(*st1), aFirstGlyph,
|
|
aSecondGlyph, value);
|
|
break;
|
|
case 2:
|
|
value = GetKernValueVersion1Fmt2(st1, subtableLen, aFirstGlyph,
|
|
aSecondGlyph);
|
|
break;
|
|
case 3:
|
|
value = GetKernValueVersion1Fmt3(st1, subtableLen, aFirstGlyph,
|
|
aSecondGlyph);
|
|
break;
|
|
default:
|
|
// TODO: implement support for other formats.
|
|
// Note that format 1 cannot be supported here,
|
|
// as it requires the full glyph array to run the FSM,
|
|
// not just the current glyph pair.
|
|
#if DEBUG
|
|
{
|
|
char buf[1024];
|
|
SprintfLiteral(buf,
|
|
"unknown kern subtable in %s: "
|
|
"ver 0 format %d\n",
|
|
mFont->GetName().get(), format);
|
|
NS_WARNING(buf);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (value != 0) {
|
|
return FloatToFixed(mFont->FUnitsToDevUnitsFactor() * value);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static hb_position_t HBGetHKerning(hb_font_t* font, void* font_data,
|
|
hb_codepoint_t first_glyph,
|
|
hb_codepoint_t second_glyph,
|
|
void* user_data) {
|
|
const gfxHarfBuzzShaper::FontCallbackData* fcd =
|
|
static_cast<const gfxHarfBuzzShaper::FontCallbackData*>(font_data);
|
|
return fcd->mShaper->GetHKerning(first_glyph, second_glyph);
|
|
}
|
|
|
|
/*
|
|
* HarfBuzz unicode property callbacks
|
|
*/
|
|
|
|
static hb_codepoint_t HBGetMirroring(hb_unicode_funcs_t* ufuncs,
|
|
hb_codepoint_t aCh, void* user_data) {
|
|
return GetMirroredChar(aCh);
|
|
}
|
|
|
|
static hb_unicode_general_category_t HBGetGeneralCategory(
|
|
hb_unicode_funcs_t* ufuncs, hb_codepoint_t aCh, void* user_data) {
|
|
return hb_unicode_general_category_t(GetGeneralCategory(aCh));
|
|
}
|
|
|
|
static hb_script_t HBGetScript(hb_unicode_funcs_t* ufuncs, hb_codepoint_t aCh,
|
|
void* user_data) {
|
|
return hb_script_t(GetScriptTagForCode(GetScriptCode(aCh)));
|
|
}
|
|
|
|
static hb_unicode_combining_class_t HBGetCombiningClass(
|
|
hb_unicode_funcs_t* ufuncs, hb_codepoint_t aCh, void* user_data) {
|
|
return hb_unicode_combining_class_t(GetCombiningClass(aCh));
|
|
}
|
|
|
|
// Hebrew presentation forms with dagesh, for characters 0x05D0..0x05EA;
|
|
// note that some letters do not have a dagesh presForm encoded
|
|
static const char16_t sDageshForms[0x05EA - 0x05D0 + 1] = {
|
|
0xFB30, // ALEF
|
|
0xFB31, // BET
|
|
0xFB32, // GIMEL
|
|
0xFB33, // DALET
|
|
0xFB34, // HE
|
|
0xFB35, // VAV
|
|
0xFB36, // ZAYIN
|
|
0, // HET
|
|
0xFB38, // TET
|
|
0xFB39, // YOD
|
|
0xFB3A, // FINAL KAF
|
|
0xFB3B, // KAF
|
|
0xFB3C, // LAMED
|
|
0, // FINAL MEM
|
|
0xFB3E, // MEM
|
|
0, // FINAL NUN
|
|
0xFB40, // NUN
|
|
0xFB41, // SAMEKH
|
|
0, // AYIN
|
|
0xFB43, // FINAL PE
|
|
0xFB44, // PE
|
|
0, // FINAL TSADI
|
|
0xFB46, // TSADI
|
|
0xFB47, // QOF
|
|
0xFB48, // RESH
|
|
0xFB49, // SHIN
|
|
0xFB4A // TAV
|
|
};
|
|
|
|
static hb_bool_t HBUnicodeCompose(hb_unicode_funcs_t* ufuncs, hb_codepoint_t a,
|
|
hb_codepoint_t b, hb_codepoint_t* ab,
|
|
void* user_data) {
|
|
if (sNormalizer) {
|
|
UChar32 ch = unorm2_composePair(sNormalizer, a, b);
|
|
if (ch >= 0) {
|
|
*ab = ch;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static hb_bool_t HBUnicodeDecompose(hb_unicode_funcs_t* ufuncs,
|
|
hb_codepoint_t ab, hb_codepoint_t* a,
|
|
hb_codepoint_t* b, void* user_data) {
|
|
#ifdef MOZ_WIDGET_ANDROID
|
|
// Hack for the SamsungDevanagari font, bug 1012365:
|
|
// support U+0972 by decomposing it.
|
|
if (ab == 0x0972) {
|
|
*a = 0x0905;
|
|
*b = 0x0945;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
if (!sNormalizer) {
|
|
return false;
|
|
}
|
|
|
|
// Canonical decompositions are never more than two characters,
|
|
// or a maximum of 4 utf-16 code units.
|
|
const unsigned MAX_DECOMP_LENGTH = 4;
|
|
|
|
UErrorCode error = U_ZERO_ERROR;
|
|
UChar decomp[MAX_DECOMP_LENGTH];
|
|
int32_t len = unorm2_getRawDecomposition(sNormalizer, ab, decomp,
|
|
MAX_DECOMP_LENGTH, &error);
|
|
if (U_FAILURE(error) || len < 0) {
|
|
return false;
|
|
}
|
|
|
|
UText text = UTEXT_INITIALIZER;
|
|
utext_openUChars(&text, decomp, len, &error);
|
|
NS_ASSERTION(U_SUCCESS(error), "UText failure?");
|
|
|
|
UChar32 ch = UTEXT_NEXT32(&text);
|
|
if (ch != U_SENTINEL) {
|
|
*a = ch;
|
|
}
|
|
ch = UTEXT_NEXT32(&text);
|
|
if (ch != U_SENTINEL) {
|
|
*b = ch;
|
|
}
|
|
utext_close(&text);
|
|
|
|
return *b != 0 || *a != ab;
|
|
}
|
|
|
|
static void AddOpenTypeFeature(const uint32_t& aTag, uint32_t& aValue,
|
|
void* aUserArg) {
|
|
nsTArray<hb_feature_t>* features =
|
|
static_cast<nsTArray<hb_feature_t>*>(aUserArg);
|
|
|
|
hb_feature_t feat = {0, 0, 0, UINT_MAX};
|
|
feat.tag = aTag;
|
|
feat.value = aValue;
|
|
features->AppendElement(feat);
|
|
}
|
|
|
|
/*
|
|
* gfxFontShaper override to initialize the text run using HarfBuzz
|
|
*/
|
|
|
|
static hb_font_funcs_t* sHBFontFuncs = nullptr;
|
|
static hb_unicode_funcs_t* sHBUnicodeFuncs = nullptr;
|
|
static const hb_script_t sMathScript =
|
|
hb_ot_tag_to_script(HB_TAG('m', 'a', 't', 'h'));
|
|
|
|
bool gfxHarfBuzzShaper::Initialize() {
|
|
if (mInitialized) {
|
|
return mHBFont != nullptr;
|
|
}
|
|
mInitialized = true;
|
|
mCallbackData.mShaper = this;
|
|
|
|
if (!sHBFontFuncs) {
|
|
// static function callback pointers, initialized by the first
|
|
// harfbuzz shaper used
|
|
sHBFontFuncs = hb_font_funcs_create();
|
|
hb_font_funcs_set_nominal_glyph_func(sHBFontFuncs, HBGetNominalGlyph,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_variation_glyph_func(sHBFontFuncs, HBGetVariationGlyph,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_glyph_h_advance_func(sHBFontFuncs, HBGetGlyphHAdvance,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_glyph_v_advance_func(sHBFontFuncs, HBGetGlyphVAdvance,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_glyph_v_origin_func(sHBFontFuncs, HBGetGlyphVOrigin,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_glyph_extents_func(sHBFontFuncs, HBGetGlyphExtents,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_glyph_contour_point_func(sHBFontFuncs, HBGetContourPoint,
|
|
nullptr, nullptr);
|
|
hb_font_funcs_set_glyph_h_kerning_func(sHBFontFuncs, HBGetHKerning, nullptr,
|
|
nullptr);
|
|
|
|
sHBUnicodeFuncs = hb_unicode_funcs_create(hb_unicode_funcs_get_empty());
|
|
hb_unicode_funcs_set_mirroring_func(sHBUnicodeFuncs, HBGetMirroring,
|
|
nullptr, nullptr);
|
|
hb_unicode_funcs_set_script_func(sHBUnicodeFuncs, HBGetScript, nullptr,
|
|
nullptr);
|
|
hb_unicode_funcs_set_general_category_func(
|
|
sHBUnicodeFuncs, HBGetGeneralCategory, nullptr, nullptr);
|
|
hb_unicode_funcs_set_combining_class_func(
|
|
sHBUnicodeFuncs, HBGetCombiningClass, nullptr, nullptr);
|
|
hb_unicode_funcs_set_compose_func(sHBUnicodeFuncs, HBUnicodeCompose,
|
|
nullptr, nullptr);
|
|
hb_unicode_funcs_set_decompose_func(sHBUnicodeFuncs, HBUnicodeDecompose,
|
|
nullptr, nullptr);
|
|
|
|
UErrorCode error = U_ZERO_ERROR;
|
|
sNormalizer = unorm2_getNFCInstance(&error);
|
|
MOZ_ASSERT(U_SUCCESS(error), "failed to get ICU normalizer");
|
|
}
|
|
|
|
gfxFontEntry* entry = mFont->GetFontEntry();
|
|
if (!mUseFontGetGlyph) {
|
|
// get the cmap table and find offset to our subtable
|
|
mCmapTable = entry->GetFontTable(TRUETYPE_TAG('c', 'm', 'a', 'p'));
|
|
if (!mCmapTable) {
|
|
NS_WARNING("failed to load cmap, glyphs will be missing");
|
|
return false;
|
|
}
|
|
uint32_t len;
|
|
const uint8_t* data = (const uint8_t*)hb_blob_get_data(mCmapTable, &len);
|
|
mCmapFormat = gfxFontUtils::FindPreferredSubtable(
|
|
data, len, &mSubtableOffset, &mUVSTableOffset);
|
|
if (mCmapFormat <= 0) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!mUseFontGlyphWidths) {
|
|
// If font doesn't implement GetGlyphWidth, we will be reading
|
|
// the metrics table directly, so make sure we can load it.
|
|
if (!LoadHmtxTable()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
mBuffer = hb_buffer_create();
|
|
hb_buffer_set_unicode_funcs(mBuffer, sHBUnicodeFuncs);
|
|
hb_buffer_set_cluster_level(mBuffer,
|
|
HB_BUFFER_CLUSTER_LEVEL_MONOTONE_CHARACTERS);
|
|
|
|
mHBFont = hb_font_create(mHBFace);
|
|
if (mFont->GetFontEntry()->HasFontTable(TRUETYPE_TAG('C', 'F', 'F', ' '))) {
|
|
hb_ot_font_set_funcs(mHBFont);
|
|
} else {
|
|
hb_font_set_funcs(mHBFont, sHBFontFuncs, &mCallbackData, nullptr);
|
|
}
|
|
hb_font_set_ppem(mHBFont, mFont->GetAdjustedSize(), mFont->GetAdjustedSize());
|
|
uint32_t scale = FloatToFixed(mFont->GetAdjustedSize()); // 16.16 fixed-point
|
|
hb_font_set_scale(mHBFont, scale, scale);
|
|
|
|
AutoTArray<gfxFontVariation, 8> vars;
|
|
entry->GetVariationsForStyle(vars, *mFont->GetStyle());
|
|
if (vars.Length() > 0) {
|
|
// Fortunately, the hb_variation_t struct is compatible with our
|
|
// gfxFontVariation, so we can simply cast here.
|
|
static_assert(
|
|
sizeof(gfxFontVariation) == sizeof(hb_variation_t) &&
|
|
offsetof(gfxFontVariation, mTag) == offsetof(hb_variation_t, tag) &&
|
|
offsetof(gfxFontVariation, mValue) ==
|
|
offsetof(hb_variation_t, value),
|
|
"Gecko vs HarfBuzz struct mismatch!");
|
|
auto hbVars = reinterpret_cast<const hb_variation_t*>(vars.Elements());
|
|
hb_font_set_variations(mHBFont, hbVars, vars.Length());
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool gfxHarfBuzzShaper::LoadHmtxTable() {
|
|
// Read mNumLongHMetrics from metrics-head table without caching its
|
|
// blob, and preload/cache the metrics table.
|
|
gfxFontEntry* entry = mFont->GetFontEntry();
|
|
gfxFontEntry::AutoTable hheaTable(entry, TRUETYPE_TAG('h', 'h', 'e', 'a'));
|
|
if (hheaTable) {
|
|
uint32_t len;
|
|
const MetricsHeader* hhea = reinterpret_cast<const MetricsHeader*>(
|
|
hb_blob_get_data(hheaTable, &len));
|
|
if (len >= sizeof(MetricsHeader)) {
|
|
mNumLongHMetrics = hhea->numOfLongMetrics;
|
|
if (mNumLongHMetrics > 0 && int16_t(hhea->metricDataFormat) == 0) {
|
|
// no point reading metrics if number of entries is zero!
|
|
// in that case, we won't be able to use this font
|
|
// (this method will return FALSE below if mHmtxTable
|
|
// is null)
|
|
mHmtxTable = entry->GetFontTable(TRUETYPE_TAG('h', 'm', 't', 'x'));
|
|
if (mHmtxTable && hb_blob_get_length(mHmtxTable) <
|
|
mNumLongHMetrics * sizeof(LongMetric)) {
|
|
// metrics table is not large enough for the claimed
|
|
// number of entries: invalid, do not use.
|
|
hb_blob_destroy(mHmtxTable);
|
|
mHmtxTable = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!mHmtxTable) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void gfxHarfBuzzShaper::InitializeVertical() {
|
|
// We only do this once. If we don't have a mHmtxTable after that,
|
|
// we'll be making up fallback metrics.
|
|
if (mVerticalInitialized) {
|
|
return;
|
|
}
|
|
mVerticalInitialized = true;
|
|
|
|
if (!mHmtxTable) {
|
|
if (!LoadHmtxTable()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Load vertical metrics if present in the font; if not, we'll synthesize
|
|
// vertical glyph advances based on (horizontal) ascent/descent metrics.
|
|
gfxFontEntry* entry = mFont->GetFontEntry();
|
|
gfxFontEntry::AutoTable vheaTable(entry, TRUETYPE_TAG('v', 'h', 'e', 'a'));
|
|
if (vheaTable) {
|
|
uint32_t len;
|
|
const MetricsHeader* vhea = reinterpret_cast<const MetricsHeader*>(
|
|
hb_blob_get_data(vheaTable, &len));
|
|
if (len >= sizeof(MetricsHeader)) {
|
|
mNumLongVMetrics = vhea->numOfLongMetrics;
|
|
gfxFontEntry::AutoTable maxpTable(entry,
|
|
TRUETYPE_TAG('m', 'a', 'x', 'p'));
|
|
int numGlyphs = -1; // invalid if we fail to read 'maxp'
|
|
if (maxpTable &&
|
|
hb_blob_get_length(maxpTable) >= sizeof(MaxpTableHeader)) {
|
|
const MaxpTableHeader* maxp = reinterpret_cast<const MaxpTableHeader*>(
|
|
hb_blob_get_data(maxpTable, nullptr));
|
|
numGlyphs = uint16_t(maxp->numGlyphs);
|
|
}
|
|
if (mNumLongVMetrics > 0 && mNumLongVMetrics <= numGlyphs &&
|
|
int16_t(vhea->metricDataFormat) == 0) {
|
|
mVmtxTable = entry->GetFontTable(TRUETYPE_TAG('v', 'm', 't', 'x'));
|
|
if (mVmtxTable &&
|
|
hb_blob_get_length(mVmtxTable) <
|
|
mNumLongVMetrics * sizeof(LongMetric) +
|
|
(numGlyphs - mNumLongVMetrics) * sizeof(int16_t)) {
|
|
// metrics table is not large enough for the claimed
|
|
// number of entries: invalid, do not use.
|
|
hb_blob_destroy(mVmtxTable);
|
|
mVmtxTable = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For CFF fonts only, load a VORG table if present.
|
|
if (entry->HasFontTable(TRUETYPE_TAG('C', 'F', 'F', ' '))) {
|
|
mVORGTable = entry->GetFontTable(TRUETYPE_TAG('V', 'O', 'R', 'G'));
|
|
if (mVORGTable) {
|
|
uint32_t len;
|
|
const VORG* vorg =
|
|
reinterpret_cast<const VORG*>(hb_blob_get_data(mVORGTable, &len));
|
|
if (len < sizeof(VORG) || uint16_t(vorg->majorVersion) != 1 ||
|
|
uint16_t(vorg->minorVersion) != 0 ||
|
|
len < sizeof(VORG) +
|
|
uint16_t(vorg->numVertOriginYMetrics) * sizeof(VORGrec)) {
|
|
// VORG table is an unknown version, or not large enough
|
|
// to be valid -- discard it.
|
|
NS_WARNING("discarding invalid VORG table");
|
|
hb_blob_destroy(mVORGTable);
|
|
mVORGTable = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool gfxHarfBuzzShaper::ShapeText(DrawTarget* aDrawTarget,
|
|
const char16_t* aText, uint32_t aOffset,
|
|
uint32_t aLength, Script aScript,
|
|
bool aVertical, RoundingFlags aRounding,
|
|
gfxShapedText* aShapedText) {
|
|
mUseVerticalPresentationForms = false;
|
|
|
|
if (!Initialize()) {
|
|
return false;
|
|
}
|
|
|
|
if (aVertical) {
|
|
InitializeVertical();
|
|
if (!mFont->GetFontEntry()->SupportsOpenTypeFeature(
|
|
aScript, HB_TAG('v', 'e', 'r', 't'))) {
|
|
mUseVerticalPresentationForms = true;
|
|
}
|
|
}
|
|
|
|
const gfxFontStyle* style = mFont->GetStyle();
|
|
|
|
// determine whether petite-caps falls back to small-caps
|
|
bool addSmallCaps = false;
|
|
if (style->variantCaps != NS_FONT_VARIANT_CAPS_NORMAL) {
|
|
switch (style->variantCaps) {
|
|
case NS_FONT_VARIANT_CAPS_ALLPETITE:
|
|
case NS_FONT_VARIANT_CAPS_PETITECAPS:
|
|
bool synLower, synUpper;
|
|
mFont->SupportsVariantCaps(aScript, style->variantCaps, addSmallCaps,
|
|
synLower, synUpper);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
gfxFontEntry* entry = mFont->GetFontEntry();
|
|
|
|
// insert any merged features into hb_feature array
|
|
AutoTArray<hb_feature_t, 20> features;
|
|
MergeFontFeatures(style, entry->mFeatureSettings,
|
|
aShapedText->DisableLigatures(), entry->FamilyName(),
|
|
addSmallCaps, AddOpenTypeFeature, &features);
|
|
|
|
bool isRightToLeft = aShapedText->IsRightToLeft();
|
|
|
|
hb_buffer_set_direction(
|
|
mBuffer, aVertical
|
|
? HB_DIRECTION_TTB
|
|
: (isRightToLeft ? HB_DIRECTION_RTL : HB_DIRECTION_LTR));
|
|
hb_script_t scriptTag;
|
|
if (aShapedText->GetFlags() & gfx::ShapedTextFlags::TEXT_USE_MATH_SCRIPT) {
|
|
scriptTag = sMathScript;
|
|
} else {
|
|
scriptTag = GetHBScriptUsedForShaping(aScript);
|
|
}
|
|
hb_buffer_set_script(mBuffer, scriptTag);
|
|
|
|
hb_language_t language;
|
|
if (style->languageOverride) {
|
|
language = hb_ot_tag_to_language(style->languageOverride);
|
|
} else if (entry->mLanguageOverride) {
|
|
language = hb_ot_tag_to_language(entry->mLanguageOverride);
|
|
} else if (style->explicitLanguage) {
|
|
nsCString langString;
|
|
style->language->ToUTF8String(langString);
|
|
language = hb_language_from_string(langString.get(), langString.Length());
|
|
} else {
|
|
language = hb_ot_tag_to_language(HB_OT_TAG_DEFAULT_LANGUAGE);
|
|
}
|
|
hb_buffer_set_language(mBuffer, language);
|
|
|
|
uint32_t length = aLength;
|
|
hb_buffer_add_utf16(mBuffer, reinterpret_cast<const uint16_t*>(aText), length,
|
|
0, length);
|
|
|
|
hb_shape(mHBFont, mBuffer, features.Elements(), features.Length());
|
|
|
|
if (isRightToLeft) {
|
|
hb_buffer_reverse(mBuffer);
|
|
}
|
|
|
|
nsresult rv = SetGlyphsFromRun(aShapedText, aOffset, aLength, aText,
|
|
aVertical, aRounding);
|
|
|
|
NS_WARNING_ASSERTION(NS_SUCCEEDED(rv),
|
|
"failed to store glyphs into gfxShapedWord");
|
|
hb_buffer_clear_contents(mBuffer);
|
|
|
|
return NS_SUCCEEDED(rv);
|
|
}
|
|
|
|
#define SMALL_GLYPH_RUN \
|
|
128 // some testing indicates that 90%+ of text runs
|
|
// will fit without requiring separate allocation
|
|
// for charToGlyphArray
|
|
|
|
nsresult gfxHarfBuzzShaper::SetGlyphsFromRun(gfxShapedText* aShapedText,
|
|
uint32_t aOffset, uint32_t aLength,
|
|
const char16_t* aText,
|
|
bool aVertical,
|
|
RoundingFlags aRounding) {
|
|
typedef gfxShapedText::CompressedGlyph CompressedGlyph;
|
|
|
|
uint32_t numGlyphs;
|
|
const hb_glyph_info_t* ginfo = hb_buffer_get_glyph_infos(mBuffer, &numGlyphs);
|
|
if (numGlyphs == 0) {
|
|
return NS_OK;
|
|
}
|
|
|
|
AutoTArray<gfxTextRun::DetailedGlyph, 1> detailedGlyphs;
|
|
|
|
uint32_t wordLength = aLength;
|
|
static const int32_t NO_GLYPH = -1;
|
|
AutoTArray<int32_t, SMALL_GLYPH_RUN> charToGlyphArray;
|
|
if (!charToGlyphArray.SetLength(wordLength, fallible)) {
|
|
return NS_ERROR_OUT_OF_MEMORY;
|
|
}
|
|
|
|
int32_t* charToGlyph = charToGlyphArray.Elements();
|
|
for (uint32_t offset = 0; offset < wordLength; ++offset) {
|
|
charToGlyph[offset] = NO_GLYPH;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < numGlyphs; ++i) {
|
|
uint32_t loc = ginfo[i].cluster;
|
|
if (loc < wordLength) {
|
|
charToGlyph[loc] = i;
|
|
}
|
|
}
|
|
|
|
int32_t glyphStart = 0; // looking for a clump that starts at this glyph
|
|
int32_t charStart = 0; // and this char index within the range of the run
|
|
|
|
bool roundI, roundB;
|
|
if (aVertical) {
|
|
roundI = bool(aRounding & RoundingFlags::kRoundY);
|
|
roundB = bool(aRounding & RoundingFlags::kRoundX);
|
|
} else {
|
|
roundI = bool(aRounding & RoundingFlags::kRoundX);
|
|
roundB = bool(aRounding & RoundingFlags::kRoundY);
|
|
}
|
|
|
|
int32_t appUnitsPerDevUnit = aShapedText->GetAppUnitsPerDevUnit();
|
|
CompressedGlyph* charGlyphs = aShapedText->GetCharacterGlyphs() + aOffset;
|
|
|
|
// factor to convert 16.16 fixed-point pixels to app units
|
|
// (only used if not rounding)
|
|
double hb2appUnits = FixedToFloat(aShapedText->GetAppUnitsPerDevUnit());
|
|
|
|
// Residual from rounding of previous advance, for use in rounding the
|
|
// subsequent offset or advance appropriately. 16.16 fixed-point
|
|
//
|
|
// When rounding, the goal is to make the distance between glyphs and
|
|
// their base glyph equal to the integral number of pixels closest to that
|
|
// suggested by that shaper.
|
|
// i.e. posInfo[n].x_advance - posInfo[n].x_offset + posInfo[n+1].x_offset
|
|
//
|
|
// The value of the residual is the part of the desired distance that has
|
|
// not been included in integer offsets.
|
|
hb_position_t residual = 0;
|
|
|
|
// keep track of y-position to set glyph offsets if needed
|
|
nscoord bPos = 0;
|
|
|
|
const hb_glyph_position_t* posInfo =
|
|
hb_buffer_get_glyph_positions(mBuffer, nullptr);
|
|
|
|
while (glyphStart < int32_t(numGlyphs)) {
|
|
int32_t charEnd = ginfo[glyphStart].cluster;
|
|
int32_t glyphEnd = glyphStart;
|
|
int32_t charLimit = wordLength;
|
|
while (charEnd < charLimit) {
|
|
// This is normally executed once for each iteration of the outer loop,
|
|
// but in unusual cases where the character/glyph association is complex,
|
|
// the initial character range might correspond to a non-contiguous
|
|
// glyph range with "holes" in it. If so, we will repeat this loop to
|
|
// extend the character range until we have a contiguous glyph sequence.
|
|
charEnd += 1;
|
|
while (charEnd != charLimit && charToGlyph[charEnd] == NO_GLYPH) {
|
|
charEnd += 1;
|
|
}
|
|
|
|
// find the maximum glyph index covered by the clump so far
|
|
for (int32_t i = charStart; i < charEnd; ++i) {
|
|
if (charToGlyph[i] != NO_GLYPH) {
|
|
glyphEnd = std::max(glyphEnd, charToGlyph[i] + 1);
|
|
// update extent of glyph range
|
|
}
|
|
}
|
|
|
|
if (glyphEnd == glyphStart + 1) {
|
|
// for the common case of a single-glyph clump,
|
|
// we can skip the following checks
|
|
break;
|
|
}
|
|
|
|
if (glyphEnd == glyphStart) {
|
|
// no glyphs, try to extend the clump
|
|
continue;
|
|
}
|
|
|
|
// check whether all glyphs in the range are associated with the
|
|
// characters in our clump; if not, we have a discontinuous range, and
|
|
// should extend it unless we've reached the end of the text
|
|
bool allGlyphsAreWithinCluster = true;
|
|
for (int32_t i = glyphStart; i < glyphEnd; ++i) {
|
|
int32_t glyphCharIndex = ginfo[i].cluster;
|
|
if (glyphCharIndex < charStart || glyphCharIndex >= charEnd) {
|
|
allGlyphsAreWithinCluster = false;
|
|
break;
|
|
}
|
|
}
|
|
if (allGlyphsAreWithinCluster) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
NS_ASSERTION(glyphStart < glyphEnd,
|
|
"character/glyph clump contains no glyphs!");
|
|
NS_ASSERTION(charStart != charEnd,
|
|
"character/glyph clump contains no characters!");
|
|
|
|
// Now charStart..charEnd is a ligature clump, corresponding to
|
|
// glyphStart..glyphEnd; Set baseCharIndex to the char we'll actually attach
|
|
// the glyphs to (1st of ligature), and endCharIndex to the limit (position
|
|
// beyond the last char), adjusting for the offset of the stringRange
|
|
// relative to the textRun.
|
|
int32_t baseCharIndex, endCharIndex;
|
|
while (charEnd < int32_t(wordLength) && charToGlyph[charEnd] == NO_GLYPH)
|
|
charEnd++;
|
|
baseCharIndex = charStart;
|
|
endCharIndex = charEnd;
|
|
|
|
// Then we check if the clump falls outside our actual string range;
|
|
// if so, just go to the next.
|
|
if (baseCharIndex >= int32_t(wordLength)) {
|
|
glyphStart = glyphEnd;
|
|
charStart = charEnd;
|
|
continue;
|
|
}
|
|
// Ensure we won't try to go beyond the valid length of the textRun's text
|
|
endCharIndex = std::min<int32_t>(endCharIndex, wordLength);
|
|
|
|
// Now we're ready to set the glyph info in the textRun
|
|
int32_t glyphsInClump = glyphEnd - glyphStart;
|
|
|
|
// Check for default-ignorable char that didn't get filtered, combined,
|
|
// etc by the shaping process, and remove from the run.
|
|
// (This may be done within harfbuzz eventually.)
|
|
if (glyphsInClump == 1 && baseCharIndex + 1 == endCharIndex &&
|
|
aShapedText->FilterIfIgnorable(aOffset + baseCharIndex,
|
|
aText[baseCharIndex])) {
|
|
glyphStart = glyphEnd;
|
|
charStart = charEnd;
|
|
continue;
|
|
}
|
|
|
|
// HarfBuzz gives us physical x- and y-coordinates, but we will store
|
|
// them as logical inline- and block-direction values in the textrun.
|
|
|
|
hb_position_t i_offset, i_advance; // inline-direction offset/advance
|
|
hb_position_t b_offset, b_advance; // block-direction offset/advance
|
|
if (aVertical) {
|
|
// our coordinate directions are the opposite of harfbuzz's
|
|
// when doing top-to-bottom shaping
|
|
i_offset = -posInfo[glyphStart].y_offset;
|
|
i_advance = -posInfo[glyphStart].y_advance;
|
|
b_offset = -posInfo[glyphStart].x_offset;
|
|
b_advance = -posInfo[glyphStart].x_advance;
|
|
} else {
|
|
i_offset = posInfo[glyphStart].x_offset;
|
|
i_advance = posInfo[glyphStart].x_advance;
|
|
b_offset = posInfo[glyphStart].y_offset;
|
|
b_advance = posInfo[glyphStart].y_advance;
|
|
}
|
|
|
|
nscoord iOffset, advance;
|
|
if (roundI) {
|
|
iOffset = appUnitsPerDevUnit * FixedToIntRound(i_offset + residual);
|
|
// Desired distance from the base glyph to the next reference point.
|
|
hb_position_t width = i_advance - i_offset;
|
|
int intWidth = FixedToIntRound(width);
|
|
residual = width - FloatToFixed(intWidth);
|
|
advance = appUnitsPerDevUnit * intWidth + iOffset;
|
|
} else {
|
|
iOffset = floor(hb2appUnits * i_offset + 0.5);
|
|
advance = floor(hb2appUnits * i_advance + 0.5);
|
|
}
|
|
// Check if it's a simple one-to-one mapping
|
|
if (glyphsInClump == 1 &&
|
|
CompressedGlyph::IsSimpleGlyphID(ginfo[glyphStart].codepoint) &&
|
|
CompressedGlyph::IsSimpleAdvance(advance) &&
|
|
charGlyphs[baseCharIndex].IsClusterStart() && iOffset == 0 &&
|
|
b_offset == 0 && b_advance == 0 && bPos == 0) {
|
|
charGlyphs[baseCharIndex].SetSimpleGlyph(advance,
|
|
ginfo[glyphStart].codepoint);
|
|
} else {
|
|
// Collect all glyphs in a list to be assigned to the first char;
|
|
// there must be at least one in the clump, and we already measured
|
|
// its advance, hence the placement of the loop-exit test and the
|
|
// measurement of the next glyph.
|
|
while (1) {
|
|
gfxTextRun::DetailedGlyph* details = detailedGlyphs.AppendElement();
|
|
details->mGlyphID = ginfo[glyphStart].codepoint;
|
|
|
|
details->mAdvance = advance;
|
|
|
|
if (aVertical) {
|
|
details->mOffset.x =
|
|
bPos - (roundB ? appUnitsPerDevUnit * FixedToIntRound(b_offset)
|
|
: floor(hb2appUnits * b_offset + 0.5));
|
|
details->mOffset.y = iOffset;
|
|
} else {
|
|
details->mOffset.x = iOffset;
|
|
details->mOffset.y =
|
|
bPos - (roundB ? appUnitsPerDevUnit * FixedToIntRound(b_offset)
|
|
: floor(hb2appUnits * b_offset + 0.5));
|
|
}
|
|
|
|
if (b_advance != 0) {
|
|
bPos -= roundB ? appUnitsPerDevUnit * FixedToIntRound(b_advance)
|
|
: floor(hb2appUnits * b_advance + 0.5);
|
|
}
|
|
if (++glyphStart >= glyphEnd) {
|
|
break;
|
|
}
|
|
|
|
if (aVertical) {
|
|
i_offset = -posInfo[glyphStart].y_offset;
|
|
i_advance = -posInfo[glyphStart].y_advance;
|
|
b_offset = -posInfo[glyphStart].x_offset;
|
|
b_advance = -posInfo[glyphStart].x_advance;
|
|
} else {
|
|
i_offset = posInfo[glyphStart].x_offset;
|
|
i_advance = posInfo[glyphStart].x_advance;
|
|
b_offset = posInfo[glyphStart].y_offset;
|
|
b_advance = posInfo[glyphStart].y_advance;
|
|
}
|
|
|
|
if (roundI) {
|
|
iOffset = appUnitsPerDevUnit * FixedToIntRound(i_offset + residual);
|
|
// Desired distance to the next reference point. The
|
|
// residual is considered here, and includes the residual
|
|
// from the base glyph offset and subsequent advances, so
|
|
// that the distance from the base glyph is optimized
|
|
// rather than the distance from combining marks.
|
|
i_advance += residual;
|
|
int intAdvance = FixedToIntRound(i_advance);
|
|
residual = i_advance - FloatToFixed(intAdvance);
|
|
advance = appUnitsPerDevUnit * intAdvance;
|
|
} else {
|
|
iOffset = floor(hb2appUnits * i_offset + 0.5);
|
|
advance = floor(hb2appUnits * i_advance + 0.5);
|
|
}
|
|
}
|
|
|
|
bool isClusterStart = charGlyphs[baseCharIndex].IsClusterStart();
|
|
aShapedText->SetGlyphs(aOffset + baseCharIndex,
|
|
CompressedGlyph::MakeComplex(
|
|
isClusterStart, true, detailedGlyphs.Length()),
|
|
detailedGlyphs.Elements());
|
|
|
|
detailedGlyphs.Clear();
|
|
}
|
|
|
|
// the rest of the chars in the group are ligature continuations,
|
|
// no associated glyphs
|
|
while (++baseCharIndex != endCharIndex &&
|
|
baseCharIndex < int32_t(wordLength)) {
|
|
CompressedGlyph& g = charGlyphs[baseCharIndex];
|
|
NS_ASSERTION(!g.IsSimpleGlyph(), "overwriting a simple glyph");
|
|
g.SetComplex(g.IsClusterStart(), false, 0);
|
|
}
|
|
|
|
glyphStart = glyphEnd;
|
|
charStart = charEnd;
|
|
}
|
|
|
|
return NS_OK;
|
|
}
|