gecko-dev/dom/media/mediasource/MediaSourceDemuxer.cpp

579 строки
18 KiB
C++

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "MediaSourceDemuxer.h"
#include "MediaSourceUtils.h"
#include "OpusDecoder.h"
#include "SourceBufferList.h"
#include "VorbisDecoder.h"
#include "VideoUtils.h"
#include "nsPrintfCString.h"
#include <algorithm>
#include <limits>
#include <stdint.h>
namespace mozilla {
typedef TrackInfo::TrackType TrackType;
using media::TimeUnit;
using media::TimeIntervals;
MediaSourceDemuxer::MediaSourceDemuxer(AbstractThread* aAbstractMainThread)
: mTaskQueue(new TaskQueue(GetMediaThreadPool(MediaThreadType::PLAYBACK),
"MediaSourceDemuxer::mTaskQueue"))
, mMonitor("MediaSourceDemuxer")
{
MOZ_ASSERT(NS_IsMainThread());
}
constexpr TimeUnit MediaSourceDemuxer::EOS_FUZZ;
RefPtr<MediaSourceDemuxer::InitPromise>
MediaSourceDemuxer::Init()
{
RefPtr<MediaSourceDemuxer> self = this;
return InvokeAsync(GetTaskQueue(), __func__,
[self](){
if (self->ScanSourceBuffersForContent()) {
return InitPromise::CreateAndResolve(NS_OK, __func__);
}
RefPtr<InitPromise> p = self->mInitPromise.Ensure(__func__);
return p;
});
}
void
MediaSourceDemuxer::AddSizeOfResources(
MediaSourceDecoder::ResourceSizes* aSizes)
{
MOZ_ASSERT(NS_IsMainThread());
// NB: The track buffers must only be accessed on the TaskQueue.
RefPtr<MediaSourceDemuxer> self = this;
RefPtr<MediaSourceDecoder::ResourceSizes> sizes = aSizes;
nsCOMPtr<nsIRunnable> task = NS_NewRunnableFunction(
"MediaSourceDemuxer::AddSizeOfResources", [self, sizes]() {
for (const RefPtr<TrackBuffersManager>& manager : self->mSourceBuffers) {
manager->AddSizeOfResources(sizes);
}
});
nsresult rv = GetTaskQueue()->Dispatch(task.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
void MediaSourceDemuxer::NotifyInitDataArrived()
{
RefPtr<MediaSourceDemuxer> self = this;
nsCOMPtr<nsIRunnable> task = NS_NewRunnableFunction(
"MediaSourceDemuxer::NotifyInitDataArrived", [self]() {
if (self->mInitPromise.IsEmpty()) {
return;
}
if (self->ScanSourceBuffersForContent()) {
self->mInitPromise.ResolveIfExists(NS_OK, __func__);
}
});
nsresult rv = GetTaskQueue()->Dispatch(task.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
bool
MediaSourceDemuxer::ScanSourceBuffersForContent()
{
MOZ_ASSERT(OnTaskQueue());
if (mSourceBuffers.IsEmpty()) {
return false;
}
MonitorAutoLock mon(mMonitor);
bool haveEmptySourceBuffer = false;
for (const auto& sourceBuffer : mSourceBuffers) {
MediaInfo info = sourceBuffer->GetMetadata();
if (!info.HasAudio() && !info.HasVideo()) {
haveEmptySourceBuffer = true;
}
if (info.HasAudio() && !mAudioTrack) {
mInfo.mAudio = info.mAudio;
mAudioTrack = sourceBuffer;
}
if (info.HasVideo() && !mVideoTrack) {
mInfo.mVideo = info.mVideo;
mVideoTrack = sourceBuffer;
}
if (info.IsEncrypted() && !mInfo.IsEncrypted()) {
mInfo.mCrypto = info.mCrypto;
}
}
if (mInfo.HasAudio() && mInfo.HasVideo()) {
// We have both audio and video. We can ignore non-ready source buffer.
return true;
}
return !haveEmptySourceBuffer;
}
uint32_t
MediaSourceDemuxer::GetNumberTracks(TrackType aType) const
{
MonitorAutoLock mon(mMonitor);
switch (aType) {
case TrackType::kAudioTrack:
return mInfo.HasAudio() ? 1u : 0;
case TrackType::kVideoTrack:
return mInfo.HasVideo() ? 1u : 0;
default:
return 0;
}
}
already_AddRefed<MediaTrackDemuxer>
MediaSourceDemuxer::GetTrackDemuxer(TrackType aType, uint32_t aTrackNumber)
{
RefPtr<TrackBuffersManager> manager = GetManager(aType);
if (!manager) {
return nullptr;
}
RefPtr<MediaSourceTrackDemuxer> e =
new MediaSourceTrackDemuxer(this, aType, manager);
DDLINKCHILD("track demuxer", e.get());
mDemuxers.AppendElement(e);
return e.forget();
}
bool
MediaSourceDemuxer::IsSeekable() const
{
return true;
}
UniquePtr<EncryptionInfo>
MediaSourceDemuxer::GetCrypto()
{
MonitorAutoLock mon(mMonitor);
auto crypto = MakeUnique<EncryptionInfo>();
*crypto = mInfo.mCrypto;
return crypto;
}
void
MediaSourceDemuxer::AttachSourceBuffer(
RefPtr<TrackBuffersManager>& aSourceBuffer)
{
nsCOMPtr<nsIRunnable> task = NewRunnableMethod<RefPtr<TrackBuffersManager>&&>(
"MediaSourceDemuxer::DoAttachSourceBuffer",
this,
&MediaSourceDemuxer::DoAttachSourceBuffer,
aSourceBuffer);
nsresult rv = GetTaskQueue()->Dispatch(task.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
void
MediaSourceDemuxer::DoAttachSourceBuffer(
RefPtr<mozilla::TrackBuffersManager>&& aSourceBuffer)
{
MOZ_ASSERT(OnTaskQueue());
mSourceBuffers.AppendElement(std::move(aSourceBuffer));
ScanSourceBuffersForContent();
}
void
MediaSourceDemuxer::DetachSourceBuffer(
RefPtr<TrackBuffersManager>& aSourceBuffer)
{
nsCOMPtr<nsIRunnable> task = NewRunnableMethod<RefPtr<TrackBuffersManager>&&>(
"MediaSourceDemuxer::DoDetachSourceBuffer",
this,
&MediaSourceDemuxer::DoDetachSourceBuffer,
aSourceBuffer);
nsresult rv = GetTaskQueue()->Dispatch(task.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
void
MediaSourceDemuxer::DoDetachSourceBuffer(
RefPtr<TrackBuffersManager>&& aSourceBuffer)
{
MOZ_ASSERT(OnTaskQueue());
mSourceBuffers.RemoveElementsBy(
[&aSourceBuffer](const RefPtr<TrackBuffersManager> aLinkedSourceBuffer) {
return aLinkedSourceBuffer == aSourceBuffer;
});
{
MonitorAutoLock mon(mMonitor);
if (aSourceBuffer == mAudioTrack) {
mAudioTrack = nullptr;
}
if (aSourceBuffer == mVideoTrack) {
mVideoTrack = nullptr;
}
}
for (auto& demuxer : mDemuxers) {
if (demuxer->HasManager(aSourceBuffer)) {
demuxer->DetachManager();
}
}
ScanSourceBuffersForContent();
}
TrackInfo*
MediaSourceDemuxer::GetTrackInfo(TrackType aTrack)
{
MonitorAutoLock mon(mMonitor);
switch (aTrack) {
case TrackType::kAudioTrack:
return &mInfo.mAudio;
case TrackType::kVideoTrack:
return &mInfo.mVideo;
default:
return nullptr;
}
}
RefPtr<TrackBuffersManager>
MediaSourceDemuxer::GetManager(TrackType aTrack)
{
MonitorAutoLock mon(mMonitor);
switch (aTrack) {
case TrackType::kAudioTrack:
return mAudioTrack;
case TrackType::kVideoTrack:
return mVideoTrack;
default:
return nullptr;
}
}
MediaSourceDemuxer::~MediaSourceDemuxer()
{
mInitPromise.RejectIfExists(NS_ERROR_DOM_MEDIA_CANCELED, __func__);
}
void
MediaSourceDemuxer::GetMozDebugReaderData(nsACString& aString)
{
MonitorAutoLock mon(mMonitor);
nsAutoCString result;
result += nsPrintfCString("Dumping Data for Demuxer: %p\n", this);
if (mAudioTrack) {
result += nsPrintfCString(
"\tDumping Audio Track Buffer(%s): mLastAudioTime=%f\n"
"\t\tAudio Track Buffer Details: NumSamples=%zu"
" Size=%u Evictable=%u "
"NextGetSampleIndex=%u NextInsertionIndex=%d\n",
mAudioTrack->mType.Type().AsString().get(),
mAudioTrack->mAudioTracks.mNextSampleTime.ToSeconds(),
mAudioTrack->mAudioTracks.mBuffers[0].Length(),
mAudioTrack->mAudioTracks.mSizeBuffer,
mAudioTrack->Evictable(TrackInfo::kAudioTrack),
mAudioTrack->mAudioTracks.mNextGetSampleIndex.valueOr(-1),
mAudioTrack->mAudioTracks.mNextInsertionIndex.valueOr(-1));
result += nsPrintfCString(
"\t\tAudio Track Buffered: ranges=%s\n",
DumpTimeRanges(mAudioTrack->SafeBuffered(TrackInfo::kAudioTrack)).get());
}
if (mVideoTrack) {
result += nsPrintfCString(
"\tDumping Video Track Buffer(%s): mLastVideoTime=%f\n"
"\t\tVideo Track Buffer Details: NumSamples=%zu"
" Size=%u Evictable=%u "
"NextGetSampleIndex=%u NextInsertionIndex=%d\n",
mVideoTrack->mType.Type().AsString().get(),
mVideoTrack->mVideoTracks.mNextSampleTime.ToSeconds(),
mVideoTrack->mVideoTracks.mBuffers[0].Length(),
mVideoTrack->mVideoTracks.mSizeBuffer,
mVideoTrack->Evictable(TrackInfo::kVideoTrack),
mVideoTrack->mVideoTracks.mNextGetSampleIndex.valueOr(-1),
mVideoTrack->mVideoTracks.mNextInsertionIndex.valueOr(-1));
result += nsPrintfCString(
"\t\tVideo Track Buffered: ranges=%s\n",
DumpTimeRanges(mVideoTrack->SafeBuffered(TrackInfo::kVideoTrack)).get());
}
aString += result;
}
MediaSourceTrackDemuxer::MediaSourceTrackDemuxer(MediaSourceDemuxer* aParent,
TrackInfo::TrackType aType,
TrackBuffersManager* aManager)
: mParent(aParent)
, mType(aType)
, mMonitor("MediaSourceTrackDemuxer")
, mManager(aManager)
, mReset(true)
, mPreRoll(TimeUnit::FromMicroseconds(
OpusDataDecoder::IsOpus(mParent->GetTrackInfo(mType)->mMimeType) ||
VorbisDataDecoder::IsVorbis(mParent->GetTrackInfo(mType)->mMimeType)
? 80000
: mParent->GetTrackInfo(mType)->mMimeType.EqualsLiteral("audio/mp4a-latm")
// AAC encoder delay is by default 2112 audio frames.
// See https://developer.apple.com/library/content/documentation/QuickTime/QTFF/QTFFAppenG/QTFFAppenG.html
// So we always seek 2112 frames
? (2112 * 1000000ULL
/ mParent->GetTrackInfo(mType)->GetAsAudioInfo()->mRate)
: 0))
{
}
UniquePtr<TrackInfo>
MediaSourceTrackDemuxer::GetInfo() const
{
return mParent->GetTrackInfo(mType)->Clone();
}
RefPtr<MediaSourceTrackDemuxer::SeekPromise>
MediaSourceTrackDemuxer::Seek(const TimeUnit& aTime)
{
MOZ_ASSERT(mParent, "Called after BreackCycle()");
return InvokeAsync(
mParent->GetTaskQueue(), this, __func__,
&MediaSourceTrackDemuxer::DoSeek, aTime);
}
RefPtr<MediaSourceTrackDemuxer::SamplesPromise>
MediaSourceTrackDemuxer::GetSamples(int32_t aNumSamples)
{
MOZ_ASSERT(mParent, "Called after BreackCycle()");
return InvokeAsync(mParent->GetTaskQueue(), this, __func__,
&MediaSourceTrackDemuxer::DoGetSamples, aNumSamples);
}
void
MediaSourceTrackDemuxer::Reset()
{
MOZ_ASSERT(mParent, "Called after BreackCycle()");
RefPtr<MediaSourceTrackDemuxer> self = this;
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableFunction("MediaSourceTrackDemuxer::Reset", [self]() {
self->mNextSample.reset();
self->mReset = true;
if (!self->mManager) {
return;
}
MOZ_ASSERT(self->OnTaskQueue());
self->mManager->Seek(self->mType, TimeUnit::Zero(), TimeUnit::Zero());
{
MonitorAutoLock mon(self->mMonitor);
self->mNextRandomAccessPoint = self->mManager->GetNextRandomAccessPoint(
self->mType, MediaSourceDemuxer::EOS_FUZZ);
}
});
nsresult rv = mParent->GetTaskQueue()->Dispatch(task.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
nsresult
MediaSourceTrackDemuxer::GetNextRandomAccessPoint(TimeUnit* aTime)
{
MonitorAutoLock mon(mMonitor);
*aTime = mNextRandomAccessPoint;
return NS_OK;
}
RefPtr<MediaSourceTrackDemuxer::SkipAccessPointPromise>
MediaSourceTrackDemuxer::SkipToNextRandomAccessPoint(
const TimeUnit& aTimeThreshold)
{
return InvokeAsync(
mParent->GetTaskQueue(), this, __func__,
&MediaSourceTrackDemuxer::DoSkipToNextRandomAccessPoint,
aTimeThreshold);
}
media::TimeIntervals
MediaSourceTrackDemuxer::GetBuffered()
{
MonitorAutoLock mon(mMonitor);
if (!mManager) {
return media::TimeIntervals();
}
return mManager->Buffered();
}
void
MediaSourceTrackDemuxer::BreakCycles()
{
RefPtr<MediaSourceTrackDemuxer> self = this;
nsCOMPtr<nsIRunnable> task =
NS_NewRunnableFunction("MediaSourceTrackDemuxer::BreakCycles", [self]() {
self->DetachManager();
self->mParent = nullptr;
});
nsresult rv = mParent->GetTaskQueue()->Dispatch(task.forget());
MOZ_DIAGNOSTIC_ASSERT(NS_SUCCEEDED(rv));
Unused << rv;
}
RefPtr<MediaSourceTrackDemuxer::SeekPromise>
MediaSourceTrackDemuxer::DoSeek(const TimeUnit& aTime)
{
if (!mManager) {
return SeekPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
RESULT_DETAIL("manager is detached.")), __func__);
}
MOZ_ASSERT(OnTaskQueue());
TimeIntervals buffered = mManager->Buffered(mType);
// Fuzz factor represents a +/- threshold. So when seeking it allows the gap
// to be twice as big as the fuzz value. We only want to allow EOS_FUZZ gap.
buffered.SetFuzz(MediaSourceDemuxer::EOS_FUZZ / 2);
TimeUnit seekTime = std::max(aTime - mPreRoll, TimeUnit::Zero());
if (mManager->IsEnded() && seekTime >= buffered.GetEnd()) {
// We're attempting to seek past the end time. Cap seekTime so that we seek
// to the last sample instead.
seekTime =
std::max(mManager->HighestStartTime(mType) - mPreRoll, TimeUnit::Zero());
}
if (!buffered.ContainsWithStrictEnd(seekTime)) {
if (!buffered.ContainsWithStrictEnd(aTime)) {
// We don't have the data to seek to.
return SeekPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA,
__func__);
}
// Theoretically we should reject the promise with WAITING_FOR_DATA,
// however, to avoid unwanted regressions we assume that if at this time
// we don't have the wanted data it won't come later.
// Instead of using the pre-rolled time, use the earliest time available in
// the interval.
TimeIntervals::IndexType index = buffered.Find(aTime);
MOZ_ASSERT(index != TimeIntervals::NoIndex);
seekTime = buffered[index].mStart;
}
seekTime = mManager->Seek(mType, seekTime, MediaSourceDemuxer::EOS_FUZZ);
MediaResult result = NS_OK;
RefPtr<MediaRawData> sample =
mManager->GetSample(mType,
TimeUnit::Zero(),
result);
MOZ_ASSERT(NS_SUCCEEDED(result) && sample);
mNextSample = Some(sample);
mReset = false;
{
MonitorAutoLock mon(mMonitor);
mNextRandomAccessPoint =
mManager->GetNextRandomAccessPoint(mType, MediaSourceDemuxer::EOS_FUZZ);
}
return SeekPromise::CreateAndResolve(seekTime, __func__);
}
RefPtr<MediaSourceTrackDemuxer::SamplesPromise>
MediaSourceTrackDemuxer::DoGetSamples(int32_t aNumSamples)
{
if (!mManager) {
return SamplesPromise::CreateAndReject(
MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
RESULT_DETAIL("manager is detached.")), __func__);
}
MOZ_ASSERT(OnTaskQueue());
if (mReset) {
// If a seek (or reset) was recently performed, we ensure that the data
// we are about to retrieve is still available.
TimeIntervals buffered = mManager->Buffered(mType);
buffered.SetFuzz(MediaSourceDemuxer::EOS_FUZZ / 2);
if (!buffered.Length() && mManager->IsEnded()) {
return SamplesPromise::CreateAndReject(NS_ERROR_DOM_MEDIA_END_OF_STREAM,
__func__);
}
if (!buffered.ContainsWithStrictEnd(TimeUnit::Zero())) {
return SamplesPromise::CreateAndReject(
NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA, __func__);
}
mReset = false;
}
RefPtr<MediaRawData> sample;
if (mNextSample) {
sample = mNextSample.ref();
mNextSample.reset();
} else {
MediaResult result = NS_OK;
sample = mManager->GetSample(mType, MediaSourceDemuxer::EOS_FUZZ, result);
if (!sample) {
if (result == NS_ERROR_DOM_MEDIA_END_OF_STREAM ||
result == NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA) {
return SamplesPromise::CreateAndReject(
(result == NS_ERROR_DOM_MEDIA_END_OF_STREAM && mManager->IsEnded())
? NS_ERROR_DOM_MEDIA_END_OF_STREAM
: NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA, __func__);
}
return SamplesPromise::CreateAndReject(result, __func__);
}
}
RefPtr<SamplesHolder> samples = new SamplesHolder;
samples->mSamples.AppendElement(sample);
if (mNextRandomAccessPoint <= sample->mTime) {
MonitorAutoLock mon(mMonitor);
mNextRandomAccessPoint =
mManager->GetNextRandomAccessPoint(mType, MediaSourceDemuxer::EOS_FUZZ);
}
return SamplesPromise::CreateAndResolve(samples, __func__);
}
RefPtr<MediaSourceTrackDemuxer::SkipAccessPointPromise>
MediaSourceTrackDemuxer::DoSkipToNextRandomAccessPoint(
const TimeUnit& aTimeThreadshold)
{
if (!mManager) {
return SkipAccessPointPromise::CreateAndReject(
SkipFailureHolder(MediaResult(NS_ERROR_DOM_MEDIA_FATAL_ERR,
RESULT_DETAIL("manager is detached.")), 0), __func__);
}
MOZ_ASSERT(OnTaskQueue());
uint32_t parsed = 0;
// Ensure that the data we are about to skip to is still available.
TimeIntervals buffered = mManager->Buffered(mType);
buffered.SetFuzz(MediaSourceDemuxer::EOS_FUZZ / 2);
if (buffered.ContainsWithStrictEnd(aTimeThreadshold)) {
bool found;
parsed = mManager->SkipToNextRandomAccessPoint(mType,
aTimeThreadshold,
MediaSourceDemuxer::EOS_FUZZ,
found);
if (found) {
return SkipAccessPointPromise::CreateAndResolve(parsed, __func__);
}
}
SkipFailureHolder holder(
mManager->IsEnded() ? NS_ERROR_DOM_MEDIA_END_OF_STREAM :
NS_ERROR_DOM_MEDIA_WAITING_FOR_DATA, parsed);
return SkipAccessPointPromise::CreateAndReject(holder, __func__);
}
bool
MediaSourceTrackDemuxer::HasManager(TrackBuffersManager* aManager) const
{
MOZ_ASSERT(OnTaskQueue());
return mManager == aManager;
}
void
MediaSourceTrackDemuxer::DetachManager()
{
MOZ_ASSERT(OnTaskQueue());
MonitorAutoLock mon(mMonitor);
mManager = nullptr;
}
} // namespace mozilla